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Preface 

The many books on introductory electromagnetics can be roughly divided into two 
main groups. The first group takes the traditional development: starting with the 
experimental laws, generalizing them in steps, and finally synthesizing them in the 
form of Maxwell's equations. This is an inductive approach. The second group takes 
the axiomatic development: starting with Maxwell's equations, identifying each with 
the appropriate experimental law, and specializing the general equations to static 
and time-varying situations for analysis. This is a deductive approach. A few books 
begin with a treatment of the special theory of relativity and develop all of electro
magnetic theory from Coulomb's law of force; but this approach requires the discus
sion and understanding of the special theory of relativity first and is perhaps best 
suited for a course at an advanced level. 

Proponents of the traditional development argue that it is the way electromag
netic theory was unraveled historically (from special experimental laws to Maxwell's 
equations), and that it is easier for the students to follow than the other methods. 
I feel, however, that the way a body of knowledge was unraveled is not necessarily 
the best way to teach the subject to students. The topics tend to be fragmented and 
cannot take full advantage of the conciseness of vector calculus. Students are puzzled 
at, and often form a mental block to, the subsequent introduction of gradient, diver
gence, and curl operations. As a process for formulating an electromagnetic model, 
this approach lacks cohesiveness and elegance. 

The axiomatic development usually begins with the set of four Maxwell's equa
tions, either in differential or in integral form, as fundamental postulates. These are 
equations of considerable complexity and are difficult to master. They are likely to 
cause consternation and resistance in students who are hit with all of them at the 
beginning of a book. Alert students will wonder about the meaning of the field vectors 
and about the necessity and sufficiency of these general equations. At the initial stage 
students tend to be confused about the concepts of the electromagnetic model, and 
they are not yet comfortable with the associated mathematical manipulations. In any 
case, the general Maxwell's equations are soon simplified to apply to static fields, 

v 



Preface 

which allow the consideration of electrostatic fields and magnetostatic fields sepa
rately. Why then should the entire set of four Maxwell's equations be introduced at 
the outset? 

It may be argued that Coulomb's law, though based on experimental evidence, 
is in fact also a postulate. Consider the two stipulations of Coulomb's law: that the 
charged bodies are very small compared with their distance of separation, and that 
the force between the charged bodies is inversely proportional to the square of their 
distance. The question arises regarding the first stipulation: How small must the 
charged bodies be in order to be considered "very small" compared with their dis
tance? In practice the charged bodies cannot be of vanishing sizes (ideal point charges), 
and there is difficulty in determining the "true" distance between two bodies of finite 
dimensions. For given body sizes the relative accuracy in distance measurements is 
better when the separation is larger. However, practical considerations (weakness of 
force, existence of extraneous charged bodies, etc.) restrict the usable distance of sepa
ration in the laboratory, and experimental inaccuracies cannot be entirely avoided. 
This leads to a more important question concerning the inverse-square relation of 
the second stipulation. Even if the charged bodies were of vanishing sizes, experi
mental measurements could not be of an infinite accuracy no matter how skillful and 
careful an experimentor was. How then was it possible for Coulomb to know that 
the force was exactly inversely proportional to the square (not the 2.000001th or the 
1.999999th power) of the distance of separation? This question cannot be answered 
from an experimental viewpoint because it is not likely that during Coulomb's time 
experiments could have been accurate to the seventh place. We must therefore con
clude that Coulomb's law is itself a postulate and that it is a law of nature discovered 
and assumed on the basis of his experiments of a limited accuracy (see Section 3-2). 

This book builds the electromagnetic model using an axiomatic approach in steps: 
first for static electric fields (Chapter 3), then for static magnetic fields (Chapter 6), 
and finally for time-varying fields leading to Maxwell's equations (Chapter 7). The 
mathematical basis for each step is Helmholtz's theorem, which states that a vector 
field is determined to within an additive constant if both its divergence and its curl 
are specified everywhere. Thus, for the development of the electrostatic model in free 
space, it is only necessary to define a single vector (namely, the electric field intensity 
E) by specifying its divergence and its curl as postulates. All other relations in electro
statics for free space, including Coulomb's law and Gauss's law, can be derived from 
the two rather simple postulates. Relations in material media can be developed 
through the concept of equivalent charge distributions of polarized dielectrics. 

Similarly, for the magnetostatic model in free space it is necessary to define only 
a single magnetic flux density vector B by specifying its divergence and its curl as 
postulates; all other formulas can be derived from these two postulates. Relations 
in material media can be developed through the concept of equivalent current densi
ties. Of course, the validity of the postulates lies in their ability to yield results that 
conform with experimental evidence. 

For time-varying fields, the electric and magnetic field intensities are coupled. 
The curl E postulate for the electrostatic model must be modified to conform with 
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Faraday's law. In addition, the curl B postulate for the magnetostatic model must 
also be modified in order to be consistent with the equation of continuity. We have, 
then, the four Maxwell's equations that constitute the electromagnetic model. I believe 
that this gradual development of the electromagnetic model based on Helmholtz's 
theorem is novel, systematic, pedagogically sound, and more easily accepted by 
students. 

In the presentation of the material, I strive for lucidity and unity, and for smooth 
and logical flow of ideas. Many worked-out examples are included to emphasize 
fundamental concepts and to illustrate methods for solving typical problems. Applica
tions of derived relations to useful technologies (such as ink-jet printers, lightning 
arresters, electret microphones, cable design, multiconductor systems, electrostatic 
shielding, Doppler radar, radome design, Polaroid filters, satellite communication 
systems, optical fibers, and microstrip lines) are discussed. Review questions appear 
at the end of each chapter to test the students' retention and understanding of the es
sential material in the chapter. The problems in each chapter are designed to reinforce 
students' comprehension of the interrelationships between the different quantities in 
the formulas, and to extend their ability of applying the formulas to solve practical 
problems. In teaching, I have found the review questions a particularly useful device 
to stimulate students' interest and to keep them alert in class. 

Besides the fundamentals of electromagnetic fields, this book also covers the 
theory and applications of transmission lines, waveguides and cavity resonators, and 
antennas and radiating systems. The fundamental concepts and the governing theory 
of electromagnetism do not change with the introduction of new electromagnetic 
devices. Ample reasons and incentives for learning the fundamental principles of 
electromagnetics are given in Section 1-1. I hope that the contents of this book, 
strengthened by the novel approach, will provide students with a secure and sufficient 
background for understanding and analyzing basic electromagnetic phenomena as 
well as prepare them for more advanced subjects in electromagnetic theory. 

There is enough material in this book for a two-semester sequence of courses. 
Chapters 1 through 7 contain the material on fields, and Chapters 8 through 11 on 
waves and applications. In schools where there is only a one-semester course on elec
tromagnetics, Chapters 1 through 7, plus the first four sections of Chapter 8 would 
provide a good foundation on fields and an introduction of waves in unbounded 
media. The remaining material could serve as a useful reference book on applications 
or as a textbook for a follow-up elective course. Schools on a quarter system could 
adjust the material to be covered in accordance with the total number of hours 
assigned to the subject of electromagnetics. Of course, individual instructors have the 
prerogative to emphasize and expand certain topics, and to deemphasize or delete 
certain others. 

I have given considerable thought to the advisability of including computer pro
grams for the solution of some problems, but have finally decided against it. Diverting 
students' attention and effort to numerical methods and computer software would 
distract them from concentrating on learning the fundamentals of electromagnetism. 
Where appropriate, the dependence of important results on the value of a parameter 
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is stressed by curves; field distributions and antenna patterns are illustrated by graphs; 
and typical mode patterns in waveguides are plotted. The computer programs for 
obtaining these curves, graphs, and mode patterns are not always simple. Students 
in science and engineering are required to acquire a facility for using computers; but 
the inclusion of some cookbook-style computer programs in a book on the funda
mental principles of electromagnetic fields and waves would appear to contribute 
little to the understanding of the subject matter. 

This book was first published in 1983. Favorable reactions and friendly encour
agements from professors and students have provided me with the impetus to come 
out with a new edition. In this second edition I have added many new topics. These 
include Hall effect, d-c motors, transformers, eddy current, energy-transport velocity 
for wide-band signals in waveguides, radar equation and scattering cross section, 
transients in transmission lines, Bessel functions, circular waveguides and circular 
cavity resonators, waveguide discontinuities, wave propagation in ionosphere and 
near earth's surface, helical antennas, log-periodic dipole arrays, and antenna effective 
length and effective area. The total number of problems has been expanded by about 
35 percent. 

The Addison-Wesley Publishing Company has decided to make this second 
edition a two-color book. I think the readers will agree that the book is handsomely 
produced. I would like to take this opportunity to express my appreciation to all 
the people on the editorial, production, and marketing staff who provided help in 
bringing out this new edition. In particular, I wish to thank Thomas Robbins, Barbara 
Rifkind, Karen Myer, Joseph K. Vetere, and Katherine Harutunian. 

Chevy Chase, Maryland D. K. C. 
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1 
The Electromagnetic 
Model 

1—1 Introduction 

Stated in a simple fashion, electromagnetics is the study of the effects of electric 
charges at rest and in motion. From elementary physics we know that there are two 
kinds of charges: positive and negative. Both positive and negative charges are sources 
of an electric field. Moving charges produce a current, which gives rise to a magnetic 
field. Here we tentatively speak of electric field and magnetic field in a general way; 
more definitive meanings will be attached to these terms later. A field is a spatial dis
tribution of a quantity, which may or may not be a function of time. A time-varying 
electric field is accompanied by a magnetic field, and vice versa. In other words, time-
varying electric and magnetic fields are coupled, resulting in an electromagnetic field. 
Under certain conditions, time-dependent electromagnetic fields produce waves that 
radiate from the source. 

The concept of fields and waves is essential in the explanation of action at a dis
tance. For instance, we learned from elementary mechanics that masses attract each 
other. This is why objects fall toward the earth's surface. But since there are no elastic 
strings connecting a free-falling object and the earth, how do we explain this phenom
enon? We explain this action-at-a-distance phenomenon by postulating the existence 
of a gravitational field. The possibilities of satellite communication and of receiving 
signals from space probes millions of miles away can be explained only by postulating 
the existence of electric and magnetic fields and electromagnetic waves. In this book, 
Field and Wave Electromagnetics, we study the principles and applications of the 
laws of electromagnetism that govern electromagnetic phenomena. 

Electromagnetics is of fundamental importance to physicists and to electrical and 
computer engineers. Electromagnetic theory is indispensable in understanding the 
principle of atom smashers, cathode-ray oscilloscopes, radar, satellite communication, 
television reception, remote sensing, radio astronomy, microwave devices, optical 
fiber communication, transients in transmission lines, electromagnetic compatibility 
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2 1 The Electromagnetic Model 

FIGURE 1-1 
A monopole antenna. 

problems, instrument-landing systems, electromechanical energy conversion, and so 
on. Circuit concepts represent a restricted version, a special case, of electromagnetic 
concepts. As we shall see in Chapter 7, when the source frequency is very low so that 
the dimensions of a conducting network are much smaller than the wavelength, we 
have a quasi-static situation, which simplifies an electromagnetic problem to a circuit 
problem. However, we hasten to add that circuit theory is itself a highly developed, 
sophisticated discipline. It applies to a different class of electrical engineering prob
lems, and it is important in its own right. 

Two situations illustrate the inadequacy of circuit-theory concepts and the need 
for electromagnetic-field concepts. Figure 1-1 depicts a monopole antenna of the 
type we see on a walkie-talkie. On transmit, the source at the base feeds the antenna 
with a message-carrying current at an appropriate carrier frequency. From a circuit-
theory point of view, the source feeds into an open circuit because the upper tip of 
the antenna is not connected to anything physically; hence no current would flow, 
and nothing would happen. This viewpoint, of course, cannot explain why communi
cation can be established between walkie-talkies at a distance. Electromagnetic con
cepts must be used. We shall see in Chapter 11 that when the length of the antenna 
is an appreciable part of the carrier wavelength,T a nonuniform current will flow 
along the open-ended antenna. This current radiates a time-varying electromagnetic 
field in space, which propagates as an electromagnetic wave and induces currents in 
other antennas at a distance. 

In Fig. 1-2 we show a situation in which an electromagnetic wave is incident 
from the left on a large conducting wall containing a small hole (aperture). Electro
magnetic fields will exist on the right side of the wall at points, such as P in the fig
ure, that are not necessarily directly behind the aperture. Circuit theory is obviously 
inadequate here for the determination (or even the explanation of the existence) of 
the field at P. The situation in Fig. 1-2, however, represents a problem of practical 
importance as its solution is relevant in evaluating the shielding effectiveness of the 
conducting wall. 

f The product of the wavelength and the frequency of an a-c source is the velocity of wave propagation. 
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Generally speaking, circuit theory deals with lumped-parameter systems—circuits 
consisting of components characterized by lumped parameters such as resistances, 
inductances, and capacitances. Voltages and currents are the main system variables. 
For d-c circuits the system variables are constants, and the governing equations are 
algebraic equations. The system variables in a-c circuits are time-dependent; they are 
scalar quantities and are independent of space coordinates. The governing equations 
are ordinary differential equations. On the other hand, most electromagnetic vari
ables are functions of time as well as of space coordinates. Many are vectors with 
both a magnitude and a direction, and their representation and manipulation require 
a knowledge of vector algebra and vector calculus. Even in static cases the govern
ing equations are, in general, partial differential equations. It is essential that we be 
equipped to handle vector quantities and variables that are both time- and space-
dependent. The fundamentals of vector algebra and vector calculus will be developed 
in Chapter 2. Techniques for solving partial differential equations are needed in deal
ing with certain types of electromagnetic problems. These techniques will be discussed 
in Chapter 4. The importance of acquiring a facility in the use of these mathematical 
tools in the study of electromagnetics cannot be overemphasized. 

Students who have mastered circuit theory may initially have the impression that 
electromagnetic theory is abstract. In fact, electromagnetic theory is no more abstract 
than circuit theory in the sense that the validity of both can be verified by experimen
tally measured results. In electromagnetics there is a need to define more quantities 
and to use more mathematical manipulations in order to develop a logical and com
plete theory that can explain a much wider variety of phenomena. The challenge of 
field and wave electromagnetics is not in the abstractness of the subject matter but 
rather in the process of mastering the electromagnetic model and the associated rules 
of operation. Dedication to acquiring this mastery will help us to meet the challenge 
and reap immeasurable satisfaction. 

1 - 2 The Electromagnetic Model 

There are two approaches in the development of a scientific subject: the inductive 
approach and the deductive approach. Using the inductive approach, one follows 
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the historical development of the subject, starting with the observations of some sim
ple experiments and inferring from them laws and theorems. It is a process of reason
ing from particular phenomena to general principles. The deductive approach, on 
the other hand, postulates a few fundamental relations for an idealized model. The 
postulated relations are axioms, from which particular laws and theorems can be de
rived. The validity of the model and the axioms is verified by their ability to predict 
consequences that check with experimental observations. In this book we prefer to 
use the deductive or axiomatic approach because it is more elegant and enables the 
development of the subject of electromagnetics in an orderly way. 

The idealized model we adopt for studying a scientific subject must relate to real-
world situations and be able to explain physical phenomena; otherwise, we would 
be engaged in mental exercises for no purpose. For example, a theoretical model 
could be built, from which one might obtain many mathematical relations; but, if 
these relations disagreed with observed results, the model would be of no use. The 
mathematics might be correct, but the underlying assumptions of the model could 
be wrong, or the implied approximations might not be justified. 

Three essential steps are involved in building a theory on an idealized model. 
First, some basic quantities germane to the subject of study are defined. Second, the 
rules of operation (the mathematics) of these quantities are specified. Third, some 
fundamental relations are postulated. These postulates or laws are invariably based 
on numerous experimental observations acquired under controlled conditions and 
synthesized by brilliant minds. A familiar example is the circuit theory built on a 
circuit model of ideal sources and pure resistances, inductances, and capacitances. 
In this case the basic quantities are voltages (V), currents (/), resistances (R), induc
tances (L), and capacitances (C); the rules of operations are those of algebra, ordinary 
differential equations, and Laplace transformation; and the fundamental postulates 
are Kirchhoff's voltage and current laws. Many relations and formulas can be de
rived from this basically rather simple model, and the responses of very elaborate 
networks can be determined. The validity and value of the model have been amply 
demonstrated. 

In a like manner, an electromagnetic theory can be built on a suitably chosen 
electromagnetic model. In this section we shall take the first step of defining the basic 
quantities of electromagnetics. The second step, the rules of operation, encompasses 
vector algebra, vector calculus, and partial differential equations. The fundamentals 
of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis), 
and the techniques for solving partial differential equations will be introduced when 
these equations arise later in the book. The third step, the fundamental postulates, will 
be presented in three substeps in Chapters 3, 6, and 7 as we deal with static electric 
fields, steady magnetic fields, and electromagnetic fields, respectively. 

The quantities in our electromagnetic model can be divided roughly into two 
categories: source quantities and field quantities. The source of an electromagnetic 
field is invariably electric charges at rest or in motion. However, an electromagnetic 
field may cause a redistribution of charges, which will, in turn, change the field; hence 
the separation between the cause and the effect is not always so distinct. 
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We use the symbol q (sometimes Q) to denote electric charge. Electric charge 
is a fundamental property of matter and exists only in positive or negative integral 
multiples of the charge on an electron, — e.1" 

e = 1 . 6 0 x l ( T 1 9 (C), (1-1) 

where C is the abbreviation of the unit of charge, coulomb.1 It is named after the 
French physicist Charles A. de Coulomb, who formulated Coulomb's law in 1785. 
(Coulomb's law will be discussed in Chapter 3.) A coulomb is a very large unit for 
electric charge; it takes 1/(1.60 x 10~19) or 6.25 million trillion electrons to make 
up - 1 C. In fact, two 1 C charges 1 m apart will exert a force of approximately 
1 million tons on each other. Some other physical constants for the electron are listed 
in Appendix B-2. 

The principle of conservation of electric charge, like the principle of conserva
tion of momentum, is a fundamental postulate or law of physics. It states that electric 
charge is conserved; that is, it can neither be created nor be destroyed. This is a law 
of nature and cannot be derived from other principles or relations. Its truth has never 
been questioned or doubted in practice. 

Electric charges can move from one place to another and can be redistributed 
under the influence of an electromagnetic field; but the algebraic sum of the positive 
and negative charges in a closed (isolated) system remains unchanged. The principle 
of conservation of electric charge must be satisfied at all times and under any 
circumstances. It is represented mathematically by the equation of continuity, which 
we will discuss in Section 5-4. Any formulation or solution of an electromagnetic 
problem that violates the principle of conservation of electric charge must be incorrect. 
We recall that the Kirchhoff's current law in circuit theory, which maintains that 
the sum of all the currents leaving a junction must equal the sum of all the currents 
entering the junction, is an assertion of the conservation property of electric charge. 
(Implicit in the current law is the assumption that there is no cumulation of charge 
at the junction.) 

Although, in a microscopic sense, electric charge either does or does not exist at 
a point in a discrete manner, these abrupt variations on an atomic scale are unim
portant when we consider the electromagnetic effects of large aggregates of charges. 
In constructing a macroscopic or large-scale theory of electromagnetism we find that 
the use of smoothed-out average density functions yields very good results. (The same 
approach is used in mechanics where a smoothed-out mass density function is defined, 
in spite of the fact that mass is associated only with elementary particles in a discrete 

1 In 1962, Murray Gell-Mann hypothesized quarks as the basic building blocks of matter. Quarks were 
predicted to carry a fraction of the charge of an electron, and their existence has since been verified 
experimentally. 
x The system of units will be discussed in Section 1-3. 
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manner on an atomic scale.) We define a volume charge density, p, as a source quan
tity as follows: 

p = lim %L (C/m3), (1-2) 

where Aq is the amount of charge in a very small volume Av. How small should Av 
be? It should be small enough to represent an accurate variation of p but large enough 
to contain a very large number of discrete charges. For example, an elemental cube 
with sides as small as 1 micron (10~6 m or 1 /mi) has a volume of 10"1 8 m3, which 
will still contain about 1011 (100 billion) atoms. A smoothed-out function of space 
coordinates, p, defined with such a small At; is expected to yield accurate macroscopic 
results for nearly all practical purposes. 

In some physical situations an amount of charge Aq may be identified with an 
element of surface As or an element of line AL In such cases it will be more appropriate 
to define a surface charge density, ps, or a line charge density, p{: 

ps = lim - ^ (C/m2), (1-3) 
As- ► o A s 

p, = lim ^ (C/m). (1-4) 
A<f- >oA/ 

Except for certain special situations, charge densities vary from point to point; hence 
p, ps, and p£ are, in general, point functions of space coordinates. 

Current is the rate of change of charge with respect to time; that is, 

da 
I = ft (C/s or A), (1-5) 

where / itself may be time-dependent. The unit of current is coulomb per second (C/s), 
which is the same as ampere (A). A current must flow through a finite area (a con
ducting wire of a finite cross section, for instance); hence it is not a point function. In 
electromagnetics we define a vector point function volume current density (or simply 
current density) J, which measures the amount of current flowing through a unit 
area normal to the direction of current flow. The boldfaced J is a vector whose mag
nitude is the current per unit area (A/m2) and whose direction is the direction of cur
rent flow. We shall elaborate on the relation between / and J in Chapter 5. For very 
good conductors, high-frequency alternating currents are confined in the surface layer 
as a current sheet, instead of flowing throughout the interior of the conductor. In such 
cases there is a need to define a surface current density Js, which is the current per 
unit width on the conductor surface normal to the direction of current flow and has 
the unit of ampere per meter (A/m). 

There are four fundamental vector field quantities in electromagnetics: electric 
field intensity E, electric flux density (or electric displacement) D, magnetic flux 
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TABLE 1-1 
Fundamental Electromagnetic Field Quantities 

Symbols and Units 
for Field Quantities 

Electric 

Magnetic 

Field Quantity 

Electric field intensity 

Electric flux density 
(Electric displacement) 

Magnetic flux density 

Magnetic field intensity 

Symbol 

E 

D 

B 

H 

Unit 

V/m 

C/m2 

T 

A/m 

density B, and magnetic field intensity H. The definition and physical significance 
of these quantities will be explained fully when they are introduced later in the book. 
At this time we want only to establish the following. Electric field intensity E is the 
only vector needed in discussing electrostatics (effects of stationary electric charges) 
in free space; it is defined as the electric force on a unit test charge. Electric displace
ment vector D is useful in the study of electric field in material media, as we shall 
see in Chapter 3. Similarly, magnetic flux density B is the only vector needed in dis
cussing magnetostatics (effects of steady electric currents) in free space and is related 
to the magnetic force acting on a charge moving with a given velocity. The magnetic 
field intensity vector H is useful in the study of magnetic field in material media. The 
definition and significance of B and H will be discussed in Chapter 6. 

The four fundamental electromagnetic field quantities, together with their units, 
are tabulated in Table 1-1. In Table 1-1, V/m is volt per meter, and T stands for tesla 
or volt-second per square meter. When there is no time variation (as in static, steady, 
or stationary cases), the electric field quantities E and D and the magnetic field quan
tities B and H form two separate vector pairs. In time-dependent cases, however, 
electric and magnetic field quantities are coupled; that is, time-varying E and D will 
give rise to B and H, and vice versa. All four quantities are point functions; they are 
defined at every point in space and, in general, are functions of space coordinates. 
Material (or medium) properties determine the relations between E and D and be
tween B and H. These relations are called the constitutive relations of a medium and 
will be examined later. 

The principal objective of studying electromagnetism is to understand the inter
action between charges and currents at a distance based on the electromagnetic model. 
Fields and waves (time- and space-dependent fields) are basic conceptual quantities 
of this model. Fundamental postulates will relate E, D, B, H, and the source quantities; 
and derived relations will lead to the explanation and prediction of electromagnetic 
phenomena. 
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TABLE 1-2 
Fundamental SI Units 

Quantity 

Length 
Mass 
Time 
Current 

Unit 

meter 
kilogram 
second 
ampere 

Abbreviation 

m 
kg 
s 
A 

1—3 SI Units and Universal Constants 

A measurement of any physical quantity must be expressed as a number followed by 
a unit. Thus we may talk about a length of three meters, a mass of two kilograms, and 
a time period of ten seconds. To be useful, a unit system should be based on some 
fundamental units of convenient (practical) sizes. In mechanics, all quantities can be 
expressed in terms of three basic units (for length, mass, and time). In electromagnetics 
a fourth basic unit (for current) is needed. The SI (International System of Units 
or Le Systeme International d'Unites) is an MKSA system built from the four funda
mental units listed in Table 1-2. All other units used in electromagnetics, including 
those appearing in Table 1-1, are derived units expressible in terms of meters, kilo
grams, seconds, and amperes. For example, the unit for charge, coulomb (C), is 
ampere-second (A-s); the unit for electric field intensity (V/m) is kg-m/A-s3; and the 
unit for magnetic flux density, tesla (T), is kg/A-s2. More complete tables of the units 
for various quantities are given in Appendix A. 

The official SI definitions, as adopted by the International Committee on Weights 
and Measures, are as follows:1" 

Meter. Once the length between two scratches on a platinum-iridium bar (and 
originally calculated as one ten-millionth of the distance between the North Pole 
and the equator through Paris, France), is now defined by reference to the second 
(see below) and the speed of light, which in a vacuum is 299,792,458 meters per 
second. 
Kilogram. Mass of a standard bar made of a platinum-iridium alloy and kept 
inside a set of nested enclosures that protect it from contamination and mis
handling. It rests at the International Bureau of Weights and Measures in Sevres, 
outside Paris. 
Second. 9,192,631,770 periods of the electromagnetic radiation emitted by a par
ticular transition of a cesium atom. 

f P. Wallich, "Volts and amps are not what they used to be," IEEE Spectrum, vol. 24, pp. 44-49, March 
1987. 
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Ampere. The constant current that, if maintained in two straight parallel con
ductors of infinite length and negligible circular cross section, and placed one 
meter apart in vacuum, would produce between these conductors a force equal 
to 2 x 10 - 7 newton per meter of length. (A newton is the force that gives a mass 
of one kilogram an acceleration of one meter per second squared.) 

In our electromagnetic model there are three universal constants, in addition to 
the field quantities listed in Table 1-1. They relate to the properties of the free space 
(vacuum). They are as follows: velocity of electromagnetic wave (including light) in 
free space, c; permittivity of free space, e0; and permeability of free space, /J,0. Many 
experiments have been performed for precise measurement of the velocity of light, 
to many decimal places. For our purpose it is sufficient to remember that 

c ^ 3 x 10e (m/s). (in free space) (1-6) 

The other two constants, e0 and JX0, pertain to electric and magnetic phenomena, 
respectively: e0 is the proportionality constant between the electric flux density D 
and the electric field intensity E in free space, such that 

D = €0E; (in free space) (1-7) 

HQ is the proportionality constant between the magnetic flux density B and the mag
netic field intensity H in free space, such that 

— B. (in free space) (1-8) 

The values of e0 and /i0 are determined by the choice of the unit system, and they 
are not independent. In the SI system (rationalizedt MKSA system), which is almost 
universally adopted for electromagnetics work, the permeability of free space is chosen 
to be 

/ i0 = 4 7 r x l ( T 7 (H/m), (in free space) (1-9) 

where H/m stands for henry per meter. With the values of c and /j.0 fixed in Eqs. (1-6) 
and (1-9) the value of the permittivity of free space is then derived from the following 

^ This system of units is said to be rationalized because the factor An does not appear in the Maxwell's 
equations (the fundamental postulates of electromagnetism). This factor, however, will appear in many 
derived relations. In the unrationalized MKSA system, (i0 would be 10 _7 (H/m), and the factor An would 
appear in the Maxwell's equations. 
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TABLE 1-3 
Universal Constants in SI Units 

Universal Constants 

Velocity of light in free space 

Permeability of free space 

Permittivity of free space 

Symbol 

c 

Ho 

e0 

Value 

3 x 108 

4n x 1 0 " 7 

Unit 

m/s 
H/m 

F/m 

relationships: 

or 

1 1 
€n = x 10 - 9 

C2\LQ 36TZ 

^ 8.854 x 10~12 (F/m), 

(1-10) 

(1-11) 

where F/m is the abbreviation for farad per meter. The three universal constants and 
their values are summarized in Table 1-3. 

Now that we have defined the basic quantities and the universal constants of the 
electromagnetic model, we can develop the various subjects in electromagnetics. But, 
before we do that, we must be equipped with the appropriate mathematical tools. In 
the following chapter we discuss the basic rules of operation for vector algebra and 
vector calculus. 

Review Questions 

R.l-l What is electromagnetics? 
R.l-2 Describe two phenomena or situations, other than those depicted in Figs. 1-1 and 
1-2, that cannot be adequately explained by circuit theory. 
R.l-3 What are the three essential steps in building an idealized model for the study of a 
scientific subject? 
R.l-4 What are the four fundamental SI units in electromagnetics? 
R.l-5 What are the four fundamental field quantities in the electromagnetic model? What 
are their units? 
R.l-6 What are the three universal constants in the electromagnetic model, and what are 
their relations? 
R.l-7 What are the source quantities in the electromagnetic model? 



2 
Vector 
Analysis 

^""1 Introduction 

As we noted in Chapter 1, some of the quantities in electromagnetics (such as charge, 
current, and energy) are scalars; and some others (such as electric and magnetic field 
intensities) are vectors. Both scalars and vectors can be functions of time and posi
tion. At a given time and position, a scalar is completely specified by its magnitude 
(positive or negative, together with its unit). Thus we can specify, for instance, a charge 
of — 1 fiC at a certain location at t = 0. The specification of a vector at a given loca
tion and time, on the other hand, requires both a magnitude and a direction. How do 
we specify the direction of a vector? In a three-dimensional space, three numbers are 
needed, and these numbers depend on the choice of a coordinate system. Conversion 
of a given vector from one coordinate system to another will change these numbers. 
However, physical laws and theorems relating various scalar and vector quantities 
certainly must hold irrespective of the coordinate system. The general expressions of 
the laws of electromagnetism, therefore, do not require the specification of a coordi
nate system. A particular coordinate system is chosen only when a problem of a given 
geometry is to be analyzed. For example, if we are to determine the magnetic field at 
the center of a current-carrying wire loop, it is more convenient to use rectangular 
coordinates if the loop is rectangular, whereas polar coordinates (two-dimensional) 
will be more appropriate if the loop is circular in shape. The basic electromagnetic 
relation governing the solution of such a problem is the same for both geometries. 

Three main topics will be dealt with in this chapter on vector analysis: 

1. Vecior algebra—addition, subtraction, and multiplication of vectors. 
2. Orthogonal coordinate systems—Cartesian, cylindrical, and spherical coordi

nates. 
3. Vector calculus—differentiation and integration of vectors; line, surface, and 

volume integrals; "del" operator; gradient, divergence, and curl operations. 

11 
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Throughout the rest of this book we will decompose, combine, differentiate, integrate, 
and otherwise manipulate vectors. It is imperative to acquire a facility in vector algebra 
and vector calculus. In a three-dimensional space a vector relation is, in fact, three 
scalar relations. The use of vector-analysis techniques in electromagnetics leads to 
concise and elegant formulations. A deficiency in vector analysis in the study of elec
tromagnetics is similar to a deficiency in algebra and calculus in the study of physics; 
and it is obvious that these deficiencies cannot yield fruitful results. 

In solving practical problems we always deal with regions or objects of a given 
shape, and it is necessary to express general formulas in a coordinate system appro
priate for the given geometry. For example, the familiar rectangular (x, y, z) coordi
nates are, obviously, awkward to use for problems involving a circular cylinder or 
a sphere because the boundaries of a circular cylinder and a sphere cannot be de
scribed by constant values of x, y, and z. In this chapter we discuss the three most 
commonly used orthogonal (perpendicular) coordinate systems and the representa
tion and operation of vectors in these systems. Familarity with these coordinate 
systems is essential in the solution of electromagnetic problems. 

Vector calculus pertains to the differentiation and integration of vectors. By de
fining certain differential operators we can express the basic laws of electromagnetism 
in a concise way that is invariant with the choice of a coordinate system. In this chap
ter we introduce the techniques for evaluating different types of integrals involving 
vectors, and we define and discuss the various kinds of differential operators. 

2—2 Vector Addition and Subtraction 

We know that a vector has a magnitude and a direction. A vector A can be written 
as 

A = *AA, (2-1) 
where A is the magnitude (and has the unit and dimension) of A, 

A = |A|, (2-2) 

and aA is a dimensionless unit vector* with a unity magnitude having the direction 
of A. Thus, 

A A 

"*=iArr (2-3) 

The vector A can be represented graphically by a directed straight-line segment of a 
length |A| = A with its arrowhead pointing in the direction of aA, as shown in Fig. 2-1. 
Two vectors are equal if they have the same magnitude and the same direction, even 

t In some books the unit vector in the direction of A is variously denoted by A, uA, or iA. We prefer to write 
A as in Eq. (2-1) instead of as A = XA. A vector going from point P1 to point P2 will then be written as 
aPlP2(P1P2) instead of as P1P2(P1P2), which is somewhat cumbersome. The symbols u and i are used for 
velocity and current, respectively. 



FIGURE 2-1 
Graphical representation of vector A. 

though they may be displaced in space. Since it is difficult to write boldfaced letters 
by hand, it is a common practice to use an arrow or a bar over a letter (A or A) or 
a wiggly line under a letter (A) to distinguish a vector from a scalar. This distinguish
ing mark, once chosen, should never be omitted whenever and wherever vectors are 
written. 

Two vectors A and B, which are not in the same direction nor in opposite direc
tions, such as given in Fig. 2-2(a), determine a plane. Their sum is another vector C 
in the same plane. C = A + B can be obtained graphically in two ways. 

1. By the parallelogram rule: The resultant C is the diagonal vector of the parallelo
gram formed by A and B drawn from the same point, as shown in Fig. 2-2(b). 

2. By the head-to-tail rule: The head of A connects to the tail of B. Their sum C is 
the vector drawn from the tail of A to the head of B; and vectors A, B, and C form 
a triangle, as shown in Fig. 2-2(c). 

It is obvious that vector addition obeys the commutative and associative laws. 

Commutative law: A + B = B + A. (2-4) 
Associative law: A + (B + C) = (A + B) + C. (2-5) 

Vector subtraction can be defined in terms of vector addition in the following way: 
A - B = A + (-B), (2-6) 

where — B is the negative of vector B; that is, — B has the same magnitude as B, but 
its direction is opposite to that of B. Thus 

- B = (-aB)5. (2-7) 
The operation represented by Eq. (2-6) is illustrated in Fig. 2-3. 

1 
—- A 

(a) Two vectors, A and B. (b) Parallelogram rule. (c) Head-to-tail rule. 

FIGURE 2-2 
Vector addition, C = A + B. 
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(a) Two vectors, 
A and B. 

(b) Subtraction of 
vectors, A - B. 

FIGURE 2-3 
Vector subtraction. 

2—3 Products of Vectors 

Multiplication of a vector A by a positive scalar k changes the magnitude of A by k 
times without changing its direction (k can be either greater or less than 1). 

kk = aA(kA). (2-8) 

It is not sufficient to say "the multiplication of one vector by another" or "the prod
uct of two vectors" because there are two distinct and very different types of products 
of two vectors. They are (1) scalar or dot products, and (2) vector or cross products. 
These will be defined in the following subsections. 

2-3.1 SCALAR OR DOT PRODUCT 

The scalar or dot product of two vectors A and B, denoted by A • B, is a scalar, 
which equals the product of the magnitudes of A and B and the cosine of the angle 
between them. Thus, 

A • B 4 AB cos 'AB- (2-9) 

In Eq. (2-9) the symbol = signifies "equal by definition," and 9AB is the smaller angle 
between A and B and is less than n radians (180°), as indicated in Fig. 2-4. The dot 
product of two vectors (1) is less than or equal to the product of their magnitudes; 
(2) can be either a positive or a negative quantity, depending on whether the angle 
between them is smaller or larger than n/2 radians (90°); (3) is equal to the product 

B cos BAB 

*| FIGURE 2-4 
Illustrating the dot product of A and B. 
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of the magnitude of one vector and the projection of the other vector upon the first 
one; and (4) is zero when the vectors are perpendicular to each other. It is evident 
that 

A • A = A2 

or A= VA-A. 
(2-10) 

(2-11) 

Equation (2-11) enables us to find the magnitude of a vector when the expression 
of the vector is given in any coordinate system. 

The dot product is commutative and distributive. 

Commutative law: 
Distributive law: 

A • B = B • A. 
A • (B + C) = A • B + A • C. 

(2-12) 
(2-13) 

The commutative law is obvious from the definition of the dot product in Eq. (2-9), 
and the proof of Eq. (2-13) is left as an exercise. The associative law does not apply 
to the dot product, since no more than two vectors can be so multiplied and an ex
pression such as A • B • C is meaningless. 

EXAMPLE 2-1 Prove the law of cosines for a triangle. 

Solution The law of cosines is a scalar relationship that expresses the length of a 
side of a triangle in terms of the lengths of the two other sides and the angle between 
them. Referring to Fig. 2-5, we find the law of cosines states that 

C = ^A2 + B2 - 2AB cos a. 

We prove this by considering the sides as vectors; that is, 

C = A + B. 

Taking the dot product of C with itself, we have, from Eqs. (2-10) and (2-13), 

C2 = C • C = (A + B) • (A + B) 
= A A + B B + 2 A B 
= A2 + B2 + 1AB cos 9AB. 

FIGURE 2-5 
Illustrating Example 2-1. 
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Note that 9AB is, by definition, the smaller angle between A and B and is equal to 
(180° — a); hence cos 9AB = cos (180° — a) = —cos a. Therefore, 

C2 = A2 + B2 - 1AB cos a, 

and the law of cosines follows directly. n 

2-3.2 VECTOR OR CROSS PRODUCT 

The vector or cross product of two vectors A and B, denoted by A x B, is a vector 
perpendicular to the plane containing A and B; its magnitude is AB sin 9AB, where 
9AB is the smaller angle between A and B, and its direction follows that of the thumb 
of the right hand when the fingers rotate from A to B through the angle 9AB (the 
right-hand rule). 

A x B ^ an\AB sin 9AB\ (2-14) 

This is illustrated in Fig. 2-6. Since B sin 9AB is the height of the parallelogram formed 
by the vectors A and B, we recognize that the magnitude ofyA x B, \AB sin 9AB\, 
which is always positive, is numerically equal to the area of the parallelogram. 

Using the definition in Eq. (2-14) and following the right-hand rule, we find that 

B x A = - A x B. (2-15) 

Hence the cross product is not commutative. We can see that the cross product obeys 
the distributive law, 

A x ( B + C) = A x B + A x C . (2-16) 

Can you show this in general without resolving the vectors into rectangular 
components? 

The vector product is obviously not associative; that is, 

A x (B x C) # (A x B) x C. (2-17) 

A X 

(a) A x B = an\AB sin QAB\. (b) The right-hand rule. 

FIGURE 2-6 
Cross product of A and B, A x B. 
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The vector representing the triple product on the left side of the expression above is 
perpendicular to A and lies in the plane formed by B and C, whereas that on the 
right side is perpendicular to C and lies in the plane formed by A and B. The order 
in which the two vector products are performed is therefore vital, and in no case 
should the parentheses be omitted. 

EXAMPLE 2-2 The motion of a rigid disk rotating about its axis shown in Fig. 
2-7(a) can be described by an angular velocity vector co. The direction of co is along 
the axis and follows the right-hand rule; that is, if the fingers of the right hand bend 
in the direction of rotation, the thumb points to the direction of co. Find the vector 
expression for the lineal velocity of a point on the disk, which is at a distance d from 
the axis of rotation. 

Solution From mechanics we know that the magnitude of the lineal velocity, v, of 
a point P at a distance d from the rotating axis is cod and the direction is always 
tangential to the circle of rotation. However, since the point P is moving, the direc
tion of v changes with the position of P. How do we write its vector representation? 

Let 0 be the origin of the chosen coordinate system. The position vector of the 
point P can be written as R, as shown in Fig. 2-7(b). We have 

|v| = cod = coR sin 9. 

No matter where the point P is, the direction of v is always perpendicular to the 
plane containing the vectors co and R. Hence we can write, very simply, 

v = co x R, 

which represents correctly both the magnitude and the direction of the lineal velocity 
of P. mm 

> 

1 FIGURE 2-7 
(a) A rotating disk. (b) Vector representation. Illustrating Example 2 - 2 . 
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/ 7" / 
' / / 

/ / 

mi£,-'*~ FIGURE 2-8 
Area = |B x C| B Illustrating scalar triple product A • (B x C). 

2-3.3 PRODUCT OF THREE VECTORS 

There are two kinds of products of three vectors; namely, the scalar triple product 
and the vector triple product. The scalar triple product is much the simpler of the 
two and has the following property: 

A • (B x C) = B • (C x A) = C • (A x B). (2-18) 

Note the cyclic permutation of the order of the three vectors A, B, and C. Of course, 

A ( B x C)= - A ( C x B) 
= - B ( A x C) 
= - C ( B x A). 

(2-19) 

As can be seen from Fig. 2-8, each of the three expressions in Eq. (2—18) has a magni
tude equal to the volume of the parallelepiped formed by the three vectors A, B, and 
C. The parallelepiped has a base with an area equal to |B x C| = \BC sin 0X\ and a 
height equal to \A cos 62\; hence the volume is \ABC sin 61 cos 02\. 

The vector triple product A x (B x C) can be expanded as the difference of two 
simple vectors as follows: 

A x (B x C) = B(A • C) - C(A • B). (2-20) 

Equation (2-20) is known as the "back-cab" rule and is a useful vector identity. (Note 
"BAC-CAB" on the right side of the equation!) 

EXAMPLE 2-3f Prove the back-cab rule of vector triple product. 

f The back-cab rule can be verified in a straightforward manner by expanding the vectors in the Cartesian 
coordinate system (Problem P.2-12). Only those interested in a general proof need to study this example. 
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B(A|, • C ) ^ 
.' , 

i 
i 

/ -C(A| | .B) 

D FIGURE 2-9 
~~ab Illustrating the back-cab rule of vector triple product. 

Solution In order to prove Eq. (2-20) it is convenient to expand A into two 
components: 

A = AN + A±, 

where AN and A± are parallel and perpendicular, respectively, to the plane containing 
B and C. Because the vector representing (B x C) is also perpendicular to the plane, 
the cross product of A± and (B x C) vanishes. Let D = A x (B x C). Since only A(| 
is effective here, we have 

D = A,, x (B x C). 

Referring to Fig. 2-9, which shows the plane containing B, C, and A||, we note 
that D lies in the same plane and is normal to A([. The magnitude of (B x C) is 
BC sin {d1 - B2\ and that of AN x (B x C) is AUBC sin (61 - 02). Hence, 

D = D • aD = AnBC sin {B1 - 62) 
= {B sin &X){A\\C cos 62) - (C sin 02){AnB cos 0J 
= [B(A | | -C) -C(A | | .B ) ] - a J ) . 

The expression above does not alone guarantee the quantity inside the brackets to 
be D, since the former may contain a vector that is normal to D (parallel to AN); 
that is, D • aD = E • aD does not guarantee E = D. In general, we can write 

B(AN • C) - C(AH • B) = D + /cA||5 

where k is a scalar quantity. To determine k, we scalar-multiply both sides of the 
above equation by A(| and obtain 

(A„ • B)(A|, • C) - (A,, • C)(A,| • B) = 0 = A„ • D + kA^. 

Since A,, • D = 0, then k = 0 and 

D = B(A|, • C) - C(A|, • B), 

which proves the back-cab rule, inasmuch as A,, • C = A • C and AM • B = A • B. 

Division by a vector is not defined, and expressions such as k/A and B/A are 
meaningless. 
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2—4 Orthogonal Coordinate Systems 

We have indicated before that although the laws of electromagnetism are invariant 
with coordinate system, solution of practical problems requires that the relations 
derived from these laws be expressed in a coordinate system appropriate to the geome
try of the given problems. For example, if we are to determine the electric field at a 
certain point in space, we at least need to describe the position of the source and the 
location of this point in a coordinate system. In a three-dimensional space a point 
can be located as the intersection of three surfaces. Assume that the three families of 
surfaces are described by u1 = constant, u2 = constant, and u3 = constant, where the 
M'S need not all be lengths. (In the familiar Cartesian or rectangular coordinate system, 
wl5 u2, and w3 correspond to x, y, and z, respectively.) When these three surfaces 
are mutually perpendicular to one another, we have an orthogonal coordinate system. 
Nonorthogonal coordinate systems are not used because they complicate problems. 

Some surfaces represented by ut = constant (i = 1, 2, or 3) in a coordinate system 
may not be planes; they may be curved surfaces. Let aUl, aU2, and aU3 be the unit 
vectors in the three coordinate directions. They are called the base vectors. In a 
general right-handed, orthogonal, curvilinear coordinate system the base vectors are 
arranged in such a way that the following relations are satisfied: 

aUl x aU2 - aU3, (2-21a) 
aU2 x aU3 = aUl, (2-21b) 
aU3

 x a
Ul = a„2. (2"21c) 

These three equations are not all independent, as the specification of one automati
cally implies the other two. We have, of course, 

aUl ' aU2 = aU2 • aU3 = aU3 • aUl = 0 (2-22) 
and 

aUl ' aUl = aU2 • aU2 = aU3 • aU3 = 1. (2-23) 

Any vector A can be written as the sum of its components in the three orthogonal 
directions, as follows: 

A — %U1AUI + %U2AU2 + ^U3AU3. (2-24) 

From Eq. (2-24) the magnitude of A is 
A = \A\ = (A2

U1 + Al2 + Alf>\ (2-25) 

EXAMPLE 2-4 Given three vectors A, B, and C, obtain the expressions of (a) A • B, 
(b) A x B, and (c) C • (A x B) in the orthogonal curvilinear coordinate system 
(uls u2, u3). 
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Solution First we write A, B, and C in the orthogonal coordinates (wl9 u2, u3): 

A = KAm + *U2AU2 + *uA«3> 
B = aUlBUl + aU2BU2 + aU3BU3, 

a) A • B = {auAUi + KAu2 + KAu3)' (a« A , + *u2BU2 + K3BU3) 

= KK + Au2BU2 + AU3BU3> 
in view of Eqs. (2-22) and (2-23). 

b) A x B = (&U1AU1 + auAu2 + *uA«3) x (a* A i + au2BU2 + K3BU3) 
= *uM«2B«3 ~ Au3

Bu2) + K2AU3BU1 - AUiBU3) + aU3(AUiBU2 - AU2BUi) 
|a„. a„„ a, 

(2-26) 

A,. A. 
BUi BU2 BU3 

(2-27) 

Equations (2-26) and (2-27) express the dot and cross products, respectively, 
of two vectors in orthogonal curvilinear coordinates. They are important and 
should be remembered. 

c) The expression for C • (A x B) can be written down immediately by combining the 
results in Eqs. (2-26) and (2-27): 

C • (A x B) = CUi(AU2BU3 - AU3BU2) + CU2(AU3BUl - AUlBU3) + CU3(AUiBU2 - AU2BU) 

C, 
A„ A„ 

BUI BU2 BU3 

(2-28) 

Eq. (2-28) can be used to prove Eqs. (2-18) and (2-19) by observing that a per
mutation of the order of the vectors on the left side leads simply to a rearrange
ment of the rows in the determinant on the right side. m 

In vector calculus (and in electromagnetics work) we are often required to per
form line, surface, and volume integrals. In each case we need to express the differential 
length-change corresponding to a differential change in one of the coordinates. How
ever, some of the coordinates, say ui (i = 1, 2, or 3), may not be a length; and a con
version factor is needed to convert a differential change dut into a change in length dtff. 

ti^hidUi, (2-29) 

where ht is called a metric coefficient and may itself be a function of ult u2, and u3. 
For example, in the two-dimensional polar coordinates (ux, u2) = (r, 0), a differential 
change d(j) ( = du2) in $ ( = u2) corresponds to a differential length-change d£2 = rd(j) 
(h2 = r = Uj) in the a0 (= aU2)-direction. A directed differential length-change in an 
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arbitrary direction can be written as the vector sum of the component length-changes: 

or 

M = M ^ i dui) + au2{h2 du2) + a„3(/z3 du3). 

d£ = aMl d^ + aM2 d£2 + aU3 d£3 (2-30)t 

. (2-31) 

In view of Eq. (2-25) the magnitude of d€ is 

^ = [ ( ^ ) 2 + (^2)2 + (^ 3 ) 2 ] 1 / 2
 3 

= [ ( ^ du,)2 + (h2 du2)2 + {h3 du3)2Y'2. 

The differential volume dv formed by differential coordinate changes dult du2, and 
du3 in directions aul, au2, and aM3, respectively, is (d^ d£2dt3\ or 

flfu = h,Ja2\i3 du1 du2 du3. (2-33) 

Later we will have occasion to express the current or flux flowing through a dif
ferential area. In such cases the cross-sectional area perpendicular to the current or 
flux flow must be used, and it is convenient to consider the differential area a vector 
with a direction normal to the surface; that is, 

ds = a„ ds. (2-34) 

For instance, if current density J is not perpendicular to a differential area of a mag
nitude ds, the current, dl, flowing through ds must be the component of J normal to 
the area multiplied by the area. Using the notation in Eq. (2-34), we can write simply 

dI = J-ds 
= J • a„ ds. 

(2-35) 

In general orthogonal curvilinear coordinates the differential area ds1 normal to the 

ds1 = d£2d£3 

unit vector aMl is 

or 

dsx = h2h3du2du3. (2-36) 

Similarly, the differential areas normal to unit vectors aM2 and aU3 are, respectively, 

ds2 = /i1/i3^w1^u3 (2-37) 

t The t here is the symbol of a vector of length L 
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z = z\ plane 

y = y\ plane 
FIGURE 2-10 
Cartesian coordinates. 

and 

ds3 = h1h2duldu2. (2-38) 

Many orthogonal coordinate systems exist; but we shall be concerned only with 
the three that are most common and most useful: 

1. Cartesian (or rectangular) coordinates.1" 
2. Cylindrical coordinates. 
3. Spherical coordinates. 

These will be discussed separately in the following subsections. 

2-4.1 CARTESIAN COORDINATES 

(ttl9 u2, M3) = {x, y, z) 

A point P(x1, ylt zx) in Cartesian coordinates is the intersection of three planes speci
fied by x = xu y = ylt and z = zl9 as shown in Fig. 2-10. It is a right-handed system 
with base vectors ax, ay, and az satisfying the following relations: 

(2-39a) 
(2-39b) 

az x ax = av. (2-39c) 

f The term "Cartesian coordinates" is preferred because the term "rectangular coordinates" is customarily 
associated with two-dimensional geometry. 



The position vector to the point P(xu yu zt) is 

OP = axXi + ayy1 + azzv 

A vector A in Cartesian coordinates can be written as 

2 Vector Analysis 

(2-40) 

A = axAx + 2LyAy + azAz. 

The dot product of two vectors A and B is, from Eq. (2-26), 

A • B = AXBX + AVBV + AZBZ, 

(2-41) 

(2-42) 

and the cross product of A and B is, from Eq. (2-27), 

A x B = ax(AyBz - AzBy) + ay(AzBx - AXBZ) + az(AxBy - AyBx) 

ax 
Ax 

Br 

a, 
Ay 

Bv 

az 
A 
B 

(2-43) 

Since x, y, and z are lengths themselves, all three metric coefficients are unity; 
that is, /ij = h2 = h3 = 1. The expressions for the differential length, differential area, 
and differential volume are—from Eqs. (2-31), (2-36), (2-37), (2-38), and (2-33)— 
respectively, 

d€ = axdx + a dy + az dz; 

dsx — dy dz, 
dsy = dx dz, 
dsz = dx dy; 

and 

dv = dx dy dz. 

(2-44) 

(2-45a) 
(2-45b) 
(2-45c) 

(2-46) 

A typical differential volume element at a point (x, y, z) resulting from differential 
changes dx, dy, and dz is shown in Fig. 2-11. The differential surface areas dsx, dsy, 
and dsz normal to the directions ax, ay, and az are also indicated. 

EXAMPLE 2-5 Given A = ax5 - ay2 + az, find the expression of a unit vector B 
such that 

a) B||A. 
b) B 1 A, if B lies in the x_y-plane. 
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dsx = dydz ds^dxjy 

dsv = dxdz 

y FIGURE 2-11 
A differential volume in Cartesian coordinates. 

Solution Let B = nxBx + ayBy + azBz. We know that 

|B| = (B2
X + B) + B2

zy'2 = 1. (2-47) 

a) B || A requires B x A = 0. From Eq. (2-43) we have 
-2BZ-By = 0, (2-48a) 

Bx - 5BZ = 0, (2-48b) 
5By + 2BX = 0. (2-48c) 

The above three equations are not all independent. For instance, subtracting 
Eq. (2-48c) from twice Eq. (2-48b) yields Eq. (2-48a). Solving Eqs. (2-47), 
(2-48a), and (2-48b) simultaneously, we obtain 

B = 

Therefore, 

By=~ and B,= 
1 

B = -f= (ax5 - a„2 + az). 

b) B 1 A requires B • A = 0. From Eq. (2-42) we have 
5BX - 2By = 0, (2-49) 

where we have set Bz = 0, since B lies in the xy-plane. Solution of Eqs. (2-47) 
and (2-49) yields 

2 5 
B = and * , = - -

Hence, 

B = (a*2 + a,5). 

EXAMPLE 2-6 (a) Write the expression of the vector going from point P ^ l , 3, 2) to 
point P2(3, — 2, 4) in Cartesian coordinates, (b) What is the length of this line? 
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Z 4 

P2(3>-2'4) 

y FIGURE 2-12 
Illustrating Example 2-6. 

Solution 

a) From Fig. 2-12 we see that 
T\F2 = oF2 - W[ 

= (ax3 - ay2 + az4) - (ax + a„3 + az2) 
= ax2 — ay5 + az2. 

b) The length of the line is 
PXP2 = \PXP: 

= V22 + (-5)2 + 22 

= J33. 

EXAMPLE 2-7 The equation of a straight line in the xy-plane is given by 2x + y = 4. 

a) Find the vector equation of a unit normal from the origin to the line. 
b) Find the equation of a line passing through the point P(0, 2) and perpendicular 

to the given line. 

Solution It is clear that the given equation y = — 2x + 4 represents a straight line 
having a slope —2 and a vertical intercept +4, shown as Lx (solid line) in Fig. 2-13. 

a) If the line is shifted down four units, we have the dashed parallel line L\ passing 
through the origin whose equation is 2x + y = 0. Let the position vector of a 
point on L\ be 

r = axx + ayy. 

The vector N = ax2 + ay is perpendicular to L\ because 
N • r = 2x + y = 0. 

Obviously, N is also perpendicular to Lv Thus, the vector equation of the unit 
normal at the origin is 

aw = 
N 
INI 

= -p (a x 2 + a,). 
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Lx y 

>x 

FIGURE 2-13 
Illustrating Example 2-7. 

Note that the slope of siN (=%) is the negative reciprocal of that of lines Lx and 
L ; ( = - 2 ) . 

b) Let the line passing through the point P(0, 2) and perpendicular to Lx be L2. 
L2 is parallel to and has the same slope as a .̂ The equation of L2 is then 

' = 2 + 2 ' or x - 2y = - 4 , 

since L2 is required to pass through the point P(0, 2). 

2-4.2 CYLINDRICAL COORDINATES 

(wl9 u2, u3) = (r, </>, z) 

In cylindrical coordinates a point P(rl9 #l9 z j is the intersection of a circular cylin
drical surface r = rl3 SL half-plane containing the z-axis and making an angle <f) = (j)1 
with the xz-plane, and a plane parallel to the xy-plane at z = zx. As indicated in 
Fig. 2-14, angle 0 is measured from the positive x-axis, and the base vector â , is 

z = z\ plane 

r = r\ cylinder 

= <j>\ plane 
FIGURE 2-14 
Cylindrical coordinates. 
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tangential to the cylindrical surface. The following right-hand relations apply: 

ar x a^ = az, (2-50a) 
a^ x az = a,, (2-50b) 
az x a, = a^. (2-50c) 

Cylindrical coordinates are important for problems with long line charges or currents, 
and in places where cylindrical or circular boundaries exist. The two-dimensional 
polar coordinates are a special case at z = 0. 

A vector in cylindrical coordinates is written as 

A — &rAr + fLfkAj, + &ZAZ. (2-51) 

The expressions for the dot and cross products of two vectors in cylindrical coordi
nates follow from Eqs. (2-26) and (2-27) directly. 

Two of the three coordinates, r and z (u1 and u3), are themselves lengths; hence 
h1 = h3 = 1. However, <fi is an angle requiring a metric coefficient h2 = r to convert 
d(j) to df2. The general expression for a differential length in cylindrical coordinates 
is then, from Eq. (2-31), 

d£ = ardr + a^r d(j> + az dz. 

The expressions for differential areas and differential volume are 

dsr 

ds^ 
dsz 

= rd<p dz, 
= dr dz, 
— rdrd(j), 

and 

dv = rdr d<p dz. 

(2-52) 

(2-53a) 
(2-5 3b) 
(2-5 3c) 

(2-54) 

A typical differential volume element at a point (r, </>, z) resulting from differential 
changes dr, d4>, and dz in the three orthogonal coordinate directions is shown in 
Fig. 2-15. 

A vector given in cylindrical coordinates can be transformed into one in Cartesian 
coordinates, and vice versa. Suppose we want to express A = arAr + a^A^ + azAz in 
Cartesian coordinates; that is, we want to write A as axAx + ayAy + azAz and deter
mine Ax, Ay, and Az. First of all, we note that Az, the z-component of A, is not 
changed by the transformation from cylindrical to Cartesian coordinates. To find 
Ax, we equate the dot products of both expressions of A with ax. Thus 

K = A • ax 

= Arar - &x + A^ • ax. 
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ZA 

ds^ = drdz 

dsr = rd<j)dz 

dsz = rdrdcp 

FIGURE 2-15 
A differential volume element in cylindrical 
coordinates. 

The term containing Az disappears here because az • ax = 0. Referring to Fig. 2-16, 
which shows the relative positions of the base vectors ax, ay, ar, and â ,, we see that 

ar • ax = cos <j> (2-55) 
and 

Hence, 

a,/,' ax = cos - + </>) = — sin 0. (2-56) 

Ax = Ar cos (/> — A$ sin 4>. (2-57) 

Similarly, to find Ay, we take the dot products of both expressions of A with ay: 

Ay = A • a, 
= Arar • ay + A^ • a r 

From Fig. 2-16 we find that 

and 

It follows that 

ar • ay = cos I — — 0 I = sin 0 

a0 • ay = cos (/>. 

A, = Ar sin 0 + A$ COS 0. 

(2-58) 

(2-59) 

(2-60) 

FIGURE 2-16 
Relations between ax, ay, ar, and â  
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It is convenient to write the relations between the components of a vector in Cartesian 
and cylindrical coordinates in a matrix form: 

(2-61) 

Our problem is now solved except that the cos 4> and sin 4> in Eq. (2-61) should be 
converted into Cartesian coordinates. Moreover, Ar, A^, and Az may themselves be 
functions of r, 4>, and z. In that case, they too should be converted into functions of 
x, y, and z in the final answer. The following conversion formulas are obvious from 
Fig. 2-16. From cylindrical to Cartesian coordinates: 

rp^ k 
U . j 

= 
cos 4> 
sin 4> 
0 

— sin 4> 
cos 4> 
0 

o] 
0 
lj 

IV 
K 
V 

X = 

y = 
z -

= r cos 
= r sin 
= z. 

(f), 
$, 

The inverse relations (from Cartesian to cylindrical coordinates) are 

r = V*2 + y2, 

0 = t a n " 1 ^ , 
x 

z = z. 

(2-62a) 
(2-62b) 
(2-62c) 

(2-63a) 

(2-63b) 

(2-63c) 

EXAMPLE 2-8 The cylindrical coordinates of an arbitrary point P in the z = 0 plane 
are (r, #, 0). Find the unit vector that goes from a point z = h on z-axis toward P. 

Solution Referring to Fig. 2-17, we have 

QP = OP-OQ 
= (arr) - (a,*). 

Hence, 
6J° 1 

aQp — \QP\ J^+l? 
(a / - az/i). 

EXAMPLE 2-9 Express the vector 

A = ar(3 cos #) - a^2r + az5 

in Cartesian coordinates. 
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P{r,4>,0) y FIGURE 2-17 
Illustrating Example 2-

Solution Using Eq. (2-61) directly, we have 

Ax 
Ay 

UzJ 
= 

cos 4> 
sin cj) 

_0 

— sin (f) 
cos 4> 
0 

0 
0 
lj 

[3 cos 4> 
-2r 

L 5 

or 
A = a.,(3 cos2 4> + 2r sin (f>) + ay(3 sin 0 cos cj) — 2r cos 4>) + az5. 

But, from Eqs. (2-62) and (2-63), 

x 

and 

Therefore, 

A = a 
3x2 

^ x2 + y2 

COS (j) = 

s in (f> = 

+ 2y + a 

•fi 

V? 

_1_ Q 

2 + / 

y 
+ y2 

( 3xy 
y\x2 + y2 2x + az5, 

which is the desired answer. 

2-4.3 SPHERICAL COORDINATES 

{uu u2, u3) = (R, 9, 0) 

A point P(#1? 9X, 0 J in spherical coordinates is specified as the intersection of the fol
lowing three surfaces: a spherical surface centered at the origin with a radius R = R{, 
a right circular cone with its apex at the origin, its axis coinciding with the + z-axis 
and having a half-angle 9 = 9X; and a half-plane containing the z-axis and making 
an angle <fi = <\>1 with the xz-plane. The base vector SLR at P is radial from the origin 
and is quite different from ar in cylindrical coordinates, the latter being perpendicular 
to the z-axis. The base vector a0 lies in the 0 = 0X plane and is tangential to the 
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FIGURE 2-18 
Spherical coordinates. 

spherical surface, whereas the base vector a^ is the same as that in cylindrical coor
dinates. These are illustrated in Fig. 2-18. For a right-handed system we have 

aR x ag = a^, 
a e x a4> = a « 5 

a<* x a R = a e -

(2-64a) 
(2-64b) 
(2-64c) 

Spherical coordinates are important for problems involving point sources and regions 
with spherical boundaries. When an observer is very far from the source region of 
a finite extent, the latter could be considered as the origin of a spherical coordinate 
system; and, as a result, suitable simplifying approximations could be made. This is 
the reason that spherical coordinates are used in solving antenna problems in the 
far field. 

A vector in spherical coordinates is written as 

A — aRAR + aeAe + a^A^. (2-65) 

The expressions for the dot and cross products of two vectors in spherical coor
dinates can be obtained from Eqs. (2-26) and (2-27). 

In spherical coordinates, only R(uy) is a length. The other two coordinates, 6 
and 4> (u2 and u3), are angles. Referring to Fig. 2-19, in which a typical differential 
volume element is shown, we see that metric coefficients h2 = R and h3 = R sin 6 are 
required to convert d6 and dfy into d£2 and d£3i respectively. The general expression 
for a differential length is, from Eq. (2-31), 

d€ = aRdR + aeR d9 + a^R sin 9 d<\>. (2-66) 
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rfsA = RdRdB 

dse = R sin 0 dfl d<f> 

VRdd —dsR = R2 s in 0 rf0 ^ 

R sin 0 cfy!> 

FIGURE 2-19 
A differential volume element in spherical 
coordinates. 

The expressions for differential areas and differential volume resulting from differen
tial changes dR, d6, and d(j) in the three coordinate directions are 

dsR = R2 s i n 0 ddd(j), 

dse = R sin 6 dR d(j), 

ds(j) = RdRdB, 

and 

dv = R2 sin 6 dRdOd</>. 

(2-67a) 

(2-67b) 

(2-67c) 

(2-68) 

For convenience the base vectors, metric coefficients, and expressions for the differen
tial volume are tabulated in Table 2 - 1 . 

TABLE 2-1 
Three Basic Orthogonal Coordinate Systems 

Coordinate System 

Base vectors 

Metric coefficients 

Differential volume 

Relations 

aUl 

a«2 

aU3 

h2 

h3 

dv 

Cartesian 
Coordinates 

(x, y, z) 

a* 
a, 
az 

1 
1 
1 

dx dy dz 

Cylindrical 
Coordinates 

(r,<P,z) 

ar 

a* 
az 

1 
r 
1 

r dr d(p dz 

Spherical 
Coordinates 

(R, 6, ft 

a* 
ae 

a* 

1 

Rs in0 

R2 sin 6 dRdOdcj) 
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A vector given in spherical coordinates can be transformed into one in Cartesian 
or cylindrical coordinates, and vice versa. From Fig. 2-19 it is easily seen that 

(2-69a) 
(2-69b) 
(2-69c) 

Conversely, measurements in Cartesian coordinates can be transformed into those in 
spherical coordinates: 

X = 

y = 
z = 

= R 
= R 
= R 

sin 0 cos 
sin 6 sin 
cos 6. 

$> 

*' 1 

R = jx2 + y2 + z2, 

= tan 

0 = tan~ 1 ^-
x 

(2-70a) 

(2-70b) 

(2-70c) 

EXAMPLE 2-10 The position of a point P in spherical coordinates is (8, 120°, 330°). 
Specify its location (a) in Cartesian coordinates, and (b) in cylindrical coordinates. 

Solution The spherical coordinates of the given point are R = 8, 9 = 120°, and 
0 = 330°. 

a) In Cartesian coordinates. We use Eqs. (2-69a, b, c): 
x = 8 sin 120° cos 330° = 6, 
y = 8 sin 120° sin 330° = - 2 ^ 3 , 
z = 8 cos 120° = - 4 . 

Hence the location of the point is P(6, —2^3, —4), and the position vector (the 
vector going from the origin to the point) is 

a P = a x 6 - a y 2 V 3 - a z 4 . 

b) In cylindrical coordinates. The cylindrical coordinates of point P can be obtained 
by applying Eqs. (2-63a, b, c) to the results in part (a), but they can be cal
culated directly from the given spherical coordinates by the following relations, 
which can be verified by comparing Figs. 2-14 and 2-18: 

r = R sin 6, (2-7la) 
<f> = <\>, (2-71b) 
z = R cos 6. (2-71c) 

We have Pflyfe, 330°, -4 ) ; and its position vector in cylindrical coordinates is 
~0P = a /k /3 - a A msi 
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We note here that the position vector of a point in cylindrical coordinates does 
not contain the angle (j) = 330° explicitly. However, the exact direction of ar depends 
on 4>. In terms of spherical coordinates the position vector (the vector from the 
origin to the point P) consists of only a single term: 

OP = a^8. 

Here the direction of aR changes with the 9 and (j) coordinates of the point P. 

EXAMPLE 2-11 Convert the vector A = aRAR + agAg + a^A^ into Cartesian co
ordinates. 

Solution In this problem we want to write A in the form of A = axAx + ayAy + azAz. 
This is very different from the preceding problem of converting the coordinates of a 
point. First of all, we assume that the expression of the given vector A holds for all 
points of interest and that all three given components AR, A9, and A$ may be functions 
of coordinate variables. Second, at a given point, AR, Ag, and A$ will have definite 
numerical values, but these values that determine the direction of A will, in general, 
be entirely different from the coordinate values of the point. Taking dot product of 
A with ax, we have 

Ax = A • ax 

— ARaR ' ax + Agae • ax + A^a^ • ax. 

Recalling that aR • ax, ae • ax, and a^ • ax yield, respectively, the component of unit 
vectors aR, ag, and a^ in the direction of ax, we find, from Fig. 2-19 and Eqs. 
(2-69a, b, c): 

x 
a* • ax = sin 9 cos 0 = =, (2-72) 

yfx2 + y2 + z2 

afl • ax = cos v cos <b = , n i-x\ 
V(x2 4- y2)(x2 + y2 + z2) ( 2~73) 

Thus, 

a0 • ax = - s i n <f> = — y • (2-74) 
V* + y 

Ax = AR sin 9 cos <f> + Ag cos 9 cos 4> — A^ sin 4> 
ARx Agxz Asy 

~ " + ,, , ' „ , --=*L=> (2-75) Vx2 4- y2 +~7 J(x2 + y2)(x2 +y2 + z2) y/xT+J2 

Similarly, 

Ay = AR sin 9 sin (j> + Ae cos 9 sin (j> + A^ cos 0 

A«y + A°yz 4. A*x n 7« 
Vx2 + y2 + z2 V(x2 + j;2)(x2 + y2 + z2) Jx2 + y2 
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and 

A, = AR cos 9 - Ae sin 9 = AR\ - - ^ = = = - (2-77) 
Vx2 + y2 + z2 V* + y2 + z2 

If AR, Ag, and A$ are themselves functions of R, 9, and <$>, they too need to be con
verted into functions of x, y, and z by the use of Eqs. (2-70a, b, c). Equations (2-75), 
(2-76), and (2-77) disclose the fact that when a vector has a simple form in one 
coordinate system, its conversion into another coordinate system usually results in a 
more complicated expression. IM 

EXAMPLE 2-12 Assuming that a cloud of electrons confined in a region between 
two spheres of radii 2 and 5 (cm) has a charge density of 

—3 y 10~8 

* 4 cos2 eft (C/m3), 

find the total charge contained in the region. 
Solution We have 

3 x 1(T8 , , 
P= ^4—cos z(j), 

Q = §pdv. 

The given conditions of the problem obviously point to the use of spherical coordi
nates. Using the expression for dv in Eq. (2-68), we perform a triple integration: 

Q = j>npoj0
o^pR2sm9dRd9dct>. 

Two things are of importance here. First, since p is given in units of coulombs per 
cubic meter, the limits of integration for R must be converted to meters. Second, the 
full range of integration for 9 is from 0 to n radians, not from 0 to 2n radians. A 
little reflection will convince us that a half-circle (not a full-circle) rotated about the 
z-axis through 2n radians ((f) from 0 to 2n) generates a sphere. We have 

Q - - 3 x 10- 8 |o27C Jo" Jo°o°2
5 ^ j cos2 0 sin 9dRd9d(j> 

= - 0 . 9 x 1 0 " 6 r* ( - c o s 0)|* cos2 4>d<}> _6((j) , sin 2(f) 
= - 1 . 8 X 10~ C , (y + 

2rc 

= -1.87C (/xC). 
0 
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2—5 Integrals Containing Vector Functions 

In electromagnetics work we have occasion to encounter integrals that contain vector 
functions such as 

jy¥dv, (2-78) 

Jc Vd€, (2-79) 

j c F • d€, (2-80) 

j s A • ds. (2-81) 
The volume integral in (2-78) can be evaluated as the sum of three scalar integrals 
by first resolving the vector F into its three components in the appropriate coordinate 
system. If dv denotes a differential volume, then (2-78) is actually a shorthand way 
of representing a triple integral over three dimensions. 

In the second integral, in (2-79), V is a scalar function of space, d£ represents 
a differential increment of length, and C is the path of integration. If the integration 
is to be carried out from a point Px to another point P2, we write \\\ V d£. If the 
integration is to be evaluated around a closed path C, we denote it by §c V dt In 
Cartesian coordinates, (2-79) can be written as 

ScVd€ = J c F ( * ' y> z )[ a* d x + M ? + ** dzl (2~82) 
in view of Eq. (2-44). Since the Cartesian unit vectors are constant in both magni
tude and direction, they can be taken out of the integral sign, and Eq. (2-82) becomes 

jcVd€ = a, Jc V(x, y, z) dx + a, £ V{x, y, z) dy + az £ V(x, y, z) dz. (2-83) 

The three integrals on the right-hand side of Eq. (2-83) are ordinary scalar integrals; 
they can be evaluated for a given V(x, y, z) around a path C. 

i ■ EXAMPLE 2-13 Evaluate the integral {£ r2 dr, where r2 = x2 + y2, from the origin 
to the point P(l, 1): (a) along the direct path OP, (b) along the path OPxP, and (c) 
along the path OP2P in Fig. 2-20. 

Solution 
a) Along the direct path OP: 

2V2 
3 (ax cos 45° + ay sin 45°) 

— a x 3 + aj>3-
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• />(U) 

+ x FIGURE 2-20 
Illustrating Example 2-13. 

b) Along the path OP^P: 

jP
o (x2 + y2)dr = a, J J 1 y2 dy + ax £ (x2 + l)dx 

= a ^ 3 | o + ax(ix3 + x) 

— ax3 + aj>3 • 

c) Along the path OP2P: 

jP
o (x2 + y2)dr = ax J J 2 x2 dx + a, £ (1 + y 2 ) ^ 

Obviously, the value of the integral depends on the path of integration, since the 
results in parts (a), (b), and (c) are all different. ana 

The integrals in (2-80) and (2-81) are mathematically of the same form; they 
both lead to a scalar result. The expression in (2-80) is a line integral, in which the 
integrand represents the component of the vector F along the path of integration. 
This type of scalar line integral is of considerable importance in both physics and 
electromagnetics. (If F is a force, the integral is the work done by the force in moving 
an object from an initial point Pt to a final point P2 along a specified path C; if F 
is replaced by E, the electric field intensity, then the integral represents the work 
done by the electric field in moving a unit charge from Pt to P2.) We will encounter 
it again later in this chapter and in many other parts of this book. 

EXAMPLE 2-14 Given F = &xxy — ay2x, evaluate the scalar line integral 

n F-df 

along the quarter-circle shown in Fig. 2-21. 
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Solution We shall solve this problem in two ways: first in Cartesian coordinates, 
then in cylindrical coordinates. 

a) In Cartesian coordinates. From the given F and the expression for d€ in Eq. (2-44) 
we have 

F • d€ = xy dx — 2x dy. 

The equation of the quarter-circle is x2 + y2 = 9 (0 < x, y < 3). Therefore, 

f* F-d€ = J3° x JT^dx - 2 JQ
3 J9~^y*dy 

= ~(9-x2f'2 

= - 9 f l + -

yy/9-y2 +9 sin -11 

b) In cylindrical coordinates. Here we first transform F into cylindrical coordinates. 
Inverting Eq. (2-61), we have 

COS (j) -

sin (f) 
0 

COS (j) 

— sin <f) 
0 

gives 

COS (j) 

- s i n 4> 
0 

- s i n (p 
cos <p 
0 

sin (f) 
COS (j) 

0 

sin (j) 
COS (j) 

0 

- l 

ol 
0 
1J 

M k 
IAJ 

\Ay\ 

UJ 

(2-84) 

With the given F, Eq. (2-84) gives 

Fr 

Fi 
^FZJ 

which leads to 
F = &r(xy cos 4> — 2x sin 4>) — a^xy sin >̂ + 2x cos 4>). 

For the present problem the path of integration is along a quarter-circle of a 
radius 3. There is no change in r or z along the path (dr = 0 and dz = 0); hence 

o] 
0 
lj 

r xy 
-2x 

L o _ 

>x FIGURE 2-21 
Path for line integral (Example 2-14). 
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Eq. (2-52) simplifies to 

and 
d€ = *4,3d<l> 

F • d-6 = — 3{xy sin <fi + 2x cos 0) d(f>. 
Because of the circular path, Fr is immaterial to the present integration. Along 
the path, x = 3 cos <\> and y = 3 sin (f). Therefore 

^ Y-d£ = J^2 - 3(9 sin2 0 cos <f> + 6 cos2 0 ) # 

= — 9(sin3 (j) + $ + sin 0 cos 0) 171/2 

which is the same as before. UH 

In this particular example, F is given in Cartesian coordinates, and the path is 
circular. There is no compelling reason to solve the problem in one or the other co
ordinates. We have shown the conversion of vectors and the procedure of solution 
in both coordinates. 

The expression in (2-81), j s A • ds, is a surface integral. It is actually a double 
integral over two dimensions; but it is written with a single integral sign for simplicity. 
The integral measures the flux of the vector field A flowing through the area S. In 
the integral the vector differential surface element ds = a„ ds has a magnitude ds and 
a direction denoted by the unit vector a„. The conventions for the positive direction 
of ds or a„ are as follows: 
1. If the surface of integration, S, is a closed surface enclosing a volume, then the 

positive direction for a„ is always in the outward direction from the volume. This 
is illustrated in Fig. 2-22(a). We see that the positive direction of a„ depends on 
the location of ds. A small circle is added over the integral sign if the integration 
is to be performed over an enclosed surface: 

A • ds = CD A • an ds. 

(a) A closed surface. (b) An open surface. (c) A disk. 

FIGURE 2-22 
Illustrating the positive direction of a„ in scalar surface integral. 
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2. If S is an open surface, the positive direction for a„ depends on the direction in 
which the perimeter of the open surface is traversed. This is illustrated in Fig. 
2-22(b), in which a cup-shaped surface (with no lid) is shown. We apply the right-
hand rule: If the fingers of the right hand follows the direction of travel around 
the perimeter, then the thumb points in the direction of positive a„. Here again, 
the positive direction of a„ depends on the location of ds. A plane, such as the 
disk in Fig. 2-22(c), is a special case of an open surface where a„ is a constant. 

EXAMPLE 2-15 Given F = arkjr + az/c2z, evaluate the scalar surface integral 

F-ds 

over the surface of a closed cylmder about the z-axis specified by z = ±3 and r = 2. 

Solution The specified surface of integration S is that of a closed cylinder shown in 
Fig. 2-23. The cylinder has three surfaces: the top face, the bottom face, and the side 
wall. We write 

s F - d s = (J) F-ands 

= f F-ands + f F-a„ds + f F-a„ds, 
Jtop " Jbottom " Jside " ' face face wall 

where a„ is the unit normal outward from the respective surfaces. The three integrals 
on the right side can be evaluated separately. 

a) Top face, z = 3, a„ = az, 
F • a„ = k2z = 3/c2, 
ds = rdrd(f) (from Eq. 2-53c); 

iP
F-a»ds=rio3^*^=12^-

face 

FIGURE 2-23 
A cylindrical surface (Example 2-15). 
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b) Bottom face, z — — 3, a„ = — az, 
F • a„ = — k2z = 3k2, 
ds = rdr d<f>; 

f F • n„ds = I2nk2, 
J bottom " 2 ' 

face 
which is exactly the same as the integral over the top face. 

c) Side wall, r = 2, a„ = ar, 

F - . = * I - * i , 
r 2 

ds = rd(j)dz = 2d(f)dz (from Eq. 2-53a); 

wall 

Therefore, 
<j) F • ds = 12nk2 + 12nk2 + 127^ 

= 12TT(/C1 + 2k2). 

This surface integral gives the net outward flux of the vector F through the closed 
cylindrical surface. mus 

2 - 6 Gradient of a Scalar Field 

In electromagnetics we have to deal with quantities that depend on both time and 
position. Since three coordinate variables are involved in a three-dimensional space, 
we expect to encounter scalar and vector fields that are functions of four variables: 
(t, ultu2i u3). In general, the fields may change as any one of the four variables 
changes. We now address the method for describing the space rate of change of a 
scalar field at a given time. Partial derivatives with respect to the three space-
coordinate variables are involved, and, inasmuch as the rate of change may be differ
ent in different directions, a vector is needed to define the space rate of change of a 
scalar field at a given point and at a given time. 

Let us consider a scalar function of space coordinates V(uu u2, u3), which may 
represent, say, the temperature distribution in a building, the altitude of a moun
tainous terrain, or the electric potential in a region. The magnitude of V, in general, 
depends on the position of the point in space, but it may be constant along certain 
lines or surfaces. Figure 2-24 shows two surfaces on which the magnitude of V is 
constant and has the values Vt and V1 + dV, respectively, where dV indicates a small 
change in V. We should note that constant- V surfaces need not coincide with any 
of the surfaces that define a particular coordinate system. Point P1 is on surface V{, 
P2 is the corresponding point on surface Vx + dV along the normal vector dn; and 
P3 is a point close to P2 along another vector d€ # dn. For the same change dV in 
V, the space rate of change, dVjdS, is obviously greatest along dn because dn is the 
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FIGURE 2-24 
Concerning gradient of a scalar. 

shortest distance between the two surfaces.* Since the magnitude of dV/d^ depends 
on the direction of d€, dV/dY is a directional derivative. We define the vector that 
represents both the magnitude and the direction of the maximum space rate of increase 
of a scalar as the gradient of that scalar. We write 

gradK4a„J. (2-85) 

For brevity it is customary to employ the operator del, represented by the symbol 
V and write W in place of grad V. Thus, 

" * ■ ■ ' ! (2-86) 

We have assumed that dV is positive (an increase in V); if dV is negative (a decrease 
in V from Px to P2), W will be negative in the a„ direction. 

The directional derivative along d£ is 

dV d\^dn 
ln"d£ 
dV 

dV 
= -— cos a 

dn 
(2-87) 

= - a „ . a , = (W).v 

Equation (2-87) states that the space rate of increase of V in the SL^ direction is equal 
to the projection (the component) of the gradient of V in that direction. We can also 
write Eq. (2-87) as 

dV = {VV)-d€, (2-88) 

t In a more formal treatment, changes AV and A/ would be used, and the ratio AV/M would become 
the derivative dV/df as At approaches zero. We avoid this formality in favor of simplicity. 
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where d£ = 2L€M. NOW, dV in Eq. (2-88) is the total differential of V as a result of 
a change in position (from Px to P 3 in Fig. 2-24); it can be expressed in terms of 
the differential changes in coordinates: 

dV dV dV 
(2-89) 

where dtu d£2, and d£3 are the components of the vector differential displacement 
&£ in a chosen coordinate system. In terms of general orthogonal curvilinear coordi
nates (ul5 u2, %), d€ is (from Eq. 2-31), 

iUluv1 - r aU2uv2 + a «3 uv 3 ^ = aBl d^ + au 

= *uSh\ dux) + aU2(h2 du2) + aU3(h3 du3). 

We can write dV in Eq. (2-89) as the dot product of two vectors, as follows: 

(2-90) 

dV = [* dv dV dv 
+ au2d^ + a"3 W)'(a"'d^ + a"2 d*2 + a"3 d^ 

dV dV dV\ ,„ 

= \^w1
 + ^w2

 + ^wjde-
Comparing Eq. (2-91) with Eq. (2-88), we obtain 

dV dV dV 
V K _ a " 1 ^ 1

 + a " 2 ^ + a " 3 ^ 
or 

(2-91) 

(2-92) 

(2-93) 

Equation (2-93) is a useful formula for computing the gradient of a scalar, when the 
scalar is given as a function of space coordinates. 

In Cartesian coordinates, (ux, u2, u3) = (x, y, z) and h1 = h2 = h3 = 1, we have 

(2-94) \v = 
dV 

= a„-— x dx + a j 
dv 
dy + a 

dV 
— 
dz 

or V F = l a ^ + a 4 + a z i , K (2-95) 

In view of Eq. (2-95), it is convenient to consider V in Cartesian coordinates as a 
vector differential operator. 

d d d 
V = ax — + a., — + az—• 

dx y dy dz 
(2-96) 
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From Eq. (2-93), we see that we can define V as 

V = a 
h1 du1 

+ a„ hodu- + a U3h3du3 
(2-97) 

in general orthogonal coordinates. As we shall see later in this chapter, the same vector 
differential operator is also used to signify divergence (V •) and curl (V x) operations 
on a vector. In these cases it is important to remember that the differentiation of a 
base vector in a curvilinear coordinate system may lead to a new vector in a dif
ferent direction. (For instance, dar/d<j> = a^ and da^/dcj) = — ar.) Proper care must be 
exercised when the V defined in Eq. (2-97) is used to operate on vectors in curvilinear 
coordinate systems. 

EXAMPLE 2-16 The electrostatic field intensity E is derivable as the negative gra
dient of a scalar electric potential V; that is, E = — VV. Determine E at the point 
(1,1,0) if 

a) V= V " * s i n ^ , 

b) V = E0R cos 9. 

Solution We use Eq. (2-93) to evaluate E = — W in Cartesian coordinates for part 
(a) and in spherical coordinates for part (b). 

a) E = 
8 d d~ 

E0e x sin ny 

%y % ny = \ax sin —— a. — cos — \EQe 

Thus, E(l, 1, 0) = a, - a„ -
n\ E0 

where 

= aEE, 

E=Er 

a£ = 

'K-L' 
1 

b) E = - + afl + a, 

VlTF7l6) 
d 

n 
â  - a, 

ER OR ' a° R89 ^"*R sin 9 d<j> 
E0R COS 9 

= -{aR cos 9 - a0 sin 9)E0. 
In view of Eq. (2-77), the result above converts very simply to E = — a2£0 in 
Cartesian coordinates. This is not surprising, since a careful examination of the 
given V reveals that E0R cos 9 is, in fact, equal to E0z. In Cartesian coordinates, 

E = -\V= -*t — (Eoz)= - a z £ 0 . 
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2 - 7 Divergence of a Vector Field 

In the preceding section we considered the spatial derivatives of a scalar field, which 
led to the definition of the gradient. We now turn our attention to the spatial deriv
atives of a vector field. This will lead to the definitions of the divergence and the curl 
of a vector. We discuss the meaning of divergence in this section and that of curl in 
Section 2-9. Both are very important in the study of electromagnetism. 

In the study of vector fields it is convenient to represent field variations graphically 
by directed field lines, which are called flux lines or streamlines. They are directed 
lines or curves that indicate at each point the direction of the vector field, as illustrated 
in Fig. 2-25. The magnitude of the field at a point is depicted either by the density 
or by the length of the directed lines in the vicinity of the point. Figure 2-25(a) shows 
that the field in region A is stronger than that in region B because there is a higher 
density of equal-length directed lines in region A. In Fig. 2-25(b), the decreasing 
arrow lengths away from the point q indicate a radial field that is strongest in the 
region closest to q. Figure 2-25(c) depicts a uniform field. 

The vector field strength in Fig. 2-25(a) is measured by the number of flux lines 
passing through a unit surface normal to the vector. The flux of a vector field is 
analogous to the flow of an incompressible fluid such as water. For a volume with 
an enclosed surface there will be an excess of outward or inward flow through the 
surface only when the volume contains a source or a sink, respectively; that is, a net 
positive divergence indicates the presence of a source of fluid inside the volume, and 
a net negative divergence indicates the presence of a sink. The net outward flow of 
the fluid per unit volume is therefore a measure of the strength of the enclosed source. 
In the uniform field shown in Fig. 2-25(c) there is an equal amount of inward and 
outward flux going through any closed volume containing no sources or sinks, result
ing in a zero divergence. 

(a) (b) ( c ) 

FIGURE 2-25 
Flux lines of vector fields. 
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We define the divergence of a vector field A at a point, abbreviated div A, as the net 
outward flux of A per unit volume as the volume about the point tends to zero: 

(2-98) 

The numerator in Eq. (2-98), representing the net outward flux, is an integral over 
the entire surface S that bounds the volume. We were exposed to this type of surface 
integral in Example 2-15. Equation (2-98) is the general definition of div A which 
is a scalar quantity whose magnitude may vary from point to point as A itself varies. 
This definition holds for any coordinate system; the expression for div A, like that 
for A, will, of course, depend on the choice of the coordinate system. 

At the beginning of this section we intimated that the divergence of a vector is 
a type of spatial derivative. The reader might perhaps wonder about the presence of 
an integral in the expression given by Eq. (2-98); but a two-dimensional surface in
tegral divided by a three-dimensional volume will lead to spatial derivatives as the 
volume approaches zero. We shall now derive the expression for div A in Cartesian 
coordinates. 

Consider a differential volume of sides Ax, Ay, and Az centered about a point 
P(xo> ^o? ZO) m t n e fi^d of a vector A, as shown in Fig. 2-26. In Cartesian coordinates, 
A = axAx + ayAy + azAz. We wish to find div A at the point (x0, j ; 0 , z0). Since the 
differential volume has six faces, the surface integral in the numerator of Eq. (2-98) 
can be decomposed into six parts: 

A • ds = 
Jfront Jback Jright Jleft Jtop Jr. /front Jback 

face face 
ight 

face 
left 
face 

+ , 
/top J bottom 
face face 

A • ds. (2-99) 

On the front face, 

/front A ' d S = Afront ' A%ront = A f r o n t ' &x(Ay Az) 
face face face face 

= Ax[x0 + —, y0, z0 ) Ay Az. 
(2-100) 

Pixo, yo, zo) 

WffT 

FIGURE 2-26 
A differential volume in Cartesian coordinates. 
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The quantity Ax([x0 + (Ax/2), y0, z0]) can be expanded as a Taylor series about its 
value at (x0, y0, z0), as follows: 

A i Ax \ , AxdAx 
Ax\xo + ~Y> J>o> zo J = Ax(*o, yo, Zo) + - y -^ + higher-order terms, 

(x0, yo, zo) 

(2-101) 

where the higher-order terms (H.O.T.) contain the factors (Ax/2)2, (Ax/2)3, etc. Simi
larly, on the back face, 

Jback A'ds = Aback ' Asback = Aback • (-axAyAz) 
f.„„ face face face face 

= ~Ax[ *o - -j-> y°> z° I A y A z -

The Taylor-series expansion of Axl x0 ——, j ; 0 , z0 ) is 

A l Ax \ ^ AxdAx 
Ax\x0- —, y0, z0 I = Ax(x0, y0, z0) - — — 

(2-102) 

+ H.O.T. (2-103) 
(xo, yo, zo) 

Substituting Eq. (2-101) in Eq. (2-100) and Eq. (2-103) in Eq. (2-102) and adding 
the contributions, we have 

J front Jback 
face face 

A • ds = (—^ + H.O.T. 
\ ox 

AxAyAz. (2-104) 
(xo, yo, zo) 

Here a Ax has been factored out from the H.O.T. in Eqs. (2-101) and (2-103), but 
all terms of the H.O.T. in Eq. (2-104) still contain powers of Ax. 

Following the same procedure for the right and left faces, where the coordinate 
changes are + Ay/2 and — Ay/2, respectively, and As = Ax Az, we find 

Jright Jleft 
L face face. 

A-ds = (d^ + H.O.T. 
\dy 

Ax Ay Az. (2-105) 
(xo, yo, zo) 

Here the higher-order terms contain the factors Ay, (Ay)2, etc. For the top and bottom 
faces we have 

Jtop Jbi I lop J bottom 
face face 

A • ds = ( ̂  + H.O.T. 
oz 

AxAyAz, (2-106) 
|(x0, yo, zo) 

where the higher-order terms contain the factors Az, (Az)2, etc. Now the results from 
Eqs. (2-104), (2-105), and (2-106) are combined in Eq. (2-99) to obtain 

A • ds = ■ 
(dAx dAv dA 

+ + Ax Ay Az 
is \dx ' dy ' dz J\(Xo,yo,Zo) " J ~ (2-107) 

+ higher-order terms in Ax, Ay, Az. 

Since At; = AxAyAz, substitution of Eq. (2-107) in Eq. (2-98) yields the expression 
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of div A in Cartesian coordinates: 

div A = < ^ J C 

dx 
dAv 

+ —-2-
dy 

dAz 
+ ^r-dz 

(2-108) 

The higher-order terms vanish as the differential volume Ax Ay Az approaches zero. 
The value of div A, in general, depends on the position of the point at which it is 
evaluated. We have dropped the notation (x0, y0, z0) in Eq. (2-108) because it applies 
to any point at which A and its partial derivatives are defined. 

With the vector differential operator del, V, defined in Eq. (2-96) we can write 
Eq. (2-108) alternatively as V • A; that is, 

V • A = div A. (2-109) 

In general orthogonal curvilinear coordinates (u1? u2, w3), Eq. (2-98) will lead to 

V-A = 
h1h2h2 

^ ( f c M J + ̂ f c i M J + ^ M ^ a ) (2-110) 

EXAMPLE 2-17 Find the divergence of the position vector to an arbitrary point. 

Solution We will find the solution in Cartesian as well as in spherical coordinates. 

a) Cartesian coordinates. The expression for the position vector to an arbitrary 
point (x, y, z) is 

OP = axx + ayy + azz. (2-111) 
Using Eq. (2-108), we have 

—► dx dy dz 
dx dy dz 

b) Spherical coordinates. Here the position vector is simply 
~OP = nRR. (2-112) 

Its divergence in spherical coordinates (R, d, 0) can be obtained from Eq. (2-110) 
by using Table 2-1 as follows: 

V - A = F J ^ « ) + ^ i-AAesm6)+
 X dA 

RsinO d(f> 
(2-113) 

Substituting Eq. (2-112) in Eq. (2-113), we also obtain V • (OP) = 3, as expected. 
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EXAMPLE 2-18 The magnetic flux density B outside a very long current-carrying 
wire is circumferential and is inversely proportional to the distance to the axis of the 
wire. Find V • B. 

Solution Let the long wire be coincident with the z-axis in a cylindrical coordinate 
system. The problem states that 

k 
B = ^ -v r 

The divergence of a vector field in cylindrical coordinates (r, $, z) can be found from 
Eq. (2-110): 

(2-114) 

Now B^ = k/r, and Br = Bz = 0. Equation (2-114) gives 

\ • B = 0. mm 

We have here a vector that is not a constant, but whose divergence is zero. This 
property indicates that the magnetic flux lines close upon themselves and that there 
are no magnetic sources or sinks. A divergenceless field is called a solenoidal field. 
More will be said about this type of field later in the book. 

V B = 
r or r d(j> dz 

2 — 8 Divergence Theorem 

In the preceding section we defined the divergence of a vector field as the net outward 
flux per unit volume. We may expect intuitively that the volume integral of the 
divergence of a vector field equals the total outward flux of the vector through the 
surface that bounds the volume; that is, 

I V- Adv = (b A-ds. (2-115) 

This identity, which will be proved in the following paragraph, is called the divergence 
theorem.^ It applies to any volume V that is bounded by surface S. The direction of 
ds is always that of the outward normal, perpendicular to the surface ds and directed 
away from the volume. 

For a very small differential volume element AVJ bounded by a surface sp the 
definition of V • A in Eq. (2-98) gives directly 

(y-A)jAvJ = j)s A-ds. (2-116) 

f It is also known as Gauss's theorem. 
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In case of an arbitrary volume V, we can subdivide it into many, say N, small dif
ferential volumes, of which Ay,- is typical. This is depicted in Fig. 2-27. Let us now 
combine the contributions of all these differential volumes to both sides of Eq. (2-116). 
We have 

lim yv-A)^. 
U = i 

= lim I 
L/=i 

A-ds 

The left side of Eq. (2-117) is, by definition, the volume integral of V • A: 

lim 
Avj-+0 

L/=i 
£(V-A)jAi;J = JK(V-A)di;. 

(2-117) 

(2-118) 

The surface integrals on the right side of Eq. (2-117) are summed over all the faces 
of all the differential volume elements. The contributions from the internal surfaces 
of adjacent elements will, however, cancel each other, because at a common internal 
surface the outward normals of the adjacent elements point in opposite directions. 
Hence the net contribution of the right side of Eq. (2-117) is due only to that of the 
external surface S bounding the volume V; that is, 

N 

lim 
Avj->0 

V f A • ds 
JSj 

U=i 
= Cp A • da. (2-119) 

The substitution of Eqs. (2-118) and (2-119) in Eq. (2-117) yields the divergence 
theorem in Eq. (2-115). 

The validity of the limiting processes leading to the proof of the divergence the
orem requires that the vector field A, as well as its first derivatives, exist and be con
tinuous both in V and on S. The divergence theorem is an important identity in 
vector analysis. It converts a volume integral of the divergence of a vector to a closed 
surface integral of the vector, and vice versa. We use it frequently in establishing 
other theorems and relations in electromagnetics. We emphasize that, although a 
single integral sign is used on both sides of Eq. (2-115) for simplicity, the volume 
and surface integrals represent triple and double integrations, respectively. 

FIGURE 2-27 
Subdivided volume for proof of divergence theorem. 
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EXAMPLE 2-19 Given A = SLXX2 + ayxy + azyz, verify the divergence theorem over 
a cube one unit on each side. The cube is situated in the first octant of the Cartesian 
coordinate system with one corner at the origin. 

Solution Refer to Fig. 2-28. We first evaluate the surface integral over the six faces. 

1. Front face: x = 1, ds = stxdydz; 

f A-ds = P r dydz = l. 
Jfront JO JO J 

face 
2. Back face: x = 0, ds = — axdy dz; 

f A • ds = 0. 
Jback 

face 
3. Left face: y = 0, ds = —aydxdz; 

f A • ds = 0. 
Jleft 

face 
4. Right face: y = 1, ds = aydxdz; 

A • ds = xdxdz = j . 
Jrighl JO JO z 

face 
5. Top face: z = 1, ds = a^xdy; 

l o p A,dS = Jo J 0 ^ ^ ^ = i 
face 

6. Bottom face: z = 0, ^s = — az dx dy; 

f A • rfs = 0. 
J bottom 

face 

Adding the above six values, we have 

(j). A- ds = 1 + 0 + 0 + ^ + ^ + 0 = 2. (2-120) 

Now the divergence of A is 

FIGURE 2-28 
A unit cube (Example 2-19). 
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Hence, 
j v V • A dv = j * j * j * (3x + y) dx dy dz = 2, (2-121) 

which is the same as the result of the closed surface integral in (2-120). The divergence 
theorem is therefore verified. m 

EXAMPLE 2-20 Given F = aRkR, determine whether the divergence theorem holds 
for the shell region enclosed by spherical surfaces at R = R1 and R = R2(R2 > #i) 
centered at the origin, as shown in Fig. 2-29. 

Solution Here the specified region has two surfaces, at R = R1 and R = R2. 
At the outer surface: R = R2, ds = aRRj sin ddddfc 

/outer F ' d S = J T Jo" (kR2>R2 S h l 0 dd W = ^kR\. 
surface 

At the inner surface: R = Rlt ds = —&RRj sin OdOdfc 

jnner F ' dS = ~ j ^ ^0 ^ R ^ S h l Q dQ d4> = ~^kR\. 
surface 

Actually, since the integrand is independent of 9 or 0 in both cases, the integral of 
a constant over a spherical surface is simply the constant multiplied by the area of 
the surface {4nRj for the outer surface and 4nRj for the inner surface), and no 
integration is necessary. Adding the two results, we have 

4 F • ds = 4nk{R\ - Rl). (2-122) 

To find the volume integral, we first determine V • F for an F that has only an 
FR component. From Eq. (2-113), we have 

Since V • F is a constant, its volume integral equals the product of the constant and 
the volume. The volume of the shell region between the two spherical surfaces with 

FIGURE 2-29 
A spherical shell region (Example 2-20). 
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radii Rx and R2 is 4n(Rj - Rf)/3. Therefore, 

j y V • F dv = (V • F)V = 47tfe(R| - Rl), (2-123) 

which is the same as the result in Eq. (2-122). 
This example shows that the divergence theorem holds even when the volume 

has holes inside—that is, even when the volume is enclosed by a multiply connected 
surface. BUB 

2 - 9 Curl of a Vector Field 

In Section 2-7 we stated that a net outward flux of a vector A through a surface 
bounding a volume indicates the presence of a source. This source may be called a 
flow source, and div A is a measure of the strength of the flow source. There is another 
kind of source, called vortex source, which causes a circulation of a vector field around 
it. The net circulation (or simply circulation) of a vector field around a closed path 
is defined as the scalar line integral of the vector over the path. We have 

Circulation of A around contour C = (D A • dt. (2-124) 

Equation (2-124) is a mathematical definition. The physical meaning of circulation 
depends on what kind of field the vector A represents. If A is a force acting on an 
object, its circulation will be the work done by the force in moving the object once 
around the contour; if A represents an electric field intensity, then the circulation 
will be an electromotive force around the closed path, as we shall see later in the 
book. The familiar phenomenon of water whirling down a sink drain is an example 
of a vortex sink causing a circulation of fluid velocity. A circulation of A may exist 
even when div A = 0 (when there is no flow source). 

Since circulation as defined in Eq. (2-124) is a line integral of a dot product, its 
value obviously depends on the orientation of the contour C relative to the vector 
A. In order to define a point function, which is a measure of the strength of a vortex 
source, we must make C very small and orient it in such a way that the circulation 
is a maximum. We define1 

curl A = V x A 

4 lim-^-
As->0 AS 

*n§c±'d€ 
max 

In words, Eq. (2-125) states that the curl of a vector field A, denoted by curl A or 
V x A, is a vector whose magnitude is the maximum net circulation of A per unit 

f In books published in Europe, the curl of A is often called the rotation of A and written as rot A. 
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FIGURE 2-30 
Relation between a„ and d€ in denning curl. 

area as the area tends to zero and whose direction is the normal direction of the 
area when the area is oriented to make the net circulation maximum. Because the 
normal to an area can point in two opposite directions, we adhere to the right-hand 
rule that when the fingers of the right hand follow the direction of d€, the thumb 
points to the a„ direction. This is illustrated in Fig. 2-30. Curl A is a vector point 
function and is conventionally written as V x A (del cross A). The component of 
V x A in any other direction a„ is a„-(V x A), which can be determined from the 
circulation per unit area normal to a„ as the area approaches zero. 

(2-126) 

where the direction of the line integration around the contour Cu bounding area Asu 
and the direction a„ follow the right-hand rule. 

We now use Eq. (2-126) to find the three components of V x A in Cartesian 
coordinates. Refer to Fig. 2-31, in which a differential rectangular area parallel to 
the yz-plane and having sides Ay and Az is drawn about a typical point P{x0, y0, z0). 
We have a„ = ax and Asu = Ay Az, and the contour Cu consists of the four sides 1, 2, 3, 

P(xo, .vo, *o) 

FIGURE 2-31 
Determining (V x A)x. 
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and 4. Thus, 

(VxA) ,= lim -r^—[(p.A A-d€\. 
AyAz^O AyAZ \ Jsides 

(2-127) 
1, 2, 3 , 4 

In Cartesian coordinates, A = axAx + ayAy + azAz. The contributions of the four 
sides to the line integral are as follows. 

Side 1: di = az Az, k-d€ = Az(x0, y0 + - y , z0JAz, 

I &y \ 
where Az\ x0, y0 + —. z0 I can be expanded as a Taylor series: 

A i Ay \ , Ay dAz 

K\ x0, y0 + - y ' Zo I = Az{xQ, y0, z0) + — — + H.O.T, (2-128) 
\(x0,yo,z0) 

where H.O.T. (higher-order terms) contain the factors {Ay)2, (Ay)3, etc. Thus, 

A^dA, 
2 fy \(x0,yo,z0) 

Ay 

£ d e l A - ^ = |^z(x0,j;0,z0) + + H.O.T. \ Az. (2-129) 

Side 3: di = -azAz,A-d€ = Ag[x0,y0-—,z0) Az, 

where 
. Ay \ Ay dA. 

M *o> yo - y > z°) = ^ x ° ' y°> zo) - y y + H.O.T.; (2-130) 

I i d e 3
A ' ^ = \AZ(X0, y0, z0)-

AydAz 

2 dy 

(xo, y0, z0) 

+ H.O.T. [(-Az). (2-131) 
(xo,yo,zo) 

Combining Eqs. (2-129) and (2-131), we have 

Jsides \ 3v I 
1 & 3 v J 7 

AyAz. (2-132) 
| (x 0 , yo, z 0) 

The H.O.T. in Eq. (2-132) still contain powers of Ay. Similarly, it may be shown that 

AyAz. (2-133) f A . ^ = f - ^ + H.O.T.) 
Jsides \ CZ } 

2 & 4 x 7 (x0, yo, zo) 

Substituting Eqs. (2-132) and (2-133) in Eq. (2-127) and noting that the higher-
order terms tend to zero as Ay -» 0, we obtain the x-component of V x A: 

v ,x dy dz (2-134) 
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V x A = = a , 
fdA. 
— -\dy 

dA.} 
dz j 

\ 
+ a„ / 

^ / l , 
{dz 

d/O 
dx j 

\ 
+ a7 

fdAv 
-~^-\dx 

dAx\ 
- ~ • <W 

A close examination of Eq. (2-134) will reveal a cyclic order in x, y, and z and 
enable us to write down the y- and z-components of V x A. The entire expression 
for the curl of A in Cartesian coordinates is 

(2-135) 

Compared to the expression for V • A in Eq. (2-108), that for V x A in Eq. (2-135) 
is more complicated, as it is expected to be, because it is a vector with three compo
nents, whereas V • A is a scalar. Fortunately, Eq. (2-135) can be remembered rather 
easily by arranging it in a determinantal form in the manner of the cross product 
exhibited in Eq. (2-43). 

(2-136) 

The derivation of V x A in other coordinate systems follows the same procedure. 
However, it is more involved because in curvilinear coordinates not only A but also 
dt changes in magnitude as the integration of A • At is carried out on opposite sides 
of a curvilinear rectangle. The expression for V x A in general orthogonal curvi
linear coordinates (uu u2, u3) is given below: 

(2-137) 

V x A = 

a* 
d 

~dx~ 

Ax 

*y 

d 
Ty 

^y 

az 

d 
~dz 

Az 

The expressions of V x A in cylindrical and spherical coordinates can be easily ob
tained from Eq. (2-137) by using the appropriate ul9 u2, and u3 and their metric 
coefficients hu h2, and h3 listed in Table 2-1. 

EXAMPLE 2-21 Show that V x A = 0 if 

a) A = a^/c/r) in cylindrical coordinates, where k is a constant, or 
b) A = aRf(R) in spherical coordinates, where f(R) is any function of the radial dis

tance R. 
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Solution 

a) In cylindrical coordinates the following apply: (uu u2, u3) = (r, <£, z); h1 = 1, 
h2 = r, and /i3 = 1. We have, from Eq. (2-137), 

r 

ar 

A, 

which yields, for the given A, 

V x A = -
r 

ar 

dr 

0 

_d_ 

*** 

V az 

d(j) dz 

k 0 

dz 

A, 

(2-138) 

= 0. 

b) In spherical coordinates the following apply: (ux, u2, u3) = (R, 9, 4>); ht = l,h2 = R, 
and h3 = R sin 9. Hence, 

V x A = 
1 

R2 sin 6 m 

and, for the given A, 

V x A = 
1 

R2 sin 9 

W) 

aeR 

89 

RAe 

aeR 

d_ 
~M 
0 

a^R sin 9 

_d_ 

R sin 9A4> 

a^R sin 6 

0 

(2-139) 

= 0. 

A curl-free vector field is called an irrotational or a conservative field. We will 
see in the next chapter that an electrostatic field is irrotational (or conservative). The 
expressions for V x A given in Eqs. (2-138) and (2-139) for cylindrical and spherical 
coordinates, respectively, will be useful for later reference. 

2 - 1 0 Stokes's Theorem 

For a very small differential area ASJ bounded by a contour CJt the definition of 
V x A in Eq. (2-125) leads to 

<yxA)j'(A8j) = j>CiA-de. (2-140) 

In obtaining Eq. (2-140), we have taken the dot product of both sides of Eq. (2-125) 
with a„ As,- or As^. For an arbitrary surface S, we can subdivide it into many, say N, 
small differential areas. Figure 2 - 3 2 shows such a scheme with ASJ as a typical dif-
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ferential element. The left side of Eq. (2-140) is the flux of the vector V x A through 
the area As,-. Adding the contributions of all the differential areas to the flux, we have 

lim ^ V X A V ^ - H J ^ V X A ) - ^ . (2-141) 
^ - o ^ 

Now we sum up the line integrals around the contours of all the differential elements 
represented by the right side of Eq. (2-140). Since the common part of the contours 
of two adjacent elements is traversed in opposite directions by two contours, the net 
contribution of all the common parts in the interior to the total line integral is zero, 
and only the contribution from the external contour C bounding the entire area 5 
remains after the summation: 

A • d€ = <b A • d€. lim Y 

Combining Eqs. (2-141) and (2-142), we obtain Stokes's theorem: 

j s (V x A) • ds = j>c A • d€, 

(2-142) 

(2-143) 

which states that the surface integral of the curl of a vector field over an open surface 
is equal to the closed line integral of the vector along the contour bounding the 
surface. 

As with the divergence theorem, the validity of the limiting processes leading 
to Stokes's theorem requires that the vector field A, as well as its first derivatives, 
exist and be continuous both on S and along C. Stokes's theorem converts a sur
face integral of the curl of a vector to a line integral of the vector, and vice versa. 
Like the divergence theorem, Stokes's theorem is an important identity in vector anal
ysis, and we will use it frequently in establishing other theorems and relations in 
electromagnetics. 

If the surface integral of V x A is carried over a closed surface, there will be no 
surface-bounding external contour, and Eq. (2-143) tells us that 

| ( V x A ) - d s = 0 (2-144) 

FIGURE 2-32 
Subdivided area for proof of Stokes's theorem. 
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for any closed surface S. The geometry in Fig. 2-32 is chosen deliberately to em
phasize the fact that a nontrivial application of Stokes's theorem always implies an 
open surface with a rim. The simplest open surface would be a two-dimensional plane 
or disk with its circumference as the contour. We remind ourselves here that the 
directions of d€ and ds(a„) follow the right-hand rule. 

EXAMPLE 2-22 Given F = axxy — ay2x, verify Stokes's theorem over a quarter-
circular disk with a radius 3 in the first quadrant, as was shown in Fig. 2-21 (Ex
ample 2-14, page 39). 

Solution Let us first find the surface integral of V x F. From Eq. (2-136), 

V x F ■= dx dy 
xy —2x 

d_ 
Tz 
0 

= -az(2 + x). 

Therefore, 

J5 (V x F) -ds = Jo
3 JQ

 9~y2 (V x F) • (*xdxdy) 

= Jo |_/o ~(2+ *)**_) *3> 
= - J 0

3 [ 2 V 9 ^ 7 + i ( 9 - / ) ] ^ 

yj9-y2+9sm-^ + - y - ^ 

It is important to use the proper limits for the two variables of integration. We can 
interchange the order of integration as 

j s(vxF)-dS=j; \j;-*'-(2 + x)iy dx 

and get the same result. But it would be quite wrong if the 0 to 3 range were used as 
the range of integration for both x and j ; . (Do you know why?) 

For the line integral around ABO A we have already evaluated the part around 
the arc from A to B in Example 2-14. 

From B to 0: x = 0, and F • &£ = F • (-*ydy) = Ixdy = 0. 
From 0 to A: y = 0, and F • &£ = F • (ax dx) = xydx = 0. Hence 

6 F-d€= (BF-d€= - 9 ( 1 + J ) , 
7ABO A JA \ 2) 

from Example 2-14, and Stokes's theorem is verified. 
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Of course, Stokes's theorem has been established in Eq. (2-143) as a general iden
tity; there is no need to use a particular example to prove it. We worked out the 
example above for practice on surface and line integrals. (We note here that both the 
vector field and its first spatial derivatives are finite and continuous on the surface 
as well as on the contour of interest.) 

2 - 1 1 TVvo Null Identities 

Two identities involving repeated del operations are of considerable importance in 
the study of electromagnetism, especially when we introduce potential functions. We 
shall discuss them separately below. 

2-11.1 IDENTITY I 

V x (W) = 0 (2-145) 

In words, the curl of the gradient of any scalar field is identically zero. (The exis
tence of V and its first derivatives everywhere is implied here.) 

Equation (2-145) can be proved readily in Cartesian coordinates by using Eq. 
(2-96) for V and performing the indicated operations. In general, if we take the surface 
integral of V x (\V) over any surface, the result is equal to the line integral of W 
around the closed path bounding the surface, as asserted by Stokes's theorem: 

j s [V x (V7)] • ds = j)c (W) • d€. (2-146) 

However, from Eq. (2-88), 

(jj, (W) -d€ = j*cdV = 0. (2-147) 

The combination of Eqs. (2—146) and (2-147) states that the surface integral of V x 
(V7) over any surface is zero. The integrand itself must therefore vanish, which leads 
to the identity in Eq. (2-145). Since a coordinate system is not specified in the deri
vation, the identity is a general one and is invariant with the choices of coordinate 
systems. 

A converse statement of Identity I can be made as follows: If a vector field is 
curl-free, then it can be expressed as the gradient of a scalar field. Let a vector field 
be E. Then, if V x E = 0, we can define a scalar field V such* that 

E = - V 7 . (2-148) 
The negative sign here is unimportant as far as Identity I is concerned. (It is included 
in Eq. (2-148) because this relation conforms with a basic relation between electric 
field intensity E and electric scalar potential V in electrostatics, which we will take 
up in the next chapter. At this stage it is immaterial what E and V represent.) We 
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know from Section 2-9 that a curl-free vector field is a conservative field; hence an 
irrotational (a conservative) vector field can always be expressed as the gradient 
of a scalar field. 

2-11.2 IDENTITY II 

V • (V x A) = 0 (2-149) 

In words, the divergence of the curl of any vector field is identically zero. 
Equation (2-149), too, can be proved easily in Cartesian coordinates by using 

Eq. (2-96) for V and performing the indicated operations. We can prove it in general 
without regard to a coordinate system by taking the volume integral of V • (V x A) 
on the left side. Applying the divergence theorem, we have 

j y V • (V x k)dv = 6 (V x A) • ds. (2-150) 

Let us choose, for example, the arbitrary volume V enclosed by a surface S in Fig. 
2-33. The closed surface S can be split into two open surfaces, Sl and S2, connected 
by a common boundary that has been drawn twice as C1 and C2. We then apply 
Stokes's theorem to surface Sx bounded by C1? and surface S2 bounded by C2, and 
we write the right side of Eq. (2-150) as 

j)s ( V x A ) - & = Jsi (V x A) • anl ds + J^ (V x A) • an2 

= & A-dt + S k-d€. 

ds 

(2-151) 

The normals anl and a„2 to surfaces Sx and S2 are outward normals, and their rela
tions with the path directions of Cx and C2 follow the right-hand rule. Since the 
contours Cx and C2 are, in fact, one and the same common boundary between S^ 
and S2, the two line integrals on the right side of Eq. (2-151) traverse the same 
path in opposite directions. Their sum is therefore zero, and the volume integral of 
V • (V x A) on the left side of Eq. (2-150) vanishes. Because this is true for any 
arbitrary volume, the integrand itself must be zero, as indicated by the identity in 
Eq. (2-149). 

FIGURE 2-33 
An arbitrary volume V enclosed by surface S. 
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A converse statement of Identity II is as follows: If a vector field is divergenceless, 
then it can be expressed as the curl of another vector field. Let a vector field be B. 
This converse statement asserts that if V • B = 0, we can define a vector field A such 
that 

B = V x A. (2-152) 

In Section 2-7 we mentioned that a divergenceless field is also called a solenoidal 
field. Solenoidal fields are not associated with flow sources or sinks. The net out
ward flux of a solenoidal field through any closed surface is zero, and the flux lines 
close upon themselves. We are reminded of the circling magnetic flux lines of a 
solenoid or an inductor. As we will see in Chapter 6, magnetic flux density B is 
solenoidal and can be expressed as the curl of another vector field called magnetic 
vector potential A. 

2—12 Helmholtz's Theorem 

In previous sections we mentioned that a divergenceless field is solenoidal and a curl-
free field is irrotational. We may classify vector fields in accordance with their being 
solenoidal and/or irrotational. A vector field F is 

1. Solenoidal and irrotational if 
V • F = 0 and V x F = 0. 

EXAMPLE: A static electric field in a charge-free region. 
2. Solenoidal but not irrotational if 

V • F = 0 and V x F ^ O . 
EXAMPLE: A steady magnetic field in a current-carrying conductor. 

3. Irrotational but not solenoidal if 
V x F = 0 and V • F # 0. 

EXAMPLE: A static electric field in a charged region. 
4. Neither solenoidal nor irrotational if 

V • F # 0 and V x F ^ O . 
EXAMPLE: An electric field in a charged medium with a time-varying magnetic 
field. 

The most general vector field then has both a nonzero divergence and a nonzero 
curl, and can be considered as the sum of a solenoidal field and an irrotational field. 

Helmholtz's Theorem: A vector field (vector point function) is determined to within 
an additive constant if both its divergence and its curl are specified everywhere. In an 
unbounded region we assume that both the divergence and the curl of the vector 
field vanish at infinity. If the vector field is confined within a region bounded by a 
surface, then it is determined if its divergence and curl throughout the region, as 
well as the normal component of the vector over the bounding surface, are given. 
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Here we assume that the vector function is single-valued and that its derivatives are 
finite and continuous. 

Helmholtz's theorem can be proved as a mathematical theorem in a general way.f 

For our purposes, we remind ourselves (see Section 2-9) that the divergence of a 
vector is a measure of the strength of the flow source and that the curl of a vector is 
a measure of the strength of the vortex source. When the strengths of both the flow 
source and the vortex source are specified, we expect that the vector field will be 
determined. Thus, we can decompose a general vector field F into an irrotational 
part F; and a solenoidal part Fs: 

F = F, + Fs, (2-153) 
with 

[ V x F f = 0 (2-154a) 
[V • F, = g (2-154b) 

and 
("V • F s = 0 (2-155a) 

(V x F s = G, (2-155b) 

where g and G are assumed to be known. We have 

V • F = V • Ft = g (2-156) 
and 

V x F = V x F s = G . (2-157) 

Helmholtz's theorem asserts that when g and G are specified, the vector function F 
is determined. Since V • and V x are differential operators, F must be obtained by 
integrating g and G in some manner, which will lead to constants of integration. 
The determination of these additive constants requires the knowledge of some bound
ary conditions. The procedure for obtaining F from given g and G is not obvious 
at this time; it will be developed in stages in later chapters. 

The fact that F£ is irrotational enables us to define a scalar (potential) function 
V, in view of identity (2-145), such that 

F t = -VK. (2-158) 

Similarly, identity (2-149) and Eq. (2-155a) allow the definition of a vector (potential) 
function A such that 

Fs = V x A. (2-159) 

Helmholtz's theorem states that a general vector function F can be written as the 
sum of the gradient of a scalar function and the curl of a vector function. Thus 

F = - V K + V x A . (2-160) 

f See, for instance, G. Arfken, Mathematical Methods for Physicists, Section 1.15, Academic Press, New 
York, 1966. 
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In following chapters we will rely on Helmholtz's theorem as a basic element 
in the axiomatic development of electromagnetism. 

EXAMPLE 2-23 Given a vector function 

F = ax{3y - cxz) + ay(c2x - 2z) - az{c3y + z). 

a) Determine the constants cl5 c2, and c3 if F is irrotational. 
b) Determine the scalar potential function V whose negative gradient equals F. 

Solution 

a) For F to be irrotational, V x F = 0; that is, 

ax a, 
d_ d_ 

dx dy 
3y — cxz c2x — 2z — {c3y + z)\ 

= a x ( - c 3 + 2) - ayc1 + az(c2 - 3) = 0. 
Each component of V x F must vanish. Hence cl = 0, c2 = 3, and c3 = 2. 

b) Since F is irrotational, it can be expressed as the negative gradient of a scalar 

V x F = 

az 
d_ 
8z 

function V; that 

Three equations 

is, 

F = 

are 

= - V 7 = 

= 
obtained: 

dV 
~ax~dx~~ay 

ax3y + ay(3x 

dV 

dV 
dy 
-2z) 

— = -3x + 2z, 
dy 

Tz^1^1 

dV 
*>Tz 
- *z(2y + 4 

(2-161) 

(2-162) 

(2-163) 

Integrating Eq. (2-161) with respect to x, we have 
V= -3xy + fx(y,z), (2-164) 

where fx(y, z) is a function of y and z yet to be determined. Similarly, integrating 
Eq. (2-162) with respect to y and Eq. (2-163) with respect to z leads to 

V = -3xy + 2yz + f2(x, z) (2-165) 
and 

z2 

V = 2yz + j + f3{x,y). (2-166) 
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Examination of Eqs. (2-164), (2-165), and (2-166) enables us to write the scalar 
potential function as 

z2 

V = - 3xy + 2yz + — • (2-167) 

Any constant added to Eq. (2-167) would still make V an answer. The constant 
is to be determined by a boundary condition or the condition at infinity. ■■ 

Review Questions 

R.2-1 Three vectors A, B, and C, drawn in a head-to-tail fashion, form three sides of a 
triangle. What is A + B + C? What is A + B - C? 
R.2-2 Under what conditions can the dot product of two vectors be negative? 
R.2-3 Write down the results of A • B and A x B if (a) A || B, and (b) A 1 B. 
R.2-4 Which of the following products of vectors do not make sense? Explain. 

a) (A • B) x C b) A(B • C) c) A x B x C 
d) A/B e) A/a4 f) (A x B) • C 

R.2-5 Is (A • B)C equal to A(B • C)? 
R.2-6 Does A • B = A • C imply B = C? Explain. 
R.2-7 Does A x B = A x C imply B = C? Explain. 
R.2-8 Given two vectors A and B, how do you find (a) the component of A in the direction 
of B, and (b) the component of B in the direction of A? 
R.2-9 What makes a coordinate system (a) orthogonal? (b) curvilinear? and 
(c) right-handed? 
R.2-10 Given a vector F in orthogonal curvilinear coordinates (M15 U2, u3), explain how to 
determine (a) F, and (b) af. 
R.2-11 What are metric coefficients? 
R.2-12 Given two points Pt(l, 2, 3) and P2( — 1, 0, 2) in Cartesian coordinates, write the 
expressions of the vectors P1P2 and P2Pi-
R.2-13 What are the expressions for A • B and A x B in Cartesian coordinates? 
R.2-14 What is the difference between a scalar quantity and a scalar field? Between a 
vector quantity and a vector field? 
R.2-15 What is the physical definition of the gradient of a scalar field? 
R.2-16 Express the space rate of change of a scalar in a given direction in terms of its 
gradient. 
R.2-17 What does the del operator V stand for in Cartesian coordinates? 
R.2-18 What is the physical definition of the divergence of a vector field? 
R.2-19 A vector field with only radial flux lines cannot be solenoidal. True or false? 
Explain. 
R.2-20 A vector field with only curved flux lines can have a nonzero divergence. True or 
false? Explain. 
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R.2-21 State the divergence theorem in words. 
R.2-22 What is the physical definition of the curl of a vector field? 
R.2-23 A vector field with only curved flux lines cannot be irrotational. True or false? 
Explain. 
R.2-24 A vector field with only straight flux lines can be solenoidal. True or false? Explain. 
R.2-25 State Stokes's theorem in words. 
R.2-26 What is the difference between an irrotational field and a solenoidal field? 
R.2-27 State Helmholtz's theorem in words. 
R.2-28 Explain how a general vector function can be expressed in terms of a scalar 
potential function and a vector potential function. 

Problems 

P.2-1 Given three vectors A, B, and C as follows, 
A = ax + ay2 - az3, 
B = -SLy4 + az, 

C = ax5 - az2, 
find 

a) aA b) |A - B| 
c) A • B d) 6AB 
e) the component of A in the direction of C f) A x C 
g) A • (B x C) and (A x B) • C h) (A x B) x C and A x (B x C) 

P.2-2 Given 
A = SLX - ay2 + az3, 
B = ax + ay - az2, 

find the expression for a unit vector C that is perpendicular to both A and B. 
P.2-3 Two vector fields represented by A = axAx + *yAy + azA2 and B = SLXBX + 
siyBy + SL2B2, where all components may be functions of space coordinates. If these two 
fields are parallel to each other everywhere, what must be the relations between their 
components? 
P.2-4 Show that, if A • B = A • C and A x B = A x C, where A is not a null vector, then 
B = C. 
P.2-5 An unknown vector can be determined if both its scalar product and its vector 
product with a known vector are given. Assuming that A is a known vector, determine 
the unknown vector X if both p and B are given, where p = A • X and B = A x X. 
P.2-6 The three corners of a triangle are at P^O, 1, -2), P2(4,1, -3), and P3(6, 2, 5). 

a) Determine whether AP1P2-P3 is a right triangle. 
b) Find the area of the triangle. 

P.2-7 Show that the two diagonals of a rhombus are perpendicular to each other. (A 
rhombus is an equilateral parallelogram.) 
P.2-8 Prove that the line joining the midpoints of two sides of a triangle is parallel to 
and half as long as the third side. 
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P.2-9 Unit vectors aA and aB denote the directions of two-dimensional vectors A and B 
that make angles a and /?, respectively, with a reference x-axis, as shown in Fig. 2-34. 
a) Obtain a formula for the expansion of the cosine of the difference of two angles, 
cos (a - /?), by taking the scalar product aA • aB. b) Obtain a formula for sin (a - /?). 

FIGURE 2-34 
*x Graph for Problem P.2-9. 

P.2-10 Prove the law of sines for a triangle. 
P.2-11 Prove that an angle inscribed in a semicircle is a right angle. 
P.2-12 Verify the back-cab rule of the vector triple product of three vectors, as expressed 
in Eq. (2-20) in Cartesian coordinates. 
P.2-13 Prove by vector relations that two lines in the xy-plane (L^ bxx + b2y = 
c; L2: b\x + b'2y = c') are perpendicular if their slopes are the negative reciprocals of each 
other. 
P.2-14 

a) Prove that the equation of any plane in space can be written in the form 
bxx + b2y + b3z = c. (Hint: Prove that the dot product of the position vector to any 
point in the plane and a normal vector is a constant.) 

b) Find the expression for the unit normal passing through the origin. 
c) For the plane 3x — 2y + 6z = 5, find the perpendicular distance from the origin to 

the plane. 
P.2-15 Find the component of the vector A = — ayz + azy at the point P^O, - 2 , 3), which 
is directed toward the point P2(V3, - 60°, 1). 
P.2-16 The position of a point in cylindrical coordinates is specified by (4, 2TC/3, 3). What 
is the location of the point 

a) in Cartesian coordinates? 
b) in spherical coordinates? 

P.2-17 A field is expressed in spherical coordinates by E — aR(25/JR2). 
a) Find |E| and Ex at the point P ( - 3 , 4, - 5 ) . 
b) Find the angle that E makes with the vector B = ax2 - ay2 + az at point P. 

P.2-18 Express the base vectors aR, ae, and a0 of a spherical coordinate system in 
Cartesian coordinates. 
P.2-19 Determine the values of the following products of base vectors: 

a) ax • a0 b) ae • ay c) ar x ax 

d) aR • ar e) ay • aR f) aR • az 

g) aR x az h) ag • az i) az x ae. 

P.2-20 Given a vector function F = axxy + a ^ x - y2), evaluate the integral $F-d€ from 
Pi(5, 6) to P2(3, 3) in Fig. 2-35 

a) along the direct path PlP2, 
b) along path P1AP2. 
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Pi (5, 6) 

>x FIGURE 2-35 
Paths of integration for Problem P.2-20. 

P.2-21 Given a vector function E = axy + ayx, evaluate the scalar line integral J E • dt from 
P1(2,1, -1) to P2(8, 2, -1) 

a) along the parabola x = 2y2, 
b) along the straight line joining the two points. 

Is this E a conservative field? 
P.2-22 For the E of Problem P.2-21, evaluate J E • dt from P3(3, 4, -1) to P4(4, - 3 , - 1 ) 
by converting both E and the positions of P3 and P4 into cylindrical coordinates. 
P.2-23 Given a scalar function 

F = (s in |x j (s in^3; je- Z , 

determine 
a) the magnitude and the direction of the maximum rate of increase of V at the point 

P(l, 2, 3), 
b) the rate of increase of V at P in the direction of the origin. 

P.2-24 Evaluate 
<£ (aR3 sin 6) • ds 

over the surface of a sphere of a radius 5 centered at the origin. 
P.2-25 The equation in space of a plane containing the point (x1; y1; zx) can be written as 

£{x - x j + m(y - yj + p(z - z j = 0, 
where f, m, and p are direction cosines of a unit normal to the plane: 

a„ = a / + aym + azp. 
Given a vector field F = SLX + ay2 + az3, evaluate the integral j" s F • ds over the square plane 
surface whose corners are at (0, 0, 2), (2,0, 2), (2, 2, 0), and (0, 2, 0). 
P.2-26 Find the divergence of the following radial vector fields: 

a) /i(R) = aKK", 

b)/2(R) = a K ^ . 

P.2-27 Show that jjs R • ds = V, where R is the radial vector and V is the volume of the 
region enclosed by surface S. 
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P.2-28 For a scalar function / and a vector function A, prove that 

V ■ (/A) = / V ■ A + A • V/ 
in Cartesian coordinates. 
P.2-29 For vector function A = arr2 + az2z, verify the divergence theorem for the circular 
cylindrical region enclosed by r = 5, z = 0, and z = 4. 
P.2-30 For the vector function F = arkjr + azk2z given in Example 2-15 (page 41) evaluate 
j V • F dv over the volume specified in that example. Explain why the divergence theorem 
fails here. 
P.2-31 Use the definition in Eq. (2-98) to derive the expression of V • A for a vector field 
A = &rAr + a^A^ + azAz in cylindrical coordinates. 
P.2-32 A vector field D = aR(cos2 (j))/R3 exists in the region between two spherical shells 
defined by R = 1 and R = 2. Evaluate 

a) § D • ds, 
b) j\-T>dv. 

P.2-33 For two differentiate vector functions E and H, prove that 
V • (E x H) = H • (V x E) - E • (V x H). 

P.2-34 Assume the vector function A = ax3x2y3 — &yx3y2. 
a) Find $ A • d€ around the triangular contour shown in Fig. 2-36. 
b) Evaluate j (V x A) • ds over the triangular area. 
c) Can A be expressed as the gradient of a scalar? Explain. 

Ji 

2 

| | FIGURE 2-36 
o 1 2 Graph for Problem P.2-34. 

P.2-35 Use the definition in Eq. (2-126) to derive the expression of the aR-component of 
V x A in spherical coordinates for a vector field A = &RAR + agAg + ^A^,. 
P.2-36 Given the vector function A = a^ sin (0/2), verify Stokes's theorem over the 
hemispherical surface and its circular contour that are shown in Fig. 2-37. 

FIGURE 2-37 
Graph for Problem P.2-36. 
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P.2-37 For a scalar function / and a vector function G, prove that 
V x ( / G ) = / V x G + (V/) x G 

in Cartesian coordinates. 
P.2-38 Verify the null identities: 

a) V x (VV) = 0 
b) V • (V x A) = 0 

by expansion in general orthogonal curvilinear coordinates. 
P.2-39 Given a vector function F = ax(x + cyz) + ay(c2x - 3z) + az(x + c3y + cAz). 

a) Determine the constants cls c2, and c3 if F is irrotational. 
b) Determine the constant c4 if F is also solenoidal. 
c) Determine the scalar potential function V whose negative gradient equals F. 



Static 
Electric Fields 

3—1 Introduction 

In Section 1-2 we mentioned that three essential steps are involved in constructing 
a deductive theory for the study of a scientific subject. They are: the definition of 
basic quantities, the development of rules of operation, and the postulation of funda
mental relations. We have defined the source and field quantities for the electromag
netic model in Chapter 1 and developed the fundamentals of vector algebra and 
vector calculus in Chapter 2. We are now ready to introduce the fundamental postu
lates for the study of source-field relationships in electrostatics. 

A field is a spatial distribution of a scalar or vector quantity, which may or may 
not be a function of time. An example of a scalar is the altitude of a location on a 
mountain relative to the sea level. It is a scalar, which is not a function of time if 
long-term erosion and earthquake effects are neglected. Various locations on the 
mountain have different altitudes, constituting an altitude field. The gradient of altitude 
is a vector that gives both the direction and the magnitude of the maximum rate of 
increase (the upward slope) of altitude. On a flat mountaintop or flat land the altitude 
is constant, and its gradient vanishes. The gravitational field of the earth, representing 
the force of gravity on a unit mass, is a vector field directed toward the center of the 
earth, having a magnitude depending on the altitude of the mass. Electric and mag
netic field intensities are vector fields. 

In electrostatics, electric charges (the sources) are at rest, and electric fields do 
not change with time. There are no magnetic fields; hence we deal with a relatively 
simple situation. After we have studied the behavior of static electric fields and 
mastered the techniques for solving electrostatic boundary-value problems, we will go 
on to the subject of magnetic fields and time-varying electromagnetic fields. Although 
electrostatics is relatively simple in the electromagnetics scheme of things, its mastery 
is fundamental to the understanding of more complicated electromagnetic models. 
Moreover, the explanation of many natural phenomena (such as lightning, corona, 
St. Elmo's fire, and grain explosion) and the principles of some important industrial 



3-1 Introduction 73 

applications (such as oscilloscope, ink-jet printer, xerography, and electret micro
phone) are based on electrostatics. Many articles on special applications of electro
statics appear in the literature, and a number of books on this subject have also been 
published.f 

The development of electrostatics in elementary physics usually begins with the 
experimental Coulomb's law (formulated in 1785) for the force between two point 
charges. This law states that the force between two charged bodies, qt and q2, that 
are very small in comparison with the distance of separation, R12, is proportional 
to the product of the charges and inversely proportional to the square of the distance, 
the direction of the force being along the line connecting the charges. In addition, 
Coulomb found that unlike charges attract and like charges repel each other. Using 
vector notation, Coulomb's law can be written mathematically as 

K 1 2 

where F12 is the vector force exerted by q1 on q2, aRl2 is a unit vector in the direction 
from qx to q2, and k is a proportionality constant depending on the medium and the 
system of units. Note that if qt and q2 are of the same sign (both positive or both 
negative), F12 is positive (repulsive); and if q1 and q2 are of opposite signs, F12 is 
negative (attractive). Electrostatics can proceed from Coulomb's law to define electric 
field intensity E, electric scalar potential V, and electric flux density D, and then lead 
to Gauss's law and other relations. This approach has been accepted as "logical," 
perhaps because it begins with an experimental law observed in a laboratory and 
not with some abstract postulates. 

We maintain, however, that Coulomb's law, though based on experimental evi
dence, is in fact also a postulate. Consider the two stipulations of Coulomb's law: 
that the charged bodies be very small in comparison with the distance of separation 
and that the force be inversely proportional to the square of the distance. The ques
tion arises regarding the first stipulation: How small must the charged bodies be in 
order to be considered "very small" in comparison with the distance? In practice the 
charged bodies cannot be of vanishing sizes (ideal point charges), and there is diffi
culty in determining the "true" distance between two bodies of finite dimensions. For 
given body sizes, the relative accuracy in distance measurements is better when the 
separation is larger. However, practical considerations (weakness of force, existence 
of extraneous charged bodies, etc.) restrict the usable distance of separation in the 
laboratory, and experimental inaccuracies cannot be entirely avoided. This leads to 
a more important question concerning the inverse-square relation of the second 

t A. Klinkenberg and J. L. van der Minne, Electrostatics in the Petroleum Industry, Elsevier, Amsterdam, 
1958. J. H. Dessauer and H. E. Clark, Xerography and Related Processes, Focal Press, London, 1965. A. D. 
Moore (Ed.), Electrostatics and Its Applications, John Wiley, New York, 1973. C. E. Jewett, Electrostatics 
in the Electronics Environment, John Wiley, New York, 1976. J.C. Crowley, Fundamentals of Applied 
Electrostatics, John Wiley, New York, 1986. 
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stipulation. Even if the charged bodies are of vanishing sizes, experimental measure
ments cannot be of infinite accuracy, no matter how skillful and careful an experi-
mentor is. How then was it possible for Coulomb to know that the force was exactly 
inversely proportional to the square (not the 2.000001th or the 1.999999th power) of 
the distance of separation? This question cannot be answered from an experimental 
viewpoint because it is not likely that experiments could have been accurate to the 
seventh place during Coulomb's time.1 We must therefore conclude that Coulomb's 
law is itself a postulate and that the exact relation stipulated by Eq. (3-1) is a law 
of nature discovered and assumed by Coulomb on the basis of his experiments of 
limited accuracy. 

Instead of following the historical development of electrostatics, we introduce the 
subject by postulating both the divergence and the curl of the electric field intensity 
in free space. From Helmholtz's theorem in Section 2-12 we know that a vector field 
is determined if its divergence and curl are specified. We derive Gauss's law and 
Coulomb's law from the divergence and curl relations, and we do not present them 
as separate postulates. The concept of scalar potential follows naturally from a vector 
identity. Field behaviors in material media will be studied and expressions for elec
trostatic energy and forces will be developed. 

3—2 Fundamental Postulates of Electrostatics in Free Space 

We start the study of electromagnetism with the consideration of electric fields due 
to stationary (static) electric charges in free space. Electrostatics in free space is the 
simplest special case of electromagnetics. We need to consider only one of the four 
fundamental vector field quantities of the electromagnetic model discussed in Section 
1 -2, namely, the electric field intensity E. Furthermore, only the permittivity of free 
space e0, of the three universal constants mentioned in Section 1-3 enters into our 
formulation. 

Electric field intensity is defined as the force per unit charge that a very small 
stationary test charge experiences when it is placed in a region where an electric field 
exists. That is, 

I F I 
(3-2) 

F 
E = lim — 

«^o q 
(V/m). 

The electric field intensity E is, then, proportional to and in the direction of the force 
F. If F is measured in newtons (N) and charge q in coulombs (C), then E is in new-
tons per coulomb (N/C), which is the same as volts per meter (V/m). The test charge 

T The exponent on the distance in Coulomb's law has been verified by an indirect experiment to be 2 to 
within one part in 1015. (See E. R. Williams, J. E. Faller, and H. A. Hall, Phys. Rev. Letters, vol. 26, 1971, 
p. 721.) 
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q, of course, cannot be zero in practice; as a matter of fact, it cannot be less than the 
charge on an electron. However, the finiteness of the test charge would not make the 
measured E differ appreciably from its calculated value if the test charge is small 
enough not to disturb the charge distribution of the source. An inverse relation of 
Eq. (3-2) gives the force F on a stationary charge q in an electric field E: 

(3-3) 

The two fundamental postulates of electrostatics in free space specify the diver
gence and curl of E. They are 

(3-4) 

and 

F = qE (N). 

tes of electrosta 

V-E = ^ 

V x E = 0. 

tic 

(3-5) 

In Eq. (3-4), p is the volume charge density of free charges (C/m3), and e0 is the 
permittivity of free space, a universal constant.1" Equation (3-5) asserts that static 
electric fields are irrotational, whereas Eq. (3-4) implies that a static electric field is 
not solenoidal unless p = 0. These two postulates are concise, simple, and independent 
of any coordinate system; and they can be used to derive all other relations, laws, 
and theorems in electrostatics! Such is the beauty of the deductive, axiomatic ap
proach. 

Equations (3-4) and (3-5) are point relations; that is, they hold at every point 
in space. They are referred to as the differential form of the postulates of electro
statics, since both divergence and curl operations involve spatial derivatives. In prac
tical applications we are usually interested in the total field of an aggregate or a 
distribution of charges. This is more conveniently obtained by an integral form of 
Eq. (3-4). Taking the volume integral of both sides of Eq. (3-4) over an arbitrary 
volume V, we have 

jy \-Edv = — jypdv. (3-6) 

In view of the divergence theorem in Eq. (2-115), Eq. (3-6) becomes 

(3-7) 

f The permittivity of free space e0 £ x 1(T9 (F/m). See Eq. (1-11). 
3 67c 
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where Q is the total charge contained in volume V bounded by surface S. Equation 
(3-7) is a form of Gauss's law, which states that the total outward flux of the elec
tric field intensity over any closed surface in free space is equal to the total charge 
enclosed in the surface divided by e0. Gauss's law is one of the most important re
lations in electrostatics. We will discuss it further in Section 3-4, along with illustrative 
examples. 

An integral form can also be obtained for the curl relation in Eq. (3-5) by inte
grating V x E over an open surface and invoking Stokes's theorem as expressed in 
Eq. (2-143). We have 

(3-8) 

The line integral is performed over a closed contour C bounding an arbitrary surface; 
hence C is itself arbitrary. As a matter of fact, the surface does not even enter into 
Eq. (3-8), which asserts that the scalar line integral of the static electric field intensity 
around any closed path vanishes. The scalar product E • d€ integrated over any path 
is the voltage along that path. Thus Eq. (3-8) is an expression of Kirchhoff's voltage 
law in circuit theory that the algebraic sum of voltage drops around any closed circuit 
is zero. This will be discussed again in Section 5-3. 

Equation (3-8) is another way of saying that E is irrotational (conservative). 
Referring to Fig. 3-1, we see that if the scalar line integral of E over the arbitrary 
closed contour CXC2 is zero, then 

or 

or 

f E-d€+ f E-dt = 0 
JCi JC2 

JPl > 2 
Along Cj Along C2 

r E-de= r E-de. 
JPl JPl JPl 

Along Cj 

(3-9) 

(3-10) 

(3-11) 

Along C2 

Pi 

CTT 
FIGURE 3-1 
An arbitrary contour. 
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Equation (3-11) says that the scalar line integral of the irrotational E field is inde
pendent of the path; it depends only on the end points. As we shall see in Section 
3-5, the integrals in Eq. (3-11) represent the work done by the electric field in 
moving a unit charge from point P1 to point P2; hence Eqs. (3-8) and (3-9) imply 
a statement of conservation of work or energy in an electrostatic field. 

The two fundamental postulates of electrostatics in free space are repeated below 
because they form the foundation upon which we build the structure of electrostatics. 

Postulates of Electrostatics in Free Space 

Differential Form Integral Form 

V-E = — 

Vx E = 0 

£ • * = « 

E • d£ = 0 

We consider these postulates, like the principle of conservation of charge, to be repre
sentations of laws of nature. In the following section we shall derive Coulomb's law. 

3—3 Coulomb's Law 

We consider the simplest possible electrostatic problem of a single point charge, q, at 
rest in a boundless free space. In order to find the electric field intensity due to q, 
we draw a hypothetical spherical surface of a radius R centered at q. Since a point 
charge has no preferred directions, its electric field must be everywhere radial and 
has the same intensity at all points on the spherical surface. Applying Eq. (3-7) to 
Fig. 3-2(a), we have 

or 

j>sE-ds = j>s(*REJd'*Rds = 

ER < | ds = ER(4nR2) = —. 

Therefore, 

(3-12) 

Equation (3-12) tells us that the electric field intensity of a positive point charge is 
in the outward radial direction and has a magnitude proportional to the charge 
and inversely proportional to the square of the distance from the charge. This is a 
very important basic formula in electrostatics. Using Eq. (2-139), we can verify that 
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(a) Point charge at the origin. (b) Point charge not at the origin. 

FIGURE 3-2 
Electric field intensity due to a point charge. 

V x E = 0 for the E given in Eq. (3-12). A flux-line graph for the electric field intensity 
of a positive point charge q will look like Fig. 2-25(b). 

If the charge q is not located at the origin of a chosen coordinate system, suitable 
changes should be made to the unit vector aR and the distance R to reflect the 
locations of the charge and of the point at which E is to be determined. Let the 
position vector of q be R' and that of a field point P be R, as shown in Fig. 3-2(b). 
Then, from Eq. (3-12), 

q EP = a qP 4n€0\R - R 12' 

where aqP is the unit vector drawn from q to P. Since 

R - R 
V = I R - R 

we have 

(3-13) 

(3-14) 

(3-15) 

EXAMPLE 3-1 Determine the electric field intensity at P( —0.2, 0, -2.3) due to a 
point charge of + 5 (nC) at g(0.2, 0.1, -2.5) in air. All dimensions are in meters. 

Solution The position vector for the field point P 

R = O P = - a x 0 . 2 - a z 2 . 3 . 

The position vector for the point charge Q is 

R' = OQ = ax0.2 + a„0.1 - az2.5. 
The difference is 

R - R = -ax0.4 - av0.1 + az0.2, 
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which has a magnitude 

|R _ R'| = [(-0.4)2 + (-0.1)2 + (0.2)2]1/2 = 0.458 (m). 

Substituting in Eq. (3-15), we obtain 

EP = 
1 \ q(R - R) 

4ne0J |R - R'| 
5 x 10 - 9 

= (9 x 1Q9) ^ 0 4 5 83 ( - M - 4 - a , a i + az°-2) 

= 214.5(-ax0.873 - a/).218 + az0.437) (V/m). 

The quantity within the parentheses is the unit vector aQP = (R — R')/|R — R'|, and 
EP has a magnitude of 214.5 (V/m). B » 

Note: The permittivity of air is essentially the same as that of the free space. The 
factor l/(47ie0) appears very frequently in electrostatics. From Eq. (1-11) we know 
that e0 = l/(c2fi0). But ^0 = An x 10 ~7 (H/m) in SI units; so 

1 _ ^ > c 2 _ i n _ 7 , 
4ne0 An 

= 10" 7 c 2 (m/F) (3-16) 

exactly. If we use the approximate value c = 3 x 108 (m/s), then l/(47ie0) = 9 x 
109 (m/F). 

When a point charge q2 is placed in the field of another point charge q1 at the 
origin, a force F 1 2 is experienced by q2 due to electric field intensity E1 2 of q1 at q2. 
Combining Eqs. (3-3) and (3-12), we have 

F 1 2 ^ 2 E 1 2 = a ^ ( N ) . (3-17) 

Equation (3-17) is a mathematical form of Coulomb's law already stated in Section 
3-1 in conjunction with Eq. (3-1). Note that the exponent on R is exactly 2, which 
is a consequence of the fundamental postulate Eq. (3-4). In SI units the propor
tionality constant k equals l/(47ie0), and the force is in newtons (N). 

EXAMPLE 3-2 A total charge Q is put on a thin spherical shell of radius b. Determine 
the electric field intensity at an arbitrary point inside the shell. 

Solution We shall solve this problem in two ways. 

a) At any point, such as P, inside the hollow shell shown in Fig. 3-3, an arbitrary 
hypothetical closed surface (a Gaussian surface) may be drawn, over which we 
apply Gauss's law, Eq. (3-7). Since no charge exists inside the shell and the 
surface is arbitrary, we conclude readily that E = 0 everywhere inside the shell. 
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FIGURE 3-3 
A charged shell (Example 3-2). 

b) Let us now examine the problem in more detail. Draw a pair of elementary cones 
of solid angle dQ with vertex at an arbitrary point P. The cones extend in both 
directions, intersecting the shell in areas ds1 and ds2 at distances rx and r2, re
spectively, from the point P. Since charge Q distributes uniformly over the spherical 
shell, there is a uniform surface charge density 

"• = £>■ (3-18) 
The magnitude of the electric field intensity at P due to charges on the ele
mentary surfaces ds± and ds2 is, from Eq. (3-12), 

ps fdsx ds2 

4ne0 I r\ r\ dZ = ^ r \ - d r - ^ Y (3-19) 

But the solid angle dQ equals 
,~ ds, ds-y 

dQ = —± cos a = —=- cos a. (3-20) 
r\ r\ 

Combining the expressions of dE and dQ, we find that 
ps ( dQ dQ \ n dE = -P- = 0. (3-21) 

47re0 \cos a cos ay 
Since the above result applies to every pair of elementary cones, we conclude 
that E = 0 everywhere inside the conducting shell, as before. s ^ 

It will be noted that if Coulomb's law as expressed in Eq. (3-12) and used in 
Eq. (3-19) was slightly different from an inverse-square relation, the substitution of 
Eq. (3-20), which is a geometrical relation, in Eq. (3-19) would not yield the result 
dE = 0. Consequently, the electric field intensity inside the shell would not vanish; 
indeed, it would vary with the location of the point P. Coulomb originally used a 
torsion balance to conduct his experiments, which were necessarily of limited accuracy. 
Nevertheless, he was brilliant enough to postulate the inverse-square law. Many 



3-3 Coulomb's Law 81 

scientists subsequently made use of the vanishing field inside a spherical shell illus
trated in this example to verify the inverse-square law. The field inside a charged 
shell, if it existed, could be detected to a very high accuracy by a probe through a 
small hole in the shell. 

EXAMPLE 3-3 The electrostatic deflection system of a cathode-ray oscilloscope is 
depicted in Fig. 3-4. Electrons from a heated cathode are given an initial velocity 
u0 = azw0 by a positively charged anode (not shown). The electrons enter at z = 0 
into a region of deflection plates where a uniform electric field Ed = — nyEd is main
tained over a width w. Ignoring gravitational effects, find the vertical deflection of 
the electrons on the fluorescent screen at z — L. 

Solution Since there is no force in the z-direction in the z > 0 region, the horizontal 
velocity u0 is maintained. The field Ed exerts a force on the electrons each carrying 
a charge — e, causing a deflection in the y-direction: 

F = (-e)Ed = ayeEd. 

From Newton's second law of motion in the vertical direction we have 

du 
m - = eEd, 

where m is the mass of an electron. Integrating both sides, we obtain 

dy _ e 
dt m 

uy = ~n = — EdU 

where the constant of integration is set to zero because uy = 0 at t = 0. Integrating 
again, we have 

Screen 

FIGURE 3-4 
Electrostatic deflection system of a cathode-ray oscilloscope (Example 3-3) 



82 3 Static Electric Fields 

The constant of integration is again zero because y = 0 at t = 0. Note that the elec
trons have a parabolic trajectory between the deflection plates. At the exit from the 
deflection plates, t = w/u0, 

1m \u0j 
and 

w 
*y\ Uylt 

eEd iw 
m \u 

When the electrons reach the screen, they have traveled a further horizontal distance 
of (L - w) which takes (L - w)/u0 seconds. During that time there is an additional 
vertical deflection 

, !h — w\ eEd w(L — w) 
d2 = uyl' m 

Hence the deflection at the screen is 

d0 = d-L + d2 
eEd i w 

wU~2 mu% 

Ink-jet printers used in computer output, like cathode-ray oscilloscopes, are de
vices based on the principle of electrostatic deflection of a stream of charged particles. 
Minute droplets of ink are forced through a vibrating nozzle controlled by a piezo
electric transducer. The output of the computer imparts variable amounts of charges 
on the ink droplets, which then pass through a pair of deflection plates where a 
uniform static electric field exists. The amount of droplet deflection depends on the 
charge it carries, causing the ink jet to strike the print surface and form an image as 
the print head moves in a horizontal direction. 

3-3.1 ELECTRIC FIELD DUE TO A SYSTEM OF DISCRETE CHARGES 

Suppose an electrostatic field is created by a group of n discrete point charges qu 
q2,... ,q„ located at different positions. Since electric field intensity is a linear func
tion of (proportional to) aRq/R2, the principle of superposition applies, and the total 
E field at a point is the vector sum of the fields caused by all the individual charges. 
From Eq. (3-15) we can write the electric intensity at a field point whose position 
vector is R as 

(3-22) 

Although Eq. (3-22) is a succinct expression, it is somewhat inconvenient to use be
cause of the need to add vectors of different magnitudes and directions. 
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Let us consider the simple case of an electric dipole that consists of a pair of 
equal and opposite charges +q and -q, separated by a small distance, d, as shown 
in Fig. 3-5. Let the center of the dipole coincide with the origin of a spherical coor
dinate system. Then the E field at the point P is the sum of the contributions due to 
+ q and — q. Thus, 

E = q 
4ne0 j 

' - ! 

M 
3 

R*'l 
- r j 

(3-23) 

The first term on the right side of Eq. (3-23) can be simplified if d « R. We write 

'-i 
- 3 

- J ■ - 5 )] 
- 3 / 2 

-[.■-.-4] ^2-1-3/2 

(3-24) 

n J 3 R d 

where the binomial expansion has been used and all terms containing the second 
and higher powers of {d/R) have been neglected. Similarly, for the second term on 
the right side of Eq. (3-23) we have 

■ ♦ ; 
2 R' 

Substitution of Eqs. (3-24) and (3-25) in Eq. (3-23) leads to 

q I . K -d 
E ^ 4ne0R: ['¥--']■ 

(3-25) 

(3-26) 

d 

-q* 

R - d/2„ 

RJ 

R + d/2 
FIGURE 3-5 
Electric field of a dipole. 
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The derivation and interpretation of Eq. (3-26) require the manipulation of vec
tor quantities. We can appreciate that determining the electric field caused by three 
or more discrete charges will be even more tedious. In Section 3-5 we will introduce 
the concept of a scalar electric potential, with which the electric field intensity caused 
by a distribution of charges can be found more easily. 

The electric dipole is an important entity in the study of the electric field in di
electric media. We define the product of the charge q and the vector d (going from 
— q to + q) as the electric dipole moment, p: 

p = ^d. 

Equation (3-26) can then be rewritten as 

E = 
1 

A%e0R- R2 R - p 

(3-27) 

(3-28) 

where the approximate sign (~) over the equal sign has been left out for simplicity. 
If the dipole lies along the z-axis as in Fig. 3-5, then (see Eq. 2-77) 

p = azp = p(aR cos 6 — ae sin 0), 
R • p = Rp cos 6, 

and Eq. (3-28) becomes 

E = 
4ne0R: (aK2 cos 6 + ae sin 0) (V/m). 

(3-29) 
(3-30) 

(3-31) 

Equation (3-31) gives the electric field intensity of an electric dipole in spherical co
ordinates. We see that E of a dipole is inversely proportional to the cube of the dis
tance R. This is reasonable because as R increases, the fields due to the closely spaced 
+ q and — q tend to cancel each other more completely, thus decreasing more rapidly 
than that of a single point charge. 

3-3.2 ELECTRIC FIELD DUE TO A CONTINUOUS DISTRIBUTION OF CHARGE 

The electric field caused by a continuous distribution of charge can be obtained by 
integrating (superposing) the contribution of an element of charge over the charge 
distribution. Refer to Fig. 3-6, where a volume charge distribution is shown. The 
volume charge density p (C/m3) is a function of the coordinates. Since a differential 
element of charge behaves like a point charge, the contribution of the charge p dv' 
in a differential volume element dv' to the electric field intensity at the field point P is 

dE = aR 
pdv' 

4ne0R: (3-32) 
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FIGURE 3-6 
Electric field due to a continuous charge distribution. 

We have 

or, since a# = R/R, 

\E = 4k~Jya«Wdv' (V/m), 

E = ii"̂ ' (V/m). 

(3-33) 

(3-34) 

Except for some especially simple cases, the vector triple integral in Eq. (3-33) or 
Eq. (3-34) is difficult to carry out because, in general, all three quantities in the inte
grand (aR, p, and R) change with the location of the differential volume dv'. 

If the charge is distributed on a surface with a surface charge density ps (C/m2), 
then the integration is to be carried out over the surface (not necessarily flat). Thus, 

For a line charge we have 

E = -1— f aR%ds' 
47T€0 JS' R R2 

(V/m). 

ve 

4ne0 h' R R2 (V/m), 

(3-35) 

(3-36) 

where p£ (C/m) is the line charge density, and L the line (not necessarily straight) 
along which the charge is distributed. 

EXAMPLE 3-4 Determine the electric field intensity of an infinitely long, straight, 
line charge of a uniform density p£ in air. 
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*dEr 

dEr dE 

FIGURE 3-7 
An infinitely long, straight, line charge. 

Solution Let us assume that the line charge lies along the z'-axis as shown in Fig. 
3-7. (We are perfectly free to do this because the field obviously does not depend 
on how we designate the line. It is an accepted convention to use primed coordinates 
for source points and unprimed coordinates for field points when there is a possibility 
of confusion.) The problem asks us to find the electric field intensity at a point P, 
which is at a distance r from the line. Since the problem has a cylindrical symmetry 
(that is, the electric field is independent of the azimuth angle </>), it would be most 
convenient to work with cylindrical coordinates. We rewrite Eq. (3-36) as 

(3-37) 

For the problem at hand, pe is constant, and a line element d£' — dz' is chosen to 
be at an arbitrary distance z' from the origin. It is most important to remember that 
R is the distance vector directed from the source to the field point, not the other way 
around. We have 

R = arr - azz'. (3-38) 

The electric field, dE, due to the differential line charge element p{ <M' = pe dz' is 

pe&z' a r r - a z z ' _ 
(3-39) 

dE = 
4n€0 (r2 + z'2)3/2 

= ardEr + azdEz, 
where 

dEr = 
per dz' 

4n€0{r2 + z'2fl2 (3-39a) 
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and 

dE = 
— pez' dz' 

4ne0{r2 + z'2)3'2 
(3-39b) 

In Eq. (3-39) we have decomposed dE into its components in the ar and az directions. 
It is easy to see that for every pedz' at + z1 there is a charge element p£dz' at - z ' , 
which will produce a dE with components dEr and — dEz. Hence the az components 
will cancel in the integration process, and we only need to integrate the dEr in Eq. 
(3-39a): 

pfr foo dz' 
4ne0J-*(r2 + z'2f12 

or 

(3-40) 

Equation (3-40) is an important result for an infinite line charge. Of course, no phys
ical line charge is infinitely long; nevertheless, Eq. (3-40) gives the approximate E 
field of a long straight line charge at a point close to the line charge. 

3—4 Gauss's Law and Applications 

Gauss's law follows directly from the divergence postulate of electrostatics, Eq. (3-4), 
by the application of the divergence theorem. It was derived in Section 3-2 as Eq. 
(3-7) and is repeated here on account of its importance: 

(3-41) 

Gauss's law asserts that the total outward flux of the E-field over any closed surface 
in free space is equal to the total charge enclosed in the surface divided by €0. We note that 
the surface S can be any hypothetical (mathematical) closed surface chosen for 
convenience; it does not have to be, and usually is not, a physical surface. 

Gauss's law is particularly useful in determining the E-field of charge distributions 
with some symmetry conditions, such that the normal component of the electric field 
intensity is constant over an enclosed surface. In such cases the surface integral on the 
left side of Eq. (3-41) would be very easy to evaluate, and Gauss's law would be a 
much more efficient way for finding the electric field intensity than Eqs. (3-33) through 
(3-37). On the other hand, when symmetry conditions do not exist, Gauss's law 
would not be of much help. The essence of applying Gauss's law lies first in the rec
ognition of symmetry conditions and second in the suitable choice of a surface over 
which the normal component of E resulting from a given charge distribution is a 
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constant. Such a surface is referred to as a Gaussian surface. This basic principle was 
used to obtain Eq. (3-12) for a point charge that possesses spherical symmetry; con
sequently, a proper Gaussian surface is the surface of a sphere centered at the point 
charge. Gauss's law could not help in the derivation of Eq. (3-26) or (3-31) for an 
electric dipole, since a surface about a separated pair of equal and opposite charges 
over which the normal component of E remains constant was not known. 

EXAMPLE 3-5 Use Gauss's law to determine the electric field intensity of an infi
nitely long, straight, line charge of a uniform density p€ in air. 

Solution This problem was solved in Example 3-4 by using Eq. (3-36). Since the 
line charge is infinitely long, the resultant E field must be radial and perpendicular 
to the line charge (E = ar£r), and a component of E along the line cannot exist. With 
the obvious cylindrical symmetry we construct a cylindrical Gaussian surface of a 
radius r and an arbitrary length L with the line charge as its axis, as shown in Fig. 
3-8. On this surface, Er is constant, and ds = 2irrd$dz (from Eq. 2-53a). We have 

(j)s E • ds = JQ
L ^ Err d(j) dz = 2%rLEr. 

There is no contribution from the top or the bottom face of the cylinder because on 
the top face ds = azr dr dcj) but E has no z-component there, making E • ds = 0. Sim
ilarly for the bottom face. The total charge enclosed in the cylinder is Q = peL. Sub
stitution into Eq. (3-41) gives us immediately 

2%rLEr = 
PeL 

Cylindrical 
Gaussian 

surface 

Infinitely long 
uniform line 
charge, pp 

FIGURE 3-8 
Applying Gauss's law to an infinitely long line charge (Example 3-5). 
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or 

E = a r£ r = a r - ^ -
2n€0r 

This result is, of course, the same as that given in Eq. (3-40), but it is obtained here 
in a much simpler way. We note that the length L of the cylindrical Gaussian surface 
does not appear in the final expression; hence we could have chosen a cylinder of a 
unit length. mm 

EXAMPLE 3-6 Determine the electric field intensity of an infinite planar charge 
with a uniform surface charge density ps. 

Solution It is clear that the E field caused by a charged sheet of an infinite extent 
is normal to the sheet. Equation (3-35) could be used to find E, but this would in
volve a double integration between infinite limits of a general expression of l/R2. 
Gauss's law can be used to much advantage here. 

We choose as the Gaussian surface a rectangular box with top and bottom faces 
of an arbitrary area A equidistant from the planar charge, as shown in Fig. 3-9. The 
sides of the box are perpendicular to the charged sheet. If the charged sheet coincides 
with the xy-plane, then on the top face, 

E-d& = (*zEg)-(agds) = Egds. 
On the bottom face, 

E-ds = (-azEz)-(-azds) = Ezds. 

Since there is no contribution from the side faces, we have 

<jj> E • ds = 1EZ j A ds = 2EZA. 

The total charge enclosed in the box is Q = psA. Therefore, 

2EZA = P-A, 

surface "j- -^ 
Area ,4 a 

/ 
Infinite uniform 
surface charge, ps 

FIGURE 3-9 
Applying Gauss's law to an infinite planar charge (Example 3-6). 
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from which we obtain 

and 

(3-42a) 

(3-42b) 

Of course, the charged sheet may not coincide with the xy-plane (in which case we 
do not speak in terms of above and below the plane), but the E field always points 
away from the sheet if ps is positive. It is obvious that the Gaussian surface could 
have been a pillbox of any shape, not necessarily rectangular. ma 

The lighting scheme of an office or a classroom may consist of incandescent 
bulbs, long fluorescent tubes, or ceiling panel lights. These correspond roughly to 
point sources, line sources, and planar sources, respectively. From Eqs. (3-12), (3-40), 
and (3-42) we can estimate that light intensity will fall off rapidly as the square of 
the distance from the source in the case of incandescent bulbs, less rapidly as the 
first power of the distance for long fluorescent tubes, and not at all for ceiling panel 
lights. 

EXAMPLE 3-7 Determine the E field caused by a spherical cloud of electrons with 
a volume charge density p = -p0 for 0 < R < b (both p0 and b are positive) and 
p = 0 for R > b. 
Solution First we recognize that the given source condition has spherical symmetry. 
The proper Gaussian surfaces must therefore be concentric spherical surfaces. We 
must find the E field in two regions. Refer to Fig. 3-10. 

a) 0 < R < b 
A hypothetical spherical Gaussian surface St with R < b is constructed within 
the electron cloud. On this surface, E is radial and has a constant magnitude: 

E = 2LRER, ds = aR ds. 

The total outward E flux is 
& E • ds = ER j s ds = ER4nR2. 

The total charge enclosed within the Gaussian surface is 

Q = jrf>dv 
An - P . J > - , , £ * . 
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/ Electron 
cloud 

FIGURE 3-10 
Electric field intensity of a spherical electron cloud (Example 3-7). 

Substitution into Eq. (3-7) yields 

0 < R < b. 

We see that within the uniform electron cloud the E field is directed toward the 
center and has a magnitude proportional to the distance from the center. 

b) R>b 
For this case we construct a spherical Gaussian surface S0 with R> b outside 
the electron cloud. We obtain the same expression for jSo E • ds as in case (a). 
The total charge enclosed is 

Consequently, 

E = - a * Pob3 

3e0i?2 R>b, 

which follows the inverse square law and could have been obtained directly from 
Eq. (3-12). We observe that outside the charged cloud the E field is exactly the 
same as though the total charge is concentrated on a single point charge at the 
center. This is true, in general, for a spherically symmetrical charged region even 
though p is a function of R. n 
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The variation of ER versus R is plotted in Fig. 3-10. Note that the formal solution 
of this problem requires only a few lines. If Gauss's law is not used, it is necessary 
(1) to choose a differential volume element arbitrarily located in the electron cloud, 
(2) to express its vector distance R to a field point in a chosen coordinate system, 
and (3) to perform a triple integration as indicated in Eq. (3-33). This is a hopelessly 
involved process. The moral is: Try to apply Gauss's law if symmetry conditions exist 
for the given charge distribution. 

3™5 Electric Potential 

In connection with the null identity in Eq. (2-145) we noted that a curl-free vector 
field could always be expressed as the gradient of a scalar field. This induces us to 
define a scalar electric potential V such that 

E = -\V (3-43) 

because scalar quantities are easier to handle than vector quantities. If we can deter
mine V more easily, then E can be found by a gradient operation, which is a straight
forward process in an orthogonal coordinate system. The reason for the inclusion of 
a negative sign in Eq. (3-43) will be explained presently. 

Electric potential does have physical significance, and it is related to the work 
done in carrying a charge from one point to another. In Section 3-2 we defined the 
electric field intensity as the force acting on a unit test charge. Therefore in moving 
a unit charge from point P1 to point P2 in an electric field, work must be done 
against the field and is equal to 

- = - L V'd€ (J/CorV). 
a Jpi 

(3-44) 

Many paths may be followed in going from P1 to P2. Two such paths are drawn in 
Fig. 3-11. Since the path between Px and P2 is not specified in Eq. (3-44), the 

FIGURE 3-11 
Two paths leading from P1 to P2 in an electric field. 
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question naturally arises, how does the work depend on the path taken? A little 
thought will lead us to conclude that W/q in Eq. (3-44) should not depend on the 
path; if it did, one would be able to go from P1 to P2 along a path for which W is 
smaller and then to come back to Px along another path, achieving a net gain in 
work or energy. This would be contrary to the principle of conservation of energy. 
We have already alluded to the path-independent nature of the scalar line integral 
of the irrotational (conservative) E field when we discussed Eq. (3-8). 

Analogous to the concept of potential energy in mechanics, Eq. (3-44) represents 
the difference in electric potential energy of a unit charge between point P2 and point 
Pv Denoting the electric potential energy per unit charge by V, the electric potential, 
we have 

(3-45) 

Mathematically, Eq. (3-45) can be obtained by substituting Eq. (3-43) in Eq. (3-44). 
Thus, in view of Eq. (2-88), 

r;E^=r>FHa^) 
j>=* Vv 

What we have defined in Eq. (3-45) is a potential difference (electrostatic voltage) 
between points P2 and P^ It makes no more sense to talk about the absolute potential 
of a point than about the absolute phase of a phasor or the absolute altitude of a 
geographical location; a reference zero-potential point, a reference zero phase (usually 
at t = 0), or a reference zero altitude (usually at sea level) must first be specified. In 
most (but not all) cases the zero-potential point is taken at infinity. When the reference 
zero-potential point is not at infinity, it should be specifically stated. 

We want to make two more points about Eq. (3-43). First, the inclusion of the 
negative sign is necessary in order to conform with the convention that in going 
against the E field the electric potential V increases. For instance, when a d-c battery 
of a voltage V0 is connected between two parallel conducting plates, as in Fig. 3-12, 
positive and negative charges cumulate on the top and bottom plates, respectively. 
The E field is directed from positive to negative charges, while the potential increases 
in the opposite direction. Second, we know from Section 2-6, when we defined the 
gradient of a scalar field, that the direction of \V is normal to the surfaces of constant 

+ + + + + + + + + 

"•-=- H N I 
| / / / / / / / / / / / / / / / / / ' ,V//Z3 

Direction of 
increasing V 

FIGURE 3-12 
Relative directions of E and increasing V. 
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V. Hence if we use directed field lines or streamlines to indicate the direction of the 
E field, they are everywhere perpendicular to equipotential lines and equipotential 
surfaces. 

3-5.1 ELECTRIC POTENTIAL DUE TO A CHARGE DISTRIBUTION 

The electric potential of a point at a distance R from a point charge q referred to 
that at infinity can be obtained readily from Eq. (3-45): 

--£(■■ 
which gives 

4n€0R' 
•(nRdR), (3-46) 

(3-47) 

This is a scalar quantity and depends on, besides q, only the distance R. The potential 
difference between any two points P2 and Px at distances R2 and Ru respectively, 
from q is 

'»= "*-"'.=dt (£-£} <3-48) 
This result may appear a little surprising at first, since P2 and Px may not lie on 
the same radial line through q, as illustrated in Fig. 3-13. However, the concentric 
circles (spheres) passing through P2 and P1 are equipotential lines (surfaces), and 
Vp2 — VPl is the same as VPl — VPy From the point of view of Eq. (3-45) we can 
choose the path of integration from Px to P 3 and then from P 3 to P2. No work is 
done from PA to P 3 because F is perpendicular to d€ = a ^ d(j) along the circular 
path (E-dt = 0). 

The electric potential at R due to a system of n discrete point charges qlt q2,..., 
qn located at R'l9 R ' 2 , . . . , RJ, is, by superposition, the sum of the potentials due to 

FIGURE 3-13 
Path of integration about a point charge. 
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the individual charges: 

(3-49) 

Since this is a scalar sum, it is, in general, easier to determine E by taking the negative 
gradient of V than from the vector sum in Eq. (3-22) directly. 

As an example, let us again consider an electric dipole consisting of charges +q 
and — q with a small separation d. The distances from the charges to a field point 
P are designated R+ and #_ , as shown in Fig. 3-14. The potential at P can be 
written down directly: 

q ( 1 1 
V = 

If d « R, we have 
4n€0 \R+ R. 

(3-50) 

and 

1 
*7 
i 

R~I 

R — - cos 
2 

R + ~ cos 

1 1 / d 
= R ' +2RC°S 

- l 

s n i 2# cos 

Substitution of Eqs. (3-51) and (3-52) in Eq. (3-50) gives 

(3-51) 

(3-52) 

or 

V 

T/ qd cos 6 
~ 4ne0R2 

P-a* 
4ne0R2 (V), 

(3-53a) 

(3-53b) 

where p = f̂d. (The "approximate" sign (~) has been dropped for simplicity.) 

d 
-q 

FIGURE 3-14 
An electric dipole. 
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The E field can be obtained from — V V. In spherical coordinates we have 

dR ° Rd9 
(3-54) 

P 
——3 (aR2 cos 9 + ae sin 9). 4ne0R 

Equation (3-54) is the same as Eq. (3-31) but has been obtained by a simpler proce
dure without manipulating position vectors. 

EXAMPLE 3-8 Make a two-dimensional sketch of the equipotential lines and the 
electric field lines for an electric dipole. 

Solution The equation of an equipotential surface of a charge distribution is ob
tained by setting the expression for V to equal a constant. Since q, d, and e0 in Eq. 
(3-53a) for an electric dipole are fixed quantities, a constant V requires a constant 
ratio (cos 9/R2). Hence the equation for an equipotential surface is 

R = Cyjcos 9, (3-55) 

where cv is a constant. By plotting R versus 9 for various values of cv we draw the 
solid equipotential lines in Fig. 3-15. In the range 0 < 9 < n/2, V is positive; R is 
maximum at 9 = 0 and zero at 9 = 90°. A mirror image is obtained in the range 
n/2 < 9 < n where V is negative. 

The electric field lines or streamlines represent the direction of the E field in 
space. We set 

d€ = /cE, (3-56) 

where k is a constant. In spherical coordinates, Eq. (3-56) becomes (see Eq. 2-66) 

a* dR + agR d9 + a^R sin 9 d<j> = k(aRER + aeEe + a ^ ) , (3-57) 

which can be written 
dR Rd9 Rsin9d(l) 
E~ = 1T = E ( } 

For the electric dipole in Fig. 3-15 there is no E^ component, and 

dR _Rd9 
2 cos 6 sin 9 

or 
dR 2 d(sin 9) 

~R~ sin 9 

Integrating Eq. (3-59), we obtain 
R = cE sin2 9, (3-60) 

(3-59) 



3-5 Electric Potential 97 

\ 

\ 

/ 

FIGURE 3-15 
Equipotential and electric field lines of an electric dipole (Example 3-8). 

where cE is a constant. The electric field lines are drawn as dashed lines in Fig. 3-15. 
They are rotationally symmetrical about the z-axis (independent of <£) and are 
everywhere normal to the equipotential lines. mm 

The electric potential due to a continuous distribution of charge confined in a 
given region is obtained by integrating the contribution of an element of charge over 
the charged region. We have, for a volume charge distribution, 

V = J— f L dv' (V). 
4ne0 Jv R v ; (3-61) 
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For a surface charge distribution, 

and for a line charge, 

4ne0 Js' R (V); 

4ne0 JL1 R (V). 

(3-62) 

(3-63) 

We note here again that the integrals in Eqs. (3-61) and (3-62) represent integrations 
in three and two dimensions respectively. 

EXAMPLE 3-9 Obtain a formula for the electric field intensity on the axis of a 
circular disk of radius b that carries a uniform surface charge density ps. 

Solution Although the disk has circular symmetry, we cannot visualize a surface 
around it over which the normal component of E has a constant magnitude; hence 
Gauss's law is not useful for the solution of this problem. We use Eq. (3-62). Working 
with cylindrical coordinates indicated in Fig. 3-16, we have 

ds' = r'dr'd(t)' 
and 

R = Jz2 + r'2. 

The electric potential at the point P(0, 0, z) referring to the point at infinity is 

Ps V = 
AneQ Jo Jo (z2 + r'2)1'2 dr'dy 

= TLfc2 + b2)ll2-\z\]. 
(3-64) 

p(0, 0, z) 

FIGURE 3-16 
A uniformly charged disk (Example 3-9) 
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Therefore, 
8V 

E = - V K = - a z — 
oz 

a z ^ [ l - z ( z 2 + b 2 ) - n z > 0 

- a z ^ [ l + z ( z 2 0 2 r 1 / 2 ] , z < 0 < ze0 

(3-65a) 

(3-65b) 

The determination of E field at an off-axis point would be a much more difficult 
problem. Do you know why? 

For very large z, it is convenient to expand the second term in Eqs. (3-65a) and 
(3-65b) into a binomial series and neglect the second and all higher powers of the 
ratio {b2/z2). We have 

/ b2Ym b2 

* » + * > ) - " ' = ( i + ? ) s i - - 2 . 

Substituting this into Eqs. (3-65a) and (3-65b), we obtain 

inb2
Ps) E = a, 4ne0zz 

Q 

— a 

4ne0z2 

Q 
4ne0z 2 ' 

z > 0 

z < 0 , 

(3-66a) 

(3-66b) 

where Q is the total charge on the disk. Hence, when the point of observation is very 
far away from the charged disk, the E field approximately follows the inverse square 
law as if the total charge were concentrated at a point. ^ 

EXAMPLE 3-10 Obtain a formula for the electric field intensity along the axis of 
a uniform line charge of length L. The uniform line-charge density is pe. 

Solution For an infinitely long line charge, the E field can be determined readily by 
applying Gauss's law, as in the solution to Example 3-5. However, for a line charge 
of finite length, as shown in Fig. 3-17, we cannot construct a Gaussian surface over 
which E • ds is constant. Gauss's law is therefore not useful here. 

Instead, we use Eq. (3-63) by taking an element of charge <M' = dz' at z'. The 
distance R from the charge element to the point P(0, 0, z) along the axis of the line 
charge is 

R = (z-z'), z > | -

Here it is extremely important to distinguish the position of the field point (un-
primed coordinates) from the position of the source point (primed coordinates). We 
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z - z 

O 

P(0, 0, z) 

.dz L/2 

L t 
L/2 

I 

+y 

FIGURE 3-17 
A finite line charge of a uniform line density pe (Example 3-10). 

integrate over the source region: 

V = 
4ne0 

Pe 
47l€n 

!-

In 

L/2 dz' 
W z-z' 
~z + (L/2) 
z - (L/2) 

L 
Z>Y 

(3-67) 

The E field at P is the negative gradient of V with respect to the unprimed field 
coordinates. For this problem, 

dV _ p,L L 
E ~ " a z ^ ~ a z 4 7 r e 0 [ z 2 - ( L / 2 ) 2 ] ' Z>Y (3-68) 

The preceding two examples illustrate the procedure for determining E by first 
finding V when Gauss's law cannot be conveniently applied. However, we emphasize 
that if symmetry conditions exist such that a Gaussian surface can be constructed over 
which E • ds is constant, it is always easier to determine E directly. The potential V, 
if desired, may be obtained from E by integration. 

3—6 Conductors in Static Electric Field 

So far we have discussed only the electric field of stationary charge distributions in 
free space or air. We now examine the field behavior in material media. In general, 
we classify materials according to their electrical properties into three types: conduc
tors, semiconductors, and insulators (or dielectrics). In terms of the crude atomic 
model of an atom consisting of a positively charged nucleus with orbiting electrons, 
the electrons in the outermost shells of the atoms of conductors are very loosely held 
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and migrate easily from one atom to another. Most metals belong to this group. The 
electrons in the atoms of insulators or dielectrics, however, are confined to their 
orbits; they cannot be liberated in normal circumstances, even by the application of 
an external electric field. The electrical properties of semiconductors fall between 
those of conductors and insulators in that they possess a relatively small number of 
freely movable charges. 

In terms of the band theory of solids we find that there are allowed energy bands 
for electrons, each band consisting of many closely spaced, discrete energy states. Be
tween these energy bands there may be forbidden regions or gaps where no electrons 
of the solid's atom can reside. Conductors have an upper energy band partially filled 
with electrons or an upper pair of overlapping bands that are partially filled so that 
the electrons in these bands can move from one to another with only a small change 
in energy. Insulators or dielectrics are materials with a completely filled upper band, 
so conduction could not normally occur because of the existence of a large energy 
gap to the next higher band. If the energy gap of the forbidden region is relatively 
small, small amounts of external energy may be sufficient to excite the electrons in 
the filled upper band to jump into the next band, causing conduction. Such materials 
are semiconductors. 

The macroscopic electrical property of a material medium is characterized by a 
constitutive parameter called conductivity, which we will define in Chapter 5. The 
definition of conductivity is not important in this chapter because we are not dealing 
with current flow and are now interested only in the behavior of static electric fields 
in material media. In this section we examine the electric field and charge distri
bution both inside the bulk and on the surface of a conductor. 

Assume for the present that some positive (or negative) charges are introduced 
in the interior of a conductor. An electric field will be set up in the conductor, the 
field exerting a force on the charges and making them move away from one another. 
This movement will continue until all the charges reach the conductor surface and 
redistribute themselves in such a way that both the charge and the field inside vanish. 
Hence, 

Inside a Conductor 
(Under Static Conditions) 

P = 0 
E = 0 

(3-69) 
(3-70) 

When there is no charge in the interior of a conductor (p = 0), E must be zero be
cause, according to Gauss's law, the total outward electric flux through any closed 
surface constructed inside the conductor must vanish. 

The charge distribution on the surface of a conductor depends on the shape of 
the surface. Obviously, the charges would not be in a state of equilibrium if there 
were a tangential component of the electric field intensity that produces a tangential 
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0) 

FIGURE 3-18 
A conductor-free space interface. 

force and moves the charges. Therefore, under static conditions the E field on a 
conductor surface is everywhere normal to the surface. In other words, the surface of a 
conductor is an equipotential surface under static conditions. As a matter of fact, 
since E = 0 everywhere inside a conductor, the whole conductor has the same elec
trostatic potential. A finite time is required for the charges to redistribute on a con
ductor surface and reach the equilibrium state. This time depends on the conductivity 
of the material. For a good conductor such as copper this time is of the order of 
10"1 9 (s), a very brief transient. (This point will be elaborated in Section 5-4.) 

Figure 3-18 shows an interface between a conductor and free space. Consider 
the contour abcda, which has width ab = cd - Aw and height be = da — Ah. Sides 
ab and cd are parallel to the interface. Applying Eq. (3-8),1" letting Ah -► 0, and 
noting that E in a conductor is zero, we obtain immediately 

& E-de = EtAw = 0 
Jabcda 

or 
Et = 0, (3-71) 

which says that the tangential component of the E field on a conductor surface is zero. 
In order to find En, the normal component of E at the surface of the conductor, 
we construct a Gaussian surface in the form of a thin pillbox with the top face in 
free space and the bottom face in the conductor where E = 0. Using Eq. (3-7), we 
obtain 

<£)E-ds = EHAS = ^ Js e0 

or 

En = f±. (3-72) 

We assume that Eqs. (3-7) and (3-8) are valid for regions containing discontinuous media. 

Free space 

/£^--*<^V"~~^ Conductor (E = 
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Hence, the normal component of the E field at a conductor!free space boundary is 
equal to the surface charge density on the conductor divided by the permittivity of free 
space. Summarizing the boundary conditions at the conductor surface, we have 

Boundary Conditions 
at a Conductor/Free Space Interface 

Et = 0 

E„^ 

(3-71) 

(3-72) 

When an uncharged conductor is placed in a static electric field, the external 
field will cause loosely held electrons inside the conductor to move in a direction 
opposite to that of the field and cause net positive charges to move in the direction 
of the field. These induced free charges will distribute on the conductor surface and 
create an induced field in such a way that they cancel the external field both inside 
the conductor and tangent to its surface. When the surface charge distribution reaches 
an equilibrium, all four relations, Eqs. (3-69) through (3-72), will hold; and the 
conductor is again an equipotential body. 

EXAMPLE 3-11 A positive point charge Q is at the center of a spherical conducting 
shell of an inner radius Rt and an outer radius R0. Determine E and V as functions 
of the radial distance R. 

Solution The geometry of the problem is shown in Fig. 3 - 19(a). Since there is spheri
cal symmetry, it is simplest to use Gauss's law to determine E and then find V by in
tegration. There are three distinct regions: (a) R > R0, (b) Rt < R < R0, and (c) R < R^ 
Suitable spherical Gaussian surfaces will be constructed in these regions. Obviously, 
E = &RER in all three regions. 

a) R> R0 (Gaussian surface Sx): 

E-ds = ERAnR2 = s K1
 e 

Q 

or 
ERI = 

Q (3-73) 4ne0R2 

The E field is the same as that of a point charge Q without the presence of the 
shell. The potential referring to the point at infinity is 

Q Vi=-fRJER1)dR = (3-74) 4ne0R 
b) Ri<R<R0 (Gaussian surface S2): Because of Eq. (3-70), we know that 

ER2 = 0. (3-75) 
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Conducting 
shell 

ER 

0 Ri R0 

(b) 

FIGURE 3-19 
Electric field intensity and potential variations of a point charge + Q at the center 
of a conducting shell (Example 3-11). 

Since p = 0 in the conducting shell and since the total charge enclosed in surface 
S2 must be zero, an amount of negative charge equal to — Q must be induced 
on the inner shell surface at R = Rt. (This also means that an amount of positive 
charge equal to +Q is induced on the outer shell surface at R = R0.) The con
ducting shell is an equipotential body. Hence, 

Q K, = K (3-76) 

c) R < Rt (Gaussian surface S3): Application of Gauss's law yields the same formula 
for ER3 as ERl in Eq. (3-73) for the first region: 

Q £ i » = JR3 4ne0R: (3-77) 

The potential in this region is 

V3=-JER3dR + C = Q + c, 4n€0R 
where the integration constant C is determined by requiring V3 at R = Rt to 
equal V2 in Eq. (3-76). We have 

4JK 0 \R„ Rh 
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and 

n-fi-/l + !-lY (3-78) 

The variations of ER and V versus R in all three regions are plotted in Figs. 
3-19(b) and 3-19(c). Note that while the electric intensity has discontinuous jumps, 
the potential remains continuous. A discontinuous jump in potential would mean an 
infinite electric field intensity. MM 

3 - 7 Dielectrics in Static Electric Field 

Ideal dielectrics do not contain free charges. When a dielectric body is placed in an 
external electric field, there are no induced free charges that move to the surface and 
make the interior charge density and electric field vanish, as with conductors. How
ever, since dielectrics contain bound charges, we cannot conclude that they have no 
effect on the electric field in which they are placed. 

All material media are composed of atoms with a positively charged nucleus 
surrounded by negatively charged electrons. Although the molecules of dielectrics 
are macroscopically neutral, the presence of an external electric field causes a force 
to be exerted on each charged particle and results in small displacements of positive 
and negative charges in opposite directions. These displacements, though small in 
comparison to atomic dimensions, nevertheless polarize a dielectric material and 
create electric dipoles. The situation is depicted in Fig. 3-20. Inasmuch as electric 
dipoles do have nonvanishing electric potential and electric field intensity, we expect 
that the induced electric dipoles will modify the electric field both inside and outside 
the dielectric material. 

The molecules of some dielectrics possess permanent dipole moments, even in 
the absence of an external polarizing field. Such molecules usually consist of two or 

tti FIGURE 3-20 
External E A cross section of a polarized dielectric medium. 
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more dissimilar atoms and are called polar molecules, in contrast to nonpolar mole
cules, which do not have permanent dipole moments. An example is the water molecule 
H20, which consists of two hydrogen atoms and one oxygen atom. The atoms do 
not arrange themselves in a manner that makes the molecule have a zero dipole mo
ment; that is, the hydrogen atoms do not lie exactly on diametrically opposite sides 
of the oxygen atom. 

The dipole moments of polar molecules are of the order of 10 - 3 0 (C-m). When 
there is no external field, the individual dipoles in a polar dielectric are randomly 
oriented, producing no net dipole moment macroscopically. An applied electric field 
will exert a torque on the individual dipoles and tend to align them with the field in 
a manner similar to that shown in Fig. 3-20. 

Some dielectric materials can exhibit a permanent dipole moment even in the 
absence of an externally applied electric field. Such materials are called electrets. 
Electrets can be made by heating (softening) certain waxes or plastics and placing 
them in an electric field. The polarized molecules in these materials tend to align 
with the applied field and to be frozen in their new positions after they return to 
normal temperatures. Permanent polarization remains without an external electric 
field. Electrets are the electrical equivalents of permanent magnets; they have found 
important applications in high fidelity electret microphones.1" 

3-7.1 EQUIVALENT CHARGE DISTRIBUTIONS OF POLARIZED DIELECTRICS 

To analyze the macroscopic effect of induced dipoles we define a polarization vector, 
P, as 

nAv 

I Pfc 
P = lim ^— (C/m2), (3-79) Au-0 Av 

where n is the number of molecules per unit volume and the numerator represents 
the vector sum of the induced dipole moments contained in a very small volume Av. 
The vector P, a smoothed point function, is the volume density of electric dipole 
moment. The dipole moment dp of an elemental volume dv' is dp = P dv', which 
produces an electrostatic potential (see Eq. 3-53b): 

dV = ^^dv'. (3-80) 

Integrating over the volume V of the dielectric, we obtain the potential due to the 
polarized dielectric. 

1 See, for instance, J. M. Crowley, Fundamentals of Applied Electrostatics, Section 8-3, Wiley, New York, 
1986.' 
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47T€n JV R2 
(3-81)t 

where R is the distance from the elemental volume dv' to a fixed field point. In 
Cartesian coordinates, 

R2 = (x - x')2 + (y- y')2 + (z - z')2, (3-82) 

and it is readily verified that the gradient of \/R with respect to the primed coordi
nates is 

v<|i | = -R2 

Hence Eq. (3-81) can be written as 

4ne0 >' \RJ 
Recalling the vector identity (Problem 2-28), 

V'-(/A) = /V'-A + A.V'/, 

and letting A = P and / = 1/R, we can rewrite Eq. (3-84) as 

V = 
4ne0 

V P 
Jv \R Jv R 

dv' 

(3-83) 

(3-84) 

(3-85) 

(3-86) 

The first volume integral on the right side of Eq. (3-86) can be converted into a 
closed surface integral by the divergence theorem. We have 

y ' & ^ d t + J - | \ t m , , , , ,3-87, 
4ne0 Js' R 4ne0 Jv' R 

where aj, is the outward normal from the surface element ds' of the dielectric. Com
parison of the two integrals on the right side of Eq. (3-87) with Eqs. (3-62) and 
(3-61), respectively, reveals that the electric potential (and therefore the electric field 
intensity also) due to a polarized dielectric may be calculated from the contributions 
of surface and volume charge distributions having, respectively, densities 

PPs = P • a„ - K S M 

and 

P P = - V - P . 

(3-88) 

(3-89)* 

f We note here that V on the left side of Eq. (3-81) represents the electric potential at a field point, and 
V on the right side is the volume of the polarized dielectric. 
1 The prime sign On a„ and V has been dropped for simplicity, since Eqs. (3-88) and (3-89) involve only 
source coordinates and no confusion will result. 
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These are referred to as polarization charge densities or bound-charge densities: In 
other words, a polarized dielectric may be replaced by an equivalent polarization surface 
charge density pps and an equivalent polarization volume charge density pp for field 
calculations: 

v = T—$-Pirds' + T— f .%w- (3-90) 
47re0 Js' R 4ne0 Jv R y ' 

Although Eqs. (3-88) and (3-89) were derived mathematically with the aid of a 
vector identity, a physical interpretation can be provided for the charge distributions. 
The sketch in Fig. 3-20 clearly indicates that charges from the ends of similarly 
oriented dipoles exist on surfaces not parallel to the direction of polarization. Con
sider an imaginary elemental surface As of a nonpolar dielectric. The application of 
an external electric field normal to As causes a separation d of the bound charges: 
positive charges + q move a distance d/2 in the direction of the field, and negative 
charges — q move an equal distance against the direction of the field. The net total 
charge AQ that crosses the surface As in the direction of the field is nq d{As), where 
n is the number of molecules per unit volume. If the external field is not normal to 
As, the separation of the bound charges in the direction of a„ will be d • a„ and 

AQ = nq(& • a„)(As). (3-91) 

But nqd, the dipole moment per unit volume, is by definition the polarization vector 
P. We have 

AQ = P • a„(As) (3-92) 
and 

^ = A s " = P ' a " ' 

as given in Eq. (3-88). Remember that a„ is always the outward normal. This relation 
correctly gives a positive surface charge on the right-hand surface in Fig. 3-20 and 
a negative surface charge on the left-hand surface. 

For a surface S bounding a volume V, the net total charge flowing out of V as 
a result of polarization is obtained by integrating Eq. (3-92). The net charge remaining 
within the volume V is the negative of this integral: 

<2 = -d )P-Ms 
Js (3-93) = jv(~\'F)dv = jvppdv, 

which leads to the expression for the volume charge density in Eq. (3-89). Hence, 
when the divergence of P does not vanish, the bulk of the polarized dielectric appears 
to be charged. However, since we started with an electrically neutral dielectric body, 
the total charge of the body after polarization must remain zero. This can be readily 
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verified by noting that 

Total charge = (b ppsds + ppdv 

= (j)sP-a„ds- jy\-Fdv = 0, 
where the divergence theorem has again been applied. 

(3-94) 

3—8 Electric Flux Density and Dielectric Constant 

Because a polarized dielectric gives rise to an equivalent volume charge density pp, 
we expect the electric field intensity due to a given source distribution in a dielectric 
to be different from that in free space. In particular, the divergence postulated in Eq. 
(3-4) must be modified to include the effect of pp; that is, 

Using Eq. (3-89), we have 

V - E = - ( p + pJ . 

V.(€0E + P) = p. 

(3-95) 

(3-96) 

We now define a new fundamental field quantity, the electric flux density, or electric 
displacement, D, such that 

D = e0E + P (C/m2). (3-97) 

The use of the vector D enables us to write a divergence relation between the electric 
field and the distribution of free charges in any medium without the necessity of 
dealing explicitly with the polarization vector P or the polarization charge density pp. 
Combining Eqs. (3-96) and (3-97), we obtain the new equation 

V • D = p (C/m3), (3-98) 

where p is the volume density of free charges. Equations (3-98) and (3-5) are the 
two fundamental governing differential equations for electrostatics in any medium. 
Note that the permittivity of free space, e0, does not appear explicitly in these two 
equations. 

The corresponding integral form of Eq. (3-98) is obtained by taking the volume 
integral of both sides. We have 

j v V • D dv = f p dv 
or 

D • ds = Q (C). 

(3-99) 

(3-100) 
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Equation (3-100), another form of Gauss's law, states that the total outward flux of 
the electric displacement (or, simply, the total outward electric flux) over any closed 
surface is equal to the total free charge enclosed in the surface. As was indicated in 
Section 3 -4, Gauss's law is most useful in determining the electric field due to charge 
distributions under symmetry conditions. 

When the dielectric properties of the medium are linear and isotropic, the polar
ization is directly proportional to the electric field intensity, and the proportionality 
constant is independent of the direction of the field. We write 

P = e0XeE, (3-101) 

where xe is a dimensionless quantity called electric susceptibility. A dielectric medium 
is linear if xe is independent of E and homogeneous if %e is independent of space 
coordinates. Substitution of Eq. (3-101) in Eq. (3-97) yields 

D = e0(l + Xe)E 
= e0erE = eE (C/m2), 

where 

*r = 1 + Xe = — 

(3-102) 

(3-103) 

is a dimensionless quantity known as the relative permittivity or the dielectric constant 
of the medium. The coefficient e = e0er is the absolute permittivity (often called 
simply permittivity) of the medium and is measured in farads per meter (F/m). Air 
has a dielectric constant of 1.00059; hence its permittivity is usually taken as that of 
free space. The dielectric constants of some common materials are included in Table 
3-1 on p. 114 and Appendix B-3. 

Note that er can be a function of space coordinates. If er is independent of posi
tion, the medium is said to be homogenous. A linear, homogeneous, and isotropic 
medium is called a simple medium. The relative permittivity of a simple medium is a 
constant. 

Later in the book we will learn that the effects of a lossy medium can be rep
resented by a complex dielectric constant, whose imaginary part provides a mea
sure of power loss in the medium and is, in general, frequency-dependent. For 
anisotropic materials the dielectric constant is different for different directions of the 
electric field, and D and E vectors generally have different directions; permittivity is 
a tensor. In matrix form we may write 

: 3 2 

(3-104) 

For crystals the reference coordinates can be chosen to be along the principal axes 
of the crystal so that the off-diagonal terms of the permittivity matrix in Eq. (3-104) 
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are zero. We have 

Dx 

Dv 
Dz 

= 
€ l 
0 
0 

0 
e2 

0 

0 
0 

esJ 

\E 
\E 
\_E 

(3-105) 

Media having the property represented by Eq. (3-105) are said to be biaxial. We 
may write 

Dx = €lE„ (3-106a) 
Dy = e2Ey, (3-106b) 
Dz = e3Ez. (3-106c) 

If further, e1 = e2, then the medium is said to be uniaxial. Of course, if e1 = e2 = e3, 
we have an isotropic medium. We shall deal only with isotropic media in this book. 

EXAMPLE 3-12 A positive point charge Q is at the center of a spherical dielectric 
shell of an inner radius R{ and an outer radius R0. The dielectric constant of the shell 
is er. Determine E, V, D, and P as functions of the radial distance R. 

Solution The geometry of this problem is the same as that of Example 3-11. The 
conducting shell has now been replaced by a dielectric shell, but the procedure of 
solution is similar. Because of the spherical symmetry, we apply Gauss's law to find 
E and D in three regions: (a) R > R0; (b) R(<R< R0; and (c) R < R{. Potential V 
is found from the negative line integral of E, and polarization P is determined by the 
relation 

P = D - e0E = €0(er - 1)E. (3-107) 

The E, D, and P vectors have only radial components. Refer to Fig. 3-21(a), where 
the Gaussian surfaces are not shown in order to avoid cluttering up the figure. 

a) R > R0 
The situation in this region is exactly the same as that in Example 3-11. We 
have, from Eqs. (3-73) and (3-74), 

Q 
4TL€0R2 

Q 
4ne0R 

From Eqs. (3-102) and (3-107) we obtain 

and 

DRI — CQERI — 

PRI = 0. 

Q 
4TLR: (3-108) 

(3-109) 
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Dielectric 
shell 

(a) 

PR' 

0 

(c) 

v± 

R, R0 
-+R 

*>/? 

FIGURE 3-21 
Field variations of a point charge +Q at the center of a dielectric shell (Example 3-12). 

b) Rt < R < R0 
The application of Gauss's law in this region gives us directly 

Q Q 
ER2 — 

DR2 = 

R2~4%e0erR2~4nzR2' 

Q 
AnR 2 ' 

'-(-J)iS-

(3-110) 

(3-111) 

(3-112) 

Note that DR2 has the same, expression as DR1 and that both ER and PR have a 
discontinuity at R = R0. In this region, 

1\R = R0 4neJRoR2 

Q 
47l€0 

4TL€ JRo R< 
(3-113) 

c) i? < K, 
Since the medium in this region is the same as that in the region R > R0, the 
application of Gauss's law yields the same expressions for ER, DR, and PR in 
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both regions: 
Q 

ER3~47Z€0R2' 

D^ = Q 
'R3 4nR 2' 

PR3 = 0. 
To find V3, we must add to V2 at R = R( the negative line integral of ER3: 

Vi = Vl=Ri-PRi
E^dR 

Q 
4u€0 

1
 €JR0 v1 C J R / R 

(3-114) 

The variations of €0ER and DR versus R are plotted in Fig. 3-21(b). The difference 
(DR — €0ER) is PR and is shown in Fig. 3-21(c). The plot for V in Fig. 3—21(d) is a 
composite graph for Vu V2, and V3 in the three regions. We note that DR is a con
tinuous curve exhibiting no sudden changes in going from one medium to another 
and that PR exists only in the dielectric region. am 

It is instructive to compare Figs. 3-21(b) and 3-21(d) with Figs. 3-19(b) and 
"3-19(c), respectively, of Example 3-11. From Eqs. (3-88) and (3-89) we find 

^ 1 * = *, ~ P ' ( - l H l = Ki " ~PR2\R = Rt 

on the inner shell surface, 

(3-115) 

PAR=RO ~ P ' *R\R=RO ~ PR2\R=RC 

~Y €r)***i 

(3-116) 

on the outer shell surface, and 

= - V P 

= ~Wm{R2pR2] = o. 
(3-117) 

Equations (3-115), (3-116), and (3-117) indicate that there is no net polarization 
volume charge inside the dielectric shell. However, negative polarization surface 
charges exist on the inner surface and positive polarization surface charges on the 
outer surface. These surface charges produce an electric field intensity that is directed 
radially inward, thus reducing the E field in region 2 due to the point charge + Q at 
the center. 
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TABLE 3-1 
Dielectric Constants and Dielectric Strengths of Some Common Materials 

Material 

Air (atmospheric pressure) 
Mineral oil 
Paper 
Polystyrene 
Rubber 
Glass 
Mica 

Dielectric 
Constant 

1.0 
2.3 
2-4 
2.6 
2.3-4.0 
4-10 
6.0 

Dielectric Strength (V/m) 

3 x 106 

15 x 106 

15 x 106 

20 x 106 

25 x 106 

30 x 106 

200 x 106 

3-8.1 DIELECTRIC STRENGTH 

We have explained that an electric field causes small displacements of the bound 
charges in a dielectric material, resulting in polarization. If the electric field is very 
strong, it will pull electrons completely out of the molecules. The electrons will 
accelerate under the influence of the electric field, collide violently with the molecular 
lattice structure, and cause permanent dislocations and damage in the material. 
Avalanche effect of ionization due to collisions may occur. The material will become 
conducting, and large currents may result. This phenomenon is called a dielectric 
breakdown. The maximum electric field intensity that a dielectric material can with
stand without breakdown is the dielectric strength of the material. The approxi
mate dielectric strengths of some common substances are given in Table 3-1 . The 
dielectric strength of a material must not be confused with its dielectric constant. 

A convenient number to remember is that the dielectric strength of air at the 
atmospheric pressure is 3 kV/mm. When the electric field intensity exceeds this value, 
air breaks down. Massive ionization takes place, and sparking (corona discharge) 
follows. Charge tends to concentrate at sharp points. In view of Eq. (3-72), the 
electric field intensity in the immediate vicinity of sharp points is much higher than 
that at points on a relatively flat surface with a small curvature. This is the principle 
upon which a lightning arrester with a sharp metal lightning rod on top of tall 
buildings works. When a cloud containing an abundance of electric charges ap
proaches a tall building equipped with a lightning rod connected to the ground, 
charges of an opposite sign are attracted from the ground to the tip of the rod, 
where the electric field intensity is the strongest. As the electric field intensity ex
ceeds the dielectric strength of the wet air, breakdown occurs, and the air near the 
tip is ionized and becomes conducting. The electric charges in the cloud are then 
discharged safely to the ground through the conducting path. 

The fact that the electric field intensity tends to be higher at a point near the 
surface of a charged conductor with a larger curvature is illustrated quantitatively 
in the following example. 
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EXAMPLE 3-13 Consider two spherical conductors with radii bx and b2 {b2 > &i) 
that are connected by a conducting wire. The distance of separation between the 
conductors is assumed to be very large in comparison to b2 so that the charges on 
the spherical conductors may be considered as uniformly distributed. A total charge 
Q is deposited on the spheres. Find (a) the charges on the two spheres, and (b) the 
electric field intensities at the sphere surfaces. 

Solution 

a) Refer to Fig. 3-22. Since the spherical conductors are at the same potential, 
we have 

<2i = Q2 

4ne0b1 4n€0b2 

or 

Q2 b2 

Hence the charges on the spheres are directly proportional to their radii. But, 
since 

fii + Qi = Q, 
we find that 

b) The electric field intensities at the surfaces of the two conducting spheres are 

SO 

E2n \bj Q2 bx' 

The electric field intensities are therefore inversely proportional to the radii, 
being higher at the surface of the smaller sphere which has a larger curvature. 

h 

FIGURE 3-22 
Two connected conducting spheres (Example 3-13). 
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3—9 Boundary Conditions for Electrostatic Fields 

Electromagnetic problems often involve media with different physical properties and 
require the knowledge of the relations of the field quantities at an interface between 
two media. For instance, we may wish to determine how the E and D vectors change 
in crossing an interface. We already know the boundary conditions that must be 
satisfied at a conductor/free space interface. These conditions have been given in 
Eqs. (3-71) and (3-72). We now consider an interface between two general media 
shown in Fig. 3-23. 

Let us construct a small path abcda with sides ab and cd in media 1 and 2, 
respectively, both being parallel to the interface and equal to Aw. Equation (3-8) 
is applied to this path. If we let sides be = da = Ah approach zero, their contribu
tions to the line integral of E around the path can be neglected. We have 

abcda 
E • d€ = E1 • Aw + E2 • (-Aw) = EuAw - E2tAw = 0. 

Therefore 

EU = E it (V/m), (3-118) 

which states that the tangential component of an E field is continuous across an inter
face. Eq. (3-118) simplifies to Eq. (3-71) if one of the media is a conductor. When 
media 1 and 2 are dielectrics with permittivities ex and e2, respectively, we have 

Du D it (3-119) 

In order to find a relation between the normal components of the fields at a 
boundary, we construct a small pillbox with its top face in medium 1 and bottom 

FIGURE 3-23 
An interface between two media. 
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face in medium 2, as illustrated in Fig. 3-23. The faces have an area AS, and the 
height of the pillbox Ah is vanishingly small. Applying Gauss's law, Eq. (3-100), 
to the pillbox,1" we have 

D - d s = (D1-a l l 2 + D2-a I I1)AS 

= a „ 2 - ( D 1 - D 2 ) A S 
= p,AS, 

(3-120) 

where we have used the relation a„2 = - a n l . Unit vectors aHl and a„2 are, respec
tively, outward unit normals from media 1 and 2. From Eq. (3-120) we obtain 

a „ 2 - ( D 1 - D 2 ) = pJ 

or 

Dln - D2n = Ps (C/m2), 

(3-121a) 

(3-121b) 

where the reference unit normal is outward from medium 2. 
Eq. (3-121b) states that the normal component ofD field is discontinuous across 

an interface where a surface charge exists—the amount of discontinuity being 
equal to the surface charge density. If medium 2 is a conductor, D 2 = 0 and Eq. 
(3-121b) becomes 

Dm = €i^i» = Ps, (3-122) 

which simplifies to Eq. (3-72) when medium 1 is free space. 
When two dielectrics are in contact with no free charges at the interface, ps = 0, 

we have 
Dln = D2n (3-123) 

or 
€iEln = e2E2n. (3-124) 

Recapitulating, we find that the boundary conditions that must be satisfied for static 
electric fields are as follows: 

Tangential components, Eu = E2t; 
Normal components, a„2 • (D t — D2) = ps. 

(3-125) 
(3-126) 

EXAMPLE 3-14 A lucite sheet (er = 3.2) is introduced perpendicularly in a uniform 
electric field E0 = axE0 in free space. Determine E,-, D£, and P,. inside the lucite. 

f Equations (3-8) and (3-100) are assumed to hold for regions containing discontinuous media. See C. T. 
Tai, "On the presentation of Maxwell's theory," Proceedings of the IEEE, vol. 60, pp. 936-945, August 
1972. 
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E0 = *XE0 

D 0 = axeoEx 

Free 
space 

EL 

Lucite 
cr - 3.2 

E0„ 

Free 
space FIGURE 3-24 

A lucite sheet in a uniform electric field (Example 3-14). 

Solution We assume that the introduction of the lucite sheet does not disturb the 
original uniform electric field E0. The situation is depicted in Fig. 3-24. Since the 
interfaces are perpendicular to the electric field, only the normal field components 
need be considered. No free charges exist. 

Boundary condition Eq. (3-123) at the left interface gives 

or 
Bt = axe0E0. 

There is no change in electric flux density across the interface. The electric field 
intensity inside the lucite sheet is 

The polarization vector is zero outside the lucite sheet (P0 = 0). Inside the sheet, 

1 
Pi = Bi-€0Ei = axn- — \€0E0 

= ax0.6S15eoEo (C/m2). mm 

Clearly, a similar application of the boundary condition Eq. (3-123) on the right 
interface will yield the original E0 and D0 in the free space on the right of the lucite 
sheet. Does the solution of this problem change if the original electric field is not 
uniform; that is, if E0 = ax£(j;)? 

EXAMPLE 3-15 Two dielectric media with permittivities ex and e2 are separated 
by a charge-free boundary as shown in Fig. 3-25. The electric field intensity in medium 
1 at the point Px has a magnitude Et and makes an angle ocx with the normal. 
Determine the magnitude and direction of the electric field intensity at point P2 in 
medium 2. 
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FIGURE 3-25 
Boundary conditions at the interface between two dielectric 
media (Example 3-15). 

Solution Two equations are needed to solve for two unknowns E2t and E2n. After 
E2t and E2„ have been found, E2 and a2 will follow directly. Using Eqs. (3-118) and 
(3-123), we have 

E2 sin a2 = E1 sin at (3-127) 
and 

e2E2 cos a2 = e1E1 cos a1. (3-128) 

Division of Eq. (3-127) by Eq. (3-128) gives 

(3-129) 

The magnitude of E2 is 
E2 = y/Elt + Ej„ = J(E2 sin a2)2 + (E2 cos a2)2 

(E1 sin a j 2 + I — Et cos at I 
,2-|l/2 

or 

(3-130) 

By examining Fig. 3-25, can you tell whether e1 is larger or smaller than e2? 

EXAMPLE 3-16 When a coaxial cable is used to carry electric power, the radius of 
the inner conductor is determined by the load current, and the overall size by the 
voltage and the type of insulating material used. Assume that the radius of the inner 
conductor is 0.4 (cm) and that concentric layers of rubber (err = 3.2) and polystyrene 
(erp — 2.6) are used as insulating materials. Design a cable that is to work at a voltage 
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rating of 20 (kV). In order to avoid breakdown due to voltage surges caused by 
lightning and other abnormal external conditions, the maximum electric field inten
sities in the insulating materials are not to exceed 25% of their dielectric strengths. 

Solution From Table 3-1, p. 114, we find the dielectric strengths of rubber and 
polystyrene to be 25 x 106 (V/m) and 20 x 106 (V/m), respectively. Using Eq. (3-40) 
for specified 25% of dielectric strengths, we have the following. 

In rubber: Max Er = 0.25 x 25 x 106 = 

In polystyrene: Max E = 0.25 x 20 x 106 = 

1 Pe 
2%e0 \3.2rt 

Pt 1 

(3-131a) 

(3-131b) 
27re0 \2.6rp/ 

Combination of Eqs. (3-13la) and (3-13lb) yields 

rp = 1.54r£ = 0.616 (cm). (3-132) 

Equation (3-132) indicates that the insulating layer of polystyrene should be placed 
outside of that of rubber, as shown in Fig. 3-26(a). (It would be interesting to deter
mine what would happen if the polystyrene layer were placed inside the rubber layer.) 

,-v 6.25 
S 
> 5.00 
2 4.06 

o n r
P

 ro r 

(b) 
FIGURE 3-26 
Cross section of coaxial cable with two different kinds of insulating material 
(Example 3-16). 
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The cable is to work at a potential difference of 20,000 (V) between the inner and 
outer conductors. We set 

- \rp Epdr - [n Erdr = 20,000, 

where both Ep and Er have the form given in Eq. (3-40). The above relation leads to 

Pi f1 l n ^ + - l n ^ U 20,000 

or 
2TL€0 \€rp rp err r 

1 In T - ^ + i In 1.54 1 = 20,000. (3-133) 
2ne0 \2.6 1.54rf 3.2 

Since rt = 0.4 (cm) is given, r0 can be determined by finding the factor pJ2n€0 from 
Eq. (3-13la) and then using it in Eq. (3-133). We obtain p£/2ne0 = 8 x 104, and 
ro = 2.08r£ = 0.832 (cm). 

In Figs. 3-26(b) and 3-26(c) are plotted the variations of the radial electric field 
intensity E and the potential V referred to that of the outer sheath. Note that E has 
discontinuous jumps, while the V curve is continuous. The reader should verify all the 
indicated numerical values. ^ 

3—10 Capacitance and Capacitors 

From Section 3-6 we understand that a conductor in a static electric field is an 
equipotential body and that charges deposited on a conductor will distribute them
selves on its surface in such a way that the electric field inside vanishes. Suppose the 
potential due to a charge Q is V. Obviously, increasing the total charge by some factor 
k would merely increase the surface charge density ps everywhere by the same factor 
without affecting the charge distribution because the conductor remains an equipo
tential body in a static situation. We may conclude from Eq. (3-62) that the potential 
of an isolated conductor is directly proportional to the total charge on it. This may 
also be seen from the fact that increasing V by a factor of k increases E = — \V by 
a factor of k. But from Eq. (3-72), E = a„ps/e0; it follows that ps, and consequently 
the total charge Q will also increase by a factor of k. The ratio Q/V therefore remains 
unchanged. We write 

Q = cv, (3-134) 

where the constant of proportionality C is called the capacitance of the isolated con
ducting body. The capacitance is the electric charge that must be added to the body 
per unit increase in its electric potential. Its SI unit is coulomb per volt, or farad (F). 

Of considerable importance in practice is the capacitor, which consists of two 
conductors separated by free space or a dielectric medium. The conductors may be 
of arbitrary shapes as in Fig. 3-27. When a d-c voltage source is connected between 
the conductors, a charge transfer occurs, resulting in a charge + Q on one conductor 
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FIGURE 3-27 
A two-conductor capacitor. 

and — Q on the other. Several electric field lines originating from positive charges 
and terminating on negative charges are shown in Fig. 3-27. Note that the field lines 
are perpendicular to the conductor surfaces, which are equipotential surfaces. Equa
tion (3-134) applies here if V is taken to mean the potential difference between the 
two conductors, V12. That is, 

(3-135) 

The capacitance of a capacitor is a physical property of the two-conductor system. 
It depends on the geometry of the conductors and on the permittivity of the medium 
between them; it does not depend on either the charge Q or the potential difference 
V12. A capacitor has a capacitance even when no voltage is applied to it and no free 
charges exist on its conductors. Capacitance C can be determined from Eq. (3-135) 
by either (1) assuming aF 1 2 and determining Q in terms of V12, or (2) assuming a 
Q and determining V12 in terms of Q. At this stage, since we have not yet studied 
the methods for solving boundary-value problems (which will be taken up in Chapter 
4), we find C by the second method. The procedure is as follows: 

1. Choose an appropriate coordinate system for the given geometry. 
2. Assume charges + Q and — Q on the conductors. 
3. Find E from Q by Eq. (3-122), Gauss's law, or other relations. 
4. Find Vl2 by evaluating 

V12=-f*E-d€ 
from the conductor carrying — Q to the other carrying + Q. 

5. Find C by taking the ratio Q/V12. 



3-10 Capacitance and Capacitors 123 

EXAMPLE 3-17 A parallel-plate capacitor consists of two parallel conducting plates 
of area S separated by a uniform distance d. The space between the plates is filled 
with a dielectric of a constant permittivity e. Determine the capacitance. 

Solution A cross section of the capacitor is shown in Fig. 3-28. It is obvious that 
the appropriate coordinate system to use is the Cartesian coordinate system. Follow
ing the procedure outlined above, we put charges -\-Q and -Q on the upper and 
lower conducting plates, respectively. The charges are assumed to be uniformly dis
tributed over the conducting plates with surface densities + ps and — ps, where 

From Eq. (3-122) we have 

E = -

Q 

which is constant within the dielectric if the fringing of the electric field at the edges 
of the plates is neglected. Now 

n,-£>*-jr(--,S)-Ma-S* 
Therefore, for a parallel-plate capacitor, 

C- Q -€
S (3-136) 

which is independent of Q or V12. 

For this problem we could have started by assuming a potential difference V12 
between the upper and lower plates. The electric field intensity between the plates is 
uniform and equals 

E = - a , V, 12 

d 

Dielectric 
(permittivity e) 

zzz Area S 

FIGURE 3-28 
>•* Cross section of a parallel-plate capacitor 

(Example 3-17). 



124 3 Static Electric Fields 

The surface charge densities at the upper and lower conducting plates are + ps and 
— ps, respectively, where, in view of Eq. (3-72), 

Ps = eEy = eV-f-

Therefore, Q = psS = (eS/d)Vl2 and C = Q/Vl2 = eS/d, as before. 

EXAMPLE 3-18 A cylindrical capacitor consists of an inner conductor of radius a 
and an outer conductor whose inner radius is b. The space between the conductors 
is filled with a dielectric of permittivity e, and the length of the capacitor is L. Deter
mine the capacitance of this capacitor. 

Solution We use cylindrical coordinates for this problem. First we assume charges 
+ Q and — Q on the surface of the inner conductor and the inner surface of the outer 
conductor, respectively. The E field in the dielectric can be obtained by applying 
Gauss's law to a cylindrical Gaussian surface within the dielectric a <r < b. (Note 
that Eq. (3-122) gives only the normal component of the E field at a conductor surface. 
Since the conductor surfaces are not planes here, the E field is not constant in the 
dielectric and Eq. (3-122) cannot be used to find E in the a < r < b region.) Referring 
to Fig. 3-29 and applying Gauss's law, we have 

E = a r£ r = a r - 2 (3-137) 
zneLr 

Again we neglect the fringing effect of the field near the edges of the conductors. The 
potential difference between the inner and outer conductors is 

(3-138) 

e jr 2neL 

Dielectric, e 

FIGURE 3-29 
A cylindrical capacitor (Example 3-18). 
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Therefore, for a cylindrical capacitor, 

125 

(3-139) 

We could not solve this problem from an assumed Vab because the electric field 
is not uniform between the inner and outer conductors. Thus we would not know how 
to express E and Q in terms of Vab until we learned how to solve such a boundary-
value problem. « 

EXAMPLE 3-19 A spherical capacitor consists of an inner conducting sphere of 
radius R( and an outer conductor with a spherical inner wall of radius R0. The space 
in between is filled with a dielectric of permittivity e. Determine the capacitance. 

Solution Assume charges + Q and — Q on the inner and outer conductors, respec
tively, of the spherical capacitor in Fig. 3-30. Applying Gauss's law to a spherical 
Gaussian surface with radius R(Rt < R < R0), we have 

E — aR£R — aR 
Q 

4neR' 

Therefore, for a spherical capacitor, 

Q dR_Q f1 

4neR2 4TT€ \ i? ; 

v j_ 
Ane 

1 (3-140) 

For an isolated conducting sphere of a radius Ru R0 -*■ oo, C = AneRt. 

FIGURE 3-30 
A spherical capacitor (Example 3-19). 



126 3 Static Electric Fields 

d 
Q c2 

+Q\ \-Q+Q\ \-Q ""+gitgl +e> "-Q 

FIGURE 3-31 
Series connection of capacitors. 

3-10.1 SERIES AND PARALLEL CONNECTIONS OF CAPACITORS 

Capacitors are often combined in various ways in electric circuits. The two basic ways 
are series and parallel connections. In the series, or head-to-tail, connection shown 
in Fig. 3-31,T the external terminals are from the first and last capacitors only. When 
a potential difference or electrostatic voltage V is applied, charge cumulations on the 
conductors connected to the external terminals are +Q and —Q. Charges will be 
induced on the internally connected conductors such that + Q and — Q will appear 
on each capacitor independently of its capacitance. The potential differences across 
the individual capacitors are Q/Cl5 Q/C2,..., Q/C„, and 

Q Q Q Q 
F= — = — + — + ••• + —, 

^sr ^ 1 ^ 2 C-w 

where Csr is the equivalent capacitance of the series-connected capacitors. We have 

(3-141) 

In the parallel connection of capacitors the external terminals are connected to 
the conductors of all the capacitors as in Fig. 3-32. When a potential difference V 
is applied to the terminals, the charge cumulated on a capacitor depends on its 
capacitance. The total charge is the sum of all the charges. 

Q = <2i + Qi + ■ •■ + Qn 
= c1v + c2v + --- + cnv=cllv 

Therefore, the equivalent capacitance of the parallel-connected capacitors is 

1 
-

^sr 

1 
= C'i + 

1 

c2 
+ ■ ■ + 

1 

cn 

CM = Cx + C2 + ■ ■ ■ + C„. (3-142) 

f Capacitors, whatever their actual shape, are conventionally represented in circuits by pairs of parallel bars. 
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FIGURE 3-32 
Parallel connection of capacitors. 

We note that the formula for the equivalent capacitance of series-connected capacitors 
is similar to that for the equivalent resistance of parallel-connected resistors and that 
the formula for the equivalent capacitance of parallel-connected capacitors is similar 
to that for the equivalent resistance of series-connected resistors. Can you explain 
this? 

EXAMPLE 3-20 Four capacitors Cx = 1 (/*F), C2 = 2 (/*F), C3 = 3 (/*F), and C4 = 
4 (JAF) are connected as in Fig. 3-33. A d-c voltage of 100 (V) is applied to the external 
terminals a-b. Determine the following: (a) the total equivalent capacitance between 
terminals a-b, (b) the charge on each capacitor, and (c) the potential difference across 
each capacitor. 

Q C2 
I I C 

-VV -v2-

c3 

-Vi— 

100(F) 

c4 

-V4— 

FIGURE 3-33 
A combination of capacitors (Example 3-20). 
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Qi Q2 

Ci C2 

Q1 + Q± 
C3 C4 

Q2 + Qi 

c3' 
= 100. 

= 24-

Solution 

a) The equivalent capacitance C12 of Cx and C2 in series is 

C 1 = ^ 2 2 
12 (1/CJ + (1/C2) C1 + C2 3 ^ 

The combination of C12 in parallel with C3 gives 
C123 = C12 + C 3 = ^ OxF). 

The total equivalent capacitance Cab is then 

C„ = 7 ^ £ r = £ = 1.913 („F). 

b) Since the capacitances are given, the voltages can be found as soon as the charges 
have been determined. We have four unknowns: Qx, Q2, Q3, and <24. Four equa
tions are needed for their determination. 

Series connection of Cx and C2: Qx = Q2. 

Kirchhoff's voltage law, V1 + V2 = V3: 

Kirchhoff's voltage law, V3 + V4 = 100: 

Series connection at d: 
Using the given values of Cl5 C2, C3, and C4 and solving the equations, we 
obtain 

81 = 62 = ^ = 34.8 o n 

63 = ^ ° =156.5 W, 

4400 
64 = -23-=191-3 QiQ. 

c) Dividing the charges by the capacitances, we find 

V, = ^ = 34.8 (V), 

F2 = ^ = 1 7 . 4 (V), 

F3 = ^ = 52.2 (V), 

F4 = ^ = 47.8 (V). c 4 

These results can be checked by verifying that V1 + V2 = V3 and that V3 + V4 = 
100 (V). «n® 
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3-10.2 CAPACITANCES IN MULTICONDUCTOR SYSTEMS 

We now consider the situation of more than two conducting bodies in an isolated 
system, such as that shown in Fig. 3-34. The positions of the conductors are arbi
trary, and one of the conductors may represent the ground. Obviously, the presence 
of a charge on any one of the conductors will affect the potential of all the others. 
Since the relation between potential and charge is linear, we may write the following 
set of N equations relating the potentials Vx, V2,..., VN of the N conductors to the 
charges Qu Q2,..., QN: 

*i = PnQi + P12Q2 + •••+ PINQN, 

Vl = P2lQl + PllQl + • • • + P2NQN, 

VN = PmQi + PN2Q2 + ■•• + PNNQN-

In Eqs. (3-143) the py's are called the coefficients of potential, which are constants 
whose values depend on the shape and position of the conductors as well as the 
permittivity of the surrounding medium. We note that in an isolated system, 

6 i + Q2 + <23 + • • • + QN = 0. (3-144) 

The N linear equations in (3-143) can be inverted to express the charges as functions 
of potentials as follows: 

61 = c11V1 + c12V2 + ■•■ + c1NVN, 
Q2 = c217i + c22V2 + ■■■ + c2NVN, 

QN = cN1V, + cN2V2 + • • • + cNNVN, 

where the cy's are constants whose values depend only on the py's in Eqs. (3-143). 
The coefficients cH's are called the coefficients of capacitance, which equal the ratios 
of the charge Qt on and the potential Vt of the ith conductor (i = 1, 2 , . . . , N) with 
all other conductors grounded. The cy's (i ^ j) are called the coefficients of induction. 
If a positive Qt exists on the ith conductor, Vt will be positive, but the charge Qj 

0 
2 

I FIGURE 3-34 
A multiconductor system. 
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induced on the;'th (;' # i) conductor will be negative. Hence the coefficients of capac
itance cu are positive, and the coefficients of induction ctJ are negative. The condition 
of reciprocity guarantees that ptJ = pfi and ctJ = cn. 

To establish a physical meaning to the coefficients of capacitance and the coef
ficients of induction, let us consider a four-conductor system as depicted in Fig. 3-34 
with the stipulation that the conductor labeled N is now the conducting earth at 
zero potential and is designated by the number 0. A schematic diagram of the four-
conductor system is shown in Fig. 3-35, in which the conductors 1, 2, and 3 have 
been drawn as simple dots (nodes). Coupling capacitances have been shown between 
pairs of nodes and between the three nodes and the ground. If Qu Q2, Q3 and VX,V2, 
V3 denote the charges and the potentials, respectively, of conductors 1, 2, and 3, the 
first three equations in (3-145) become 

Qi = c11V1 + c12V2 + c13V3, 
Q2 = c12V1+c22V2 + c23V3, 
Qi = c137i + c23V2 + c33V3, 

(3-146a) 
(3-146b) 
(3-146c) 

where we have used the symmetry relation ctj = cn. On the other hand, we can write 
another set of three Q ~ V relations based on the schematic diagram in Fig. 3-35: 

Q, = C10V, + CX2{VX - V2) + C13{VX ~ V3\ 
Qi = c20v2 + c12{v2 - vx) + c23(v2 - v3), 
Q3 = C30V3 + C13(V3 - Vx) + C23(V3 - V2), 

(3-147a) 
(3-147b) 
(3-147c) 

where C10,C20, and C30 are self-partial capacitances and CyO'^y) are mutual 
partial capacitances. 

Equations (3-147a), (3-147b), and (3-147c) can be rearranged as 

Gi = (c10 + c12 + c 1 3 m - c12v2 - c13v3, 
Qi = ~c12v, + (c20 + c1 2 + c23)v2 - c23v3, 
Qi = -c^v, ~ c23v2 + (c30 + c 1 3 + c23)v3. 

(3-148a) 
(3-148b) 
(3-148c) 

FIGURE 3-35 
Schematic diagram of three conductors 
and the ground. 
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Comparing Eqs. (3-148) with Eqs. (3-146), we obtain 
C l l = ^10 + ^12 + ^ 1 3 , 

C22 ~ ^20 ~^~ ^12 ~^~ ^ 2 3 ' 

C33 = ^30 + Cl3 + ^ 2 3 , 

and 
C12 = — ^ 1 2 > 
C23 = ~ C 2 3 , 
C13 = — C 1 3 . 

(3-149a) 
(3-149b) 
(3-149c) 

(3-150a) 
(3-150b) 
(3-150c) 

On the basis of Eq. (3-149a) we can interpret the coefficient of capacitance c n 
as the total capacitance between conductor 1 and all the other conductors connected 
together to ground; similarly for c22 and c33. Equations (3-150) indicate that the 
coefficients of inductances are the negative of the mutual partial capacitances. In
verting Eqs. (3-149), we can express the conductor-to-ground capacitances in terms 
of the coefficients of capacitance and coefficients of induction: 

ClO = C U + C12 + C13> 

C-20 = C22 + C12 + C23> 

C30 = c33 4- c13 + c23. 

(3-151a) 
(3-151b) 
(3-151c) 

EXAMPLE 3-21 Three horizontal parallel conducting wires, each of radius a and 
isolated from the ground, are separated from one another as shown in Fig. 3-36. As
suming d » a, determine the partial capacitances per unit length between the wires. 

Solution We designate the wires as conductors 0,1, and 2, as indicated in Fig. 3-36. 
Choosing conductor 0 as the reference and using Eq. (3-138), we can write two equa
tions for the potential differences V10 and V20 due to the three wires as follows: 

or 

10 2ne0 d 2ne0 a 2ne0 2d 

T, 1 a 1 d , 3 2ii€0V10 = p,0 In - + pn In - + pe2 In - , d a 2 
(3-152a) 

FIGURE 3-36 
Three parallel wires (Example 3-21). 
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where peo, pn, and pf2 denote the charges per unit length on wires 0, 1, and 2 
respectively. Similarly, 

^ 1 a , d , 3d 
2n€0V20 = p£0 In — + Pn In — + pe2 In — (3-l52b) 

3d 2d a 

For the isolated system of three conductors we have peo + pn + pe2 = 0, or 

Peo= ~iPn + Pn)- (3"153) 

Combination of Eqs. (3-l52a), (3-l52b), and (3-153) yields 

2ne0V10 = pn2 In - + pe2 In —, (3-154a) 
a la 

2ne0V20 = pn In — + pe22 In —. (3-154b) 

Equations (3-154a) and (3—154b) can be used to solve for pn and pe2 as functions 
of V10 and V20. 

Pn = A0( F102 In — - V20 In — j , (3-155a) 

where 

Pei = A0( - F10 In — + F202 In - j , (3-155b) 

A o = T 7 ^ r V w (3-156) 
4 In - In In — 

a a \ 2a) 
Comparing Eqs. (3-155) with Eqs. (3-146), (3-148), and (3-151), we obtain the fol
lowing partial capacitances per unit length for the given three-wire system: 

C i 2 = - c i 2 = A 0 ln—, (3-157a) 
2a 
( 3d 3d\ 

Cio = en + c12 = A0f 2 In — - I n — j , (3-157b) 

C20 = c22 + c12 = A 0 | 2 I n - - I n — j . (3-157c) 

3-10.3 ELECTROSTATIC SHIELDING 

Electrostatic shielding, a technique for reducing capacitive coupling between con
ducting bodies, is important in some practical applications. Let us consider the 
situation shown in Fig. 3-37, in which a grounded conducting shell 2 completely 
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FIGURE 3-37 
Illustrating electrostatic shielding. 

encloses conducting body 1. Setting V2 = 0 in Eq. (3-147a), we have 

<2i = C107! + C12V, + C13{V, - V3). (3-158) 

When Qx = 0, there is no field inside shell 2; hence body 1 and shell 2 have the same 
potential, V1 = V2 = 0. From Eq. (3-158) we see that the coupling capacitance C13 

must vanish, since V3 is arbitrary. This means that a change in V3 will not affect Qlt 
and vice versa. We then have electrostatic shielding between conducting bodies 1 
and 3. Obviously, the same shielding effectiveness is obtained if the grounded con
ducting shell 2 encloses body 3 instead of body 1. 

3—11 Electrostatic Energy and Forces 

In Section 3-5 we indicated that electric potential at a point in an electric field is 
the work required to bring a unit positive charge from infinity (at reference zero-
potential) to that point. To bring a charge Q2 (slowly, so that kinetic energy and 
radiation effects may be neglected) from infinity against the field of a charge Q1 in 
free space to a distance R12, the amount of work required is 

w>=Q*v>=Q>Jki- (3~159) 

Because electrostatic fields are conservative, W2 is independent of the path followed 
by Q2. Another form of Eq. (3-159) is 

This work is stored in the assembly of the two charges as potential energy. Combining 
Eqs. (3-159) and (3-160), we can write 

W2={(QiV1+Q2V2). (3-161) 

Now suppose another charge Q3 is brought from infinity to a point that is R13 
from Q1 and R23 from Q2; an additional amount of work is required that equals 

&W= Q3V3 = QJ—Q±- + J-%~\ (3-162) 
\47ce0i?13 4n€0R23J 
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The sum of AW in Eq. (3-162) and W2 in Eq. (3-159) is the potential energy, W3, 
stored in the assembly of the three charges Qu Q2, and Q3. That is, 

W3 = W2 + AW = 1 
4ne0 V R 

Q1Q2 ] <2i<23 ] Q2Q3 
L12 ^ i : R 23 

(3-163) 

We can rewrite W3 in the following form: 

W * Qi 
Q: 

+ Q-, 

4TZ€0R12 

6 1 

+ 

+ 

Q.i 
4 ^ 0 ^ 1 3 

Q2 

+ Q: 61 + Qi 
4ne0Rl2 4ne0R23 

K4ne0Rl3 ' 4TZ€0R23 

= HQiV1 + Q2V2 + Q.3V3). 

(3-164) 

In Eq. (3-164), Vlt the potential at the position of Qu is caused by charges Q2 and 
Q3; it is different from the Vt in Eq. (3-160) in the two-charge case. Similarly, V2 
and V3 are the potentials at Q2 and <23, respectively, in the three-charge assembly. 

Extending this procedure of bringing in additional charges, we arrive at the 
following general expression for the potential energy of a group of N discrete point 
charges at rest. (The purpose of the subscript e on We is to denote that the energy 
is of an electric nature.) We have 

(3-165) 

where Vk, the electric potential at Qk, is caused by all the other charges and has the 
following expression: 

47T60 l-i Rv 
vk = (3-166) 

Vk 
U**) 

Two remarks are in order here. First, We can be negative. For instance, W2 in Eq. 
(3-159) will be negative if Qt and Q2 are of opposite signs. In that case, work is done 
by the field (not against the field) established by Qt in moving Q2 from infinity. 
Second, We in Eq. (3-165) represents only the interaction energy (mutual energy) and 
does not include the work required to assemble the individual point charges them
selves (self-energy). 

The SI unit for energy, joule (J), is too large a unit for work in physics of elemen
tary particles, where energy is more conveniently measured in terms of a much smaller 
unit called electron-volt (eV). An electron-volt is the energy or work required to move 
an electron against a potential difference of one volt. 

1 (eV) = (1.60 x 10-19) x 1 = 1.60 x 10 1-19 (J). (3-167) 

Energy in (eV) is essentially that in (J) per unit electronic charge. The proton beams 
of the world's most powerful high-energy particle accelerator collide with a kinetic 
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energy of two trillion electron-volts (2 TeV), or (2 x 1012) x (1.60 x 10"19) = 3.20 x 
10_7(J). A binding energy of ^ = 5 x 10_19(J) in an ionic crystal is equal to 
W/e = 5 x 10~19/1.60 x 10 -19 = 3.125 (eV), which is a more convenient number to 
use than the one in terms of joules. 

EXAMPLE 3-22 Find the energy required to assemble a uniform sphere of charge 
of radius b and volume charge density p. 
Solution Because of symmetry, it is simplest to assume that the sphere of charge is 
assembled by bringing up a succession of spherical layers of thickness dR. At a radius 
R shown in Fig. 3-38 the potential is 

4ne0R 

where QR is the total charge contained in a sphere of radius R: 

QR = (4nR3-
The differential charge in a spherical layer of thickness dR is 

dQR = p4nR2 dR, 

and the work or energy in bringing up dQR is 
4n dW=VRdQR = — p2R4dR. 3e0 

Hence the total work or energy required to assemble a uniform sphere of charge of 
radius b and charge density p is 

W = lm = £?£#4R-*!gi (J). (3-168, 

In terms of the total charge 
3e0

 J o 15e0 

e-py*3. 

FIGURE 3-38 
Assembling a uniform sphere of charge (Example 3-22). 
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we have 

W = 3<22 

20neob 
(J). (3-169) 

Equation (3-169) shows that the energy is directly proportional to the square of the 
total charge and inversely proportional to the radius. The sphere of charge in Fig. 
3-38 could be a cloud of electrons, for instance. mm 

For a continuous charge distribution of density p the formula for We in Eq. 
(3-165) for discrete charges must be modified. Without going through a separate 
proof we replace Qk by p dv and the summation by an integration and obtain 

= \\v,pVdv (J). W. = \ (3-170) 

In Eq. (3-170), V is the potential at the point where the volume charge density is p, 
and V is the volume of the region where p exists. 

EXAMPLE 3-23 Solve the problem in Example 3-22 by using Eq. (3-170). 

Solution In Example 3-22 we solved the problem of assembling a sphere of charge 
by bringing up a succession of spherical layers of a differential thickness. Now we 
assume that the sphere of charge is already in place. Since p is a constant, it can be 
taken out of the integral sign. For a spherically symmetrical problem, 

W. 2 Jv 7 Jo (3-171) 

where V is the potential at a point R from the center. To find V at R, we must find 
the negative of the line integral of E in two regions: (1) E : = aRER1 from R = oo to 
R = b, and (2) E2 = aRER2 from R = b to R = R. We have 

and 

Ejti — &R 

E j a — aR 

Q 
4n€0R2 

QR 

= a R>b, 

= a, 4ne0R2 R 3e0 

Pb3 

* 3 e 0 * 2 ' 

^ , 0<R<b. 

Consequently, we obtain 

V = - J * E dR = - M * ER1 dR + jb
R ER2 dR 

pb 
J* 3e0R2 Jt 

R^dR 
b 3e0 

(3-172) 
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Substituting Eq. (3-172) in Eq. (3-171), we get 

e 2 Jo 3e0 V2 2 ) 15e0 

which is the same as the result in Eq. (3-168). ®m 

Note that We in Eq. (3-170) includes the work (self-energy) required to assemble 
the distribution of macroscopic charges, because it is the energy of interaction of 
every infinitesimal charge element with all other infinitesimal charge elements. As a 
matter of fact, we have used Eq. (3-170) in Example 3-23 to find the self-energy of 
a uniform spherical charge. As the radius b approaches zero, the self-energy of a 
(mathematical) point charge of a given Q is infinite (see Eq. 3-169). The self-energies 
of point charges Qk are not included in Eq. (3-165). Of course, there are, strictly, no 
point charges, inasmuch as the smallest charge unit, the electron, is itself a distribution 
of charge. 

3-11.1 ELECTROSTATIC ENERGY IN TERMS OF FIELD QUANTITIES 

In Eq. (3-170) the expression of electrostatic energy of a charge distribution contains 
the source charge density p and the potential function V. We frequently find it more 
convenient to have an expression of We in terms of field quantities E and/or D, 
without knowing p explicitly. To this end, we substitute V • D for p in Eq. (3-170): 

We = ±jv,(\-B)Vdv. (3-173) 

Now, using the vector identity (from Problem P.2-28), 

V • (VD) = V\ • D + D • \V, (3-174) 

we can write Eq. (3-173) as 

We = iL\'(VD)dv-iLT>-\Vdv 
I r (3~175> 

= ij>siVD'*nds+i\v,B'Edv, 
where the divergence theorem has been used to change the first volume integral into 
a closed surface integral and E has been substituted for — W in the second volume 
integral. Since V can be any volume that includes all the charges, we may choose it 
to be a very large sphere with radius R. As we let R -> oo, electric potential V and 
the magnitude of electric displacement D fall off at least as fast as l/R and l/R2, 
respectively.1 The area of the bounding surface S' increases as R2. Hence the surface 
integral in Eq. (3-175) decreases at least as fast as l/R and will vanish as R -> oo. 
We are then left with only the second integral on the right side of Eq. (3-175). 

* For point charges V oc l/R and D oc l/R2; for dipoles V oc l/R2 and D oc l/R3. 
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W. = ±jvD-Edv (J). (3-176a) 

Using the relation D = eE for a linear medium, Eq. (3-176a) can be written in 
two other forms: 

W. = ±jv,eE2dv (J) 

and 

(3-176b) 

(3-176c) 

We can always define an electrostatic energy density we mathematically, such 
that its volume integral equals the total electrostatic energy: 

We can therefore write 

or 

or 

We = $v,wedv. 

we = \Y> • E (J/m3) 

we = \eE2 (J/m2 

D2 

we = ^ (J/m3). 

(3-177) 

(3-178a) 

(3-178b) 

(3-178c) 

However, this definition of energy density is artificial because a physical justification 
has not been found to localize energy with an electric field; all we know is that the 
volume integrals in Eqs. (3-176a, b, c) give the correct total electrostatic energy. 

EXAMPLE 3-24 In Fig. 3-39 a parallel-plate capacitor of area S and separation d 
is charged to a voltage V. The permittivity of the dielectric is e. Find the stored 
electrostatic energy. 

Solution With the d-c source (batteries) connected as shown, the upper and lower 
plates are charged positive and negative, respectively. If the fringing of the field at 

+ 
— 

Area5 

■K r ' 1 FIGURE 3-39 
A charged parallel-plate capacitor (Example 3-24). 
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the edges is neglected, the electric field in the dielectric is uniform (over the plate) 
and constant (across the dielectric) and has a magnitude 

E = 

Using Eq. (3-176b), we have 

*-;i--GH«(?r«-K-5)"- (3-179) 

The quantity in the parentheses of the last expression, eS/d, is the capacitance of the 
parallel-plate capacitor (see Eq. 3-136). So, 

We = \CV2 (J). 

Since Q = CV, Eq. (3-180a) can be put in two other forms: 

We = iQV (J) 

and 

Q2 
w° = lc (J)-

(3-180a) 

(3-180b) 

(3-180c) 

It so happens that Eqs. (3-180a, b, c) hold true for any two-conductor capacitor 
(see Problem P.3-43). 

EXAMPLE 3-25 Use energy formulas (3-176) and (3-180) to find the capacitance 
of a cylindrical capacitor having a length L, an inner conductor of radius a, an outer 
conductor of inner radius b, and a dielectric of permittivity e, as shown in Fig. 3-29. 

Solution By applying Gauss's law, we know that 

Q E = zrEr = ar IneLr a <r <b. 

The electrostatic energy stored in the dielectric region is, from Eq. (3-176b), 

^4f e (dy 2 ( L 2 ^ 
Q2 cb dr Q2 i„ b 

4mL Jo r 4neL a 

(3-181) 
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On the other hand, We can also be expressed in the form of Eq. (3-180c). Equating 
(3-180c) and (3-181), we obtain 

^ = jQL] b 

2C AneL * a 
or 

„ 2TT€L 

a 

which is the same as that given in Eq. (3-139). — 

3-11.2 ELECTROSTATIC FORCES 

Coulomb's law governs the force between two point charges. In a more complex sys
tem of charged bodies, using Coulomb's law to determine the force on one of the 
bodies that is caused by the charges on other bodies would be very tedious. This 
would be so even in the simple case of finding the force between the plates of a charged 
parallel-plate capacitor. We will now discuss a method for calculating the force on 
an object in a charged system from the electrostatic energy of the system. This method 
is based on the principle of virtual displacement. We will consider two cases: (1) that 
of an isolated system of bodies with fixed charges, and (2) that of a system of conduct
ing bodies with fixed potentials. 

System of Bodies with Fixed Charges We consider an isolated system of charged 
conducting, as well as dielectric, bodies separated from one another with no connec
tion to the outside world. The charges on the bodies are constant. Imagine that the 
electric forces have displaced one of the bodies by a differential distance d€ (a virtual 
displacement). The mechanical work done by the system would be 

dW = FQ • d€, (3-182) 

where FQ is the total electric force acting on the body under the condition of constant 
charges. Since we have an isolated system with no external supply of energy, this 
mechanical work must be done at the expense of the stored electrostatic energy; that 
is, 

dW= -dWe = ¥Q>d€. (3-183) 

Noting from Eq. (2-88) in Section 2-6 that the differential change of a scalar resulting 
from a position change d€ is the dot product of the gradient of the scalar, and d€, we 
write 

dWe = (VWQ * d€. (3-184) 

Since d€ is arbitrary, comparison of Eqs. (3-183) and (3-184) leads to 

¥Q=~\We (N). (3-185) 
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Equation (3-185) is a very simple formula for the calculation of FQ from the electro
static energy of the system. In Cartesian coordinates the component forces are 

dWe 

dx 

dWe 
dy 

(FQ)X = ~ ^ T » (3-186a) 

(Fo)y = —1TT' (3-186b) 

(FQI = —TT- (3-186c) 

If the body under consideration is constrained to rotate about an axis, say the 
z-axis, the mechanical work done by the system for a virtual angular displacement 
d(f) would be 

dW = {TQ)zd(j), (3-187) 

where (TQ)Z is the z-component of the torque acting on the body under the condition 
of constant charges. The foregoing procedure will lead to 

(3-188) 

System of Conducting Bodies with Fixed Potentials Now consider a system in which 
conducting bodies are held at fixed potentials through connections to such external 
sources as batteries. Uncharged dielectric bodies may also be present. A displacement 
d-6 by a conducting body would result in a change in total electrostatic energy and 
would require the sources to transfer charges to the conductors in order to keep them 
at their fixed potentials. If a charge dQk (which may be positive or negative) is added 
to the feth conductor that is maintained at potential Vk, the work done or energy sup
plied by the sources is VkdQk. The total energy supplied by the sources to the system 
is 

dW^J^V.dQ,. (3-189) 
k 

The mechanical work done by the system as a consequence of the virtual displace
ment is 

dW = ¥v • d€, (3-190) 

where ¥v is the electric force on the conducting body under the condition of constant 
potentials. The charge transfers also change the electrostatic energy of the system by 
an amount dWe, which, in view of Eq. (3-165), is 

dWe = 1~YjVkdQk = l-dWs. (3-191) 
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Conservation of energy demands that 

dW + dWe = dWs. 

Substitution of Eqs. (3-189), (3-190), and (3-191) in Eq. (3-192) gives 

Fv-d€ = dWe 

= (\We)-dt 
or 

(3-192) 

F„ = \Wa (N). (3-193) 

Comparison of Eqs. (3-193) and (3-185) reveals that the only difference between the 
formulas for the electric forces in the two cases is in the sign. It is clear that if the con
ducting body is constrained to rotate about the z-axis, the z-component of the electric 
torque will be 

(3-194) 

which differs from Eq. (3-188) also only by a sign change. 

EXAMPLE 3-26 Determine the force on the conducting plates of a charged parallel-
plate capacitor. The plates have an area S and are separated in air by a distance x. 

Solution We solve the problem in two ways: (a) by assuming fixed charges, and then 
(b) by assuming fixed potentials. The fringing of field around the edges of the plates 
will be neglected. 
a) Fixed charges. With fixed charges + Q on the plates, an electric field intensity 

Ex = Q/{e0S) = V/x exists in the air between the plates regardless of their separa
tion (unchanged by a virtual displacement). From Eq. (3-180b), 

where Q and Ex are constants. Using Eq. (3-186a), we obtain 

8x ie£**) = 4 e £ - = -2& (3-195) 

where the negative signs indicate that the force is opposite to the direction of 
increasing x. It is an attractive force. 

b) Fixed potentials. With fixed potentials it is more convenient to use the expression 
in Eq. (3-180a) for We. Capacitance C for the parallel-plate air capacitor is e0S/x. 
We have, from Eq. (3-193), 

dI± = <L (l- cvA = v—^ fas^ e°SV2 

dx 8x 
(Fy)x = 2 2 dx 2x' 

(3-196) 
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How different are (FQ)X in Eq. (3-195) and {Fv)x in Eq. (3-196)? Recalling the 
relation 

x 
we find 

W = Fv)x- (3-197) 

The force is the same in both cases in spite of the apparent sign difference in the for
mulas as expressed by Eqs. (3-185) and (3-193). A little reflection on the physical 
problem will convince us that this must be true. Since the charged capacitor has fixed 
dimensions, a given Q will result in a fixed V, and vice versa. Therefore there is a 
unique force between the plates regardless of whether Q or V is given, and the force 
certainly does not depend on virtual displacements. A change in the conceptual con
straint (fixed Q or fixed V) cannot change the unique force between the plates. 

The preceding discussion holds true for a general charged two-conductor capaci
tor with capacitance C. The electrostatic force ¥e in the direction of a virtual displace
ment A£ for fixed charges is 

dWe d (Q2\ Q2 dC (F^='w=-v^yhw (3-198) 
For fixed potentials, 

2 ) 2 d£ 2C2 Vv), = ^ - ^ C V 1 W ~ = %3~ (3-199) 

It is clear that the forces calculated from the two procedures, which assumed different 
constraints imposed on the same charged capacitor, are equal. 

Review Questions 

R.3-1 Write the differential form of the fundamental postulates of electrostatics in free 
space. 
R.3-2 Under what conditions will the electric field intensity be both solenoidal and 
irrotational? 
R.3-3 Write the integral form of the fundamental postulates of electrostatics in free space, 
and state their meaning in words. 
R.3-4 When the formula for the electric field intensity of a point charge, Eq. (3-12), was 
derived, 

a) why was it necessary to stipulate that q is in a boundless free space? 
b) why did we not construct a. cubic or a cylindrical surface around ql 

R.3-5 In what ways does the electric field intensity vary with distance for 
a) a point charge? b) an electric dipole? 
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R.3-6 State Coulomb's law. 
R.3-7 Explain the principle of operation of ink-jet printers. 
R.3-8 State Gauss's law. Under what conditions is Gauss's law especially useful in 
determining the electric field intensity of a charge distribution? 
R.3-9 Describe the ways in which the electric field intensity of an infinitely long, straight 
line charge of uniform density varies with distance. 
R.3-10 Is Gauss's law useful in finding the E field of a finite line charge? Explain. 
R.3-11 See Example 3-6, Fig. 3-9. Could a cylindrical pillbox with circular top and 
bottom faces be chosen as a Gaussian surface? Explain. 
R.3-12 Make a two-dimensional sketch of the electric field lines and the equipotential lines 
of a point charge. 
R.3-13 At what value of 9 is the E field of a z-directed electric dipole pointed in the 
negative z-direction? 
R.3-14 Refer to Eq. (3-64). Explain why the absolute sign around z is required. 
R.3-15 If the electric potential at a point is zero, does it follow that the electrical field 
intensity is also zero at that point? Explain. 
R.3-16 If the electric field intensity at a point is zero, does it follow that the electric 
potential is also zero at that point? Explain. 
R.3-17 If an uncharged spherical conducting shell of a finite thickness is placed in an 
external electric field E„, what is the electric field intensity at the center of the shell? Describe 
the charge distributions on both the outer and the inner surfaces of the shell. 
R.3-18 What are electrets! How can they be made? 
R.3-19 Can V{l/R) in Eq. (3-84) be replaced by \{\/R)l Explain. 
R.3-20 Define polarization vector. What is its SI unit? 
R.3-21 What are polarization charge densities! What are the SI units for P ■ a„ and V • P? 
R.3-22 What do we mean by simple medium! 
R.3-23 What properties do anisotropic materials have? 
R.3-24 What characterizes a uniaxial medium! 
R.3-25 Define electric displacement vector. What is its SI unit? 
R.3-26 Define electric susceptibility. What is its unit? 
R.3-27 What is the difference between the permittivity and the dielectric constant of a 
medium? 
R.3-28 Does the electric flux density due to a given charge distribution depend on the 
properties of the medium? Does the electric field intensity? Explain. 
R.3-29 What is the difference between the dielectric constant and the dielectric strength of a 
dielectric material? 
R.3-30 Explain the principle of operation of lightning arresters. 
R.3-31 What are the general boundary conditions for electrostatic fields at an interface 
between two different dielectric media? 
R.3-32 What are the boundary conditions for electrostatic fields at an interface between a 
conductor and a dielectric with permittivity e? 
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R.3-33 What is the boundary condition for electrostatic potential at an interface between 
two different dielectric media? 
R.3-34 Does a force exist between a point charge and a dielectric body? Explain. 
R.3-35 Define capacitance and capacitor. 
R.3-36 Assume that the permittivity of the dielectric in a parallel-plate capacitor is not 
constant. Will Eq. (3-136) hold if the average value of permittivity is used for e in the 
formula? Explain. 
R.3-37 Given three 1-^F capacitors, explain how they should be connected in order to 
obtain a total capacitance of 

a ) i ( ^ F ) , b) f (^F) , c ) f (^F) , d)3(^F) . 
R.3-38 What are coefficients of potential, coefficients of capacitance, and coefficients of 
induction! 
R.3-39 What are partial capacitances'! How are they different from coefficients of 
capacitance? 
R.3-40 Explain the principle of electrostatic shielding. 
R.3-41 What is the definition of an electron-voltl How does it compare with a joule? 
R.3-42 What is the expression for the electrostatic energy of an assembly of four discrete 
point charges? 
R.3-43 What is the expression for the electrostatic energy of a continuous distribution of 
charge in a volume? on a surface? along a line? 
R.3-44 Provide a mathematical expression for electrostatic energy in terms of E and/or D. 
R.3-45 Discuss the meaning and use of the principle of virtual displacement. 
R.3-46 What is the relation between the force and the stored energy in a system of stationary 
charged objects under the condition of constant charges? Under the condition of fixed 
potentials? 

Problems 

P.3-1 Refer to Fig. 3-4. 
a) Find the relation between the angle of arrival, a, of the electron beam at the screen 

and the deflecting electric field intensity £d . 
b) Find the relation between w and L such that d± = d0/20. 

P.3-2 The cathode-ray oscilloscope (CRO) shown in Fig. 3-4 is used to measure the 
voltage applied to the parallel deflection plates. 

a) Assuming no breakdown in insulation, what is the maximum voltage that can be 
measured if the distance of separation between the plates is K! 

b) What is the restriction on L if the diameter of the screen is D? 
c) What can be done with a fixed geometry to double the CRO's maximum 

measurable voltage? 
P.3-3 The deflection system of a cathode-ray oscilloscope usually consists of two pairs of 
parallel plates producing orthogonal electric fields. Assume the presence of another set of 
plates in Fig. 3-4 that establishes a uniform electric field Ex = a.xEx in the deflection region. 
Deflection voltages vx(t) and vy(t) are applied to produce Ex and E>„ respectively. Determine 
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the types of waveforms that vx(t) and vy(t) should have if the electrons are to trace the 
following graphs on the fluorescent screen: 

a) a horizontal line, 
b) a straight line having a negative unity slope, 
c) a circle, 
d) two cycles of a sine wave. 

P.3-4 Write a short article explaining the principle of operation of xerography. (Use library 
resources if needed.) 
P.3-5 Two point charges, Qt and Q2, are located at (1, 2, 0) and (2, 0, 0), respectively. Find 
the relation between Qt and Q2 such that the total force on a test charge at the point 
P(-1,1,0) will have 

a) no x-component, b) no y-component. 
P.3-6 Two very small conducting spheres, each of a mass 1.0 x 10~4 (kg), are suspended 
at a common point by very thin nonconducting threads of a length 0.2 (m). A charge Q is 
placed on each sphere. The electric force of repulsion separates the spheres, and an 
equilibrium is reached when the suspending threads make an angle of 10°. Assuming a 
gravitational force of 9.80 (N/kg) and a negligible mass for the threads, find Q. 
P.3-7 Find the force between a charged circular loop of radius b and uniform charge 
density pe and a point charge Q located on the loop axis at a distance h from the plane of 
the loop. What is the force when h » b, and when h = 01 Plot the force as a function of h. 
P.3-8 A line charge of uniform density pe in free space forms a semicircle of radius b. 
Determine the magnitude and direction of the electric field intensity at the center of the 
semicircle. 
P.3-9 Three uniform line charges—pn, pn, and pn, each of length L—form an equilateral 
triangle. Assuming that pn = 2p(2 = 2pn, determine the electric field intensity at the center 
of the triangle. 
P.3-10 Assuming that the electric field intensity is E = ax100x (V/m), find the total electric 
charge contained inside 

a) a cubical volume 100 (mm) on a side centered symmetrically at the origin, 
b) a cylindrical volume around the z-axis having a radius 50 (mm) and a height 100 (mm) 

centered at the origin. 
P.3-11 A spherical distribution of charge p = p0\\ - (R2/b2)~\ exists in the region 
0 < R < b. This charge distribution is concentrically surrounded by a conducting shell 
with inner radius Rt(>b) and outer radius R0. Determine E everywhere. 
P.3-12 Two infinitely long coaxial cylindrical surfaces, r = a and r = b {b > a), carry 
surface charge densities psa and psb, respectively. 

a) Determine E everywhere. 
b) What must be the relation between a and b in order that E vanishes for r > bl 

P.3-13 Determine the work done in carrying a - 2 (jiC) charge from Pj(2, 1, - 1 ) to 
JP2(8, 2, - 1 ) in the field E = uxy + uyx 

a) along the parabola x = 2y2, 
b) along the straight line joining Px and P2. 

P.3-14 At what values of 9 does the electric field intensity of a z-directed dipole have no 
z-component? 
P.3-15 Three charges ( + q, -2q, and +q) are arranged along the z-axis at z = d/2, z = 0, 
and z = -d/2, respectively. 
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a) Determine V and E at a distant point P{R, 9, 4>). 
b) Find the equations for equipotential surfaces and streamlines. 
c) Sketch a family of equipotential lines and streamlines. 

(Such an arrangement of three charges is called a linear electrostatic quadrupole) 
P.3-16 A finite line charge of length L carrying uniform line charge density pe is coincident 
with the x-axis. 

a) Determine V in the plane bisecting the line charge. 
b) Determine E from pe directly by applying Coulomb's law. 
c) Check the answer in part (b) with —\V. 

P.3-17 In Example 3-5 we obtained the electric field intensity around an infinitely long 
line charge of a uniform charge density in a very simple manner by applying Gauss's law. 
Since |E| is a function of r only, any coaxial cylinder around the infinite line charge is an 
equipotential surface. In practice, all conductors are of finite length. A finite line charge 
carrying a constant charge density pe along the axis, however, does not produce a constant 
potential on a concentric cylindrical surface. Given the finite line charge pe of length L in 
Fig. 3-40, find the potential on the cylindrical surface of radius b as a function of x and 
plot it. 

A 
Oi 

dx>^\ -*-f4- L 

x — 
— x 

FIGURE 3-40 
A finite line charge (Problem P.3-17). 

{Hint: Find dV at P due to charge pgdx' and integrate.) 
P.3-18 A charge Q is distributed uniformly over an L x L square plate. Determine V and 
E at a point on the axis perpendicular to the plate and through its center. 
P.3-19 A charge Q is distributed uniformly over the wall of a circular tube of radius b 
and height h. Determine V and E on its axis 

a) at a point outside the tube, then 
b) at a point inside the tube. 

P.3-20 An early model of the atomic structure of a chemical element was that the atom 
was a spherical cloud of uniformly distributed positive charge Ne, where N is the atomic 
number and e is the magnitude of electronic charge. Electrons, each carrying a negative 
charge —e, were considered to be imbedded in the cloud. Assuming the spherical charge 
cloud to have a radius R0 and neglecting collision effects, 

a) find the force experienced by an imbedded electron at a distance r from the center; 
b) describe the motion of the electron; 
c) explain why this atomic model is unsatisfactory. 
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P.3-21 A simple classical model of an atom consists of a nucleus of a positive charge Ne 
surrounded by a spherical electron cloud of the same total negative charge. (N is the atomic 
number and e is the magnitude of electronic charge.) An external electric field E0 will cause 
the nucleus to be displaced a distance r0 from the center of the electron cloud, thus polarizing 
the atom. Assuming a uniform charge distribution within the electron cloud of radius b, find 

P.3-22 The polarization in a dielectric cube of side L centered at the origin is given by 
P = P0(axx + ayy + azz). 

a) Determine the surface and volume bound-charge densities. 
b) Show that the total bound charge is zero. 

P.3-23 Determine the electric field intensity at the center of a small spherical cavity cut 
out of a large block of dielectric in which a polarization P exists. 
P.3-24 Solve the following problems: 

a) Find the breakdown voltage of a parallel-plate capacitor, assuming that conducting 
plates are 50 (mm) apart and the medium between them is air. 

b) Find the breakdown voltage if the entire space between the conducting plates is 
filled with plexiglass, which has a dielectric constant 3 and a dielectric strength 
20 (kV/mm). 

c) If a 10-(mm) thick plexiglass is inserted between the plates, what is the maximum 
voltage that can be applied to the plates without a breakdown? 

P.3-25 Assume that the z = 0 plane separates two lossless dielectric regions with e r l = 2 
and er2 = 3. If we know that E1 in region 1 is ax2y — ay3x + az(5 + z), what do we also 
know about E2 and D 2 in region 2? Can we determine E2 and D 2 at any point in region 
2? Explain. 
P.3-26 Determine the boundary conditions for the tangential and the normal components 
of P at an interface between two perfect dielectric media with dielectric constants e r l 

and er2. 
P.3-27 What are the boundary conditions that must be satisfied by the electric potential 
at an interface between two perfect dielectrics with dielectric constants erl and €r2? 
P.3-28 Dielectric lenses can be used to collimate electromagnetic fields. In Fig. 3-41 the 
left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E1 

at point P(r0, 45°, z) in region 1 is ar5 - a^3, what must be the dielectric constant of the 
lens in order that E3 in region 3 is parallel to the x-axis? 

O 
\45c 

® © 

-+x 

(D 
FIGURE 3-41 
A dielectric lens (Problem P.3-28). 
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P.3-29 Refer to Example 3-16. Assuming the same r, and r0 and requiring the maximum 
electric field intensities in the insulating materials not to exceed 25% of their dielectric 
strengths, determine the voltage rating of the coaxial cable 

a) ifrp=1.75r{; 
b) ifrp=1.35rf. 
c) Plot the variations of Er and V versus r for both part (a) and part (b). 

P.3-30 The space between a parallel-plate capacitor of area S is filled with a dielectric 
whose permittivity varies linearly from e : at one plate (y = 0) to e2 at the other plate 
(y = d). Neglecting fringing effect, find the capacitance. 
P.3-31 Assume that the outer conductor of the cylindrical capacitor in Example 3-18 is 
grounded and that the inner conductor is maintained at a potential V0. 

a) Find the electric field intensity, E(a), at the surface of the inner conductor. 
b) With the inner radius, b, of the outer conductor fixed, find a so that E(a) is 

minimized. 
c) Find this minimum E(a). 
d) Determine the capacitance under the conditions of part (b). 

P.3-32 The radius of the core and the inner radius of the outer conductor of a very long 
coaxial transmission line are ri and r0, respectively. The space between the conductors is 
filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are erl 
for ri < r < b and er2 for b < r < r0. Determine its capacitance per unit length. 
P.3-33 A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii 
rt and r0. Two dielectric media of different dielectric constants erl and er2 fill the space 
between the conducting surfaces as shown in Fig. 3-42. Determine its capacitance. 

r (Problem P.3-33). 

P.3-34 A capacitor consists of two coaxial metallic cylindrical surfaces of a length 30 (mm) 
and radii 5 (mm) and 7 (mm). The dielectric material between the surfaces has a relative 
permittivity er = 2 + (4/r), where r is measured in mm. Determine the capacitance of the 
capacitor. 
P.3-35 Assuming the earth to be a large conducting sphere (radius = 6.37 x 103 km) 
surrounded by air, find 

a) the capacitance of the earth; 
b) the maximum charge that can exist on the earth before the air breaks down. 

P.3-36 Determine the capacitance of an isolated conducting sphere of radius b that is 
coated with a dielectric layer of uniform thickness d. The dielectric has an electric 
susceptibility xe-
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P.3-37 A capacitor consists of two concentric spherical shells of radii Rt and R0. The space 
between them is filled with a dielectric of relative permittivity er from Rt to b{Ri < b < R0) 
and another dielectric of relative permittivity 2er from b to R0. 

a) Determine E and D everywhere in terms of an applied voltage V. 
b) Determine the capacitance. 

P.3-38 The two parallel conducting wires of a power transmission line have a radius a and 
are spaced at a distance d apart. The wires are at a height h above the ground. Assuming 
the ground to be perfectly conducting and both d and h to be much larger than a, find the 
expressions for the mutual and self-partial capacitances per unit length. 
P.3-39 An isolated system consists of three very long parallel conducting wires. The axes 
of all three wires lie in a plane. The two outside wires are of a radius b and both are at a 
distance d = 500b from a center wire of a radius 2b. Determine the partial capacitances per 
unit length. 

P.3-40 Calculate the amount of electrostatic energy of a uniform sphere of charge with 
radius b and volume charge density p stored in the following regions: 

a) inside the sphere, 
b) outside the sphere. 

Check your results with those in Example 3-22. 
P.3-41 Einstein's theory of relativity stipulates that the work required to assemble a 
charge is stored as energy in the mass and is equal to mc2, where m is the mass and 
c £ 3 x 108 (m/s) is the velocity of light. Assuming the electron to be a perfect sphere, find 
its radius from its charge and mass (9.1 x 10"31 kg). 
P.3-42 Find the electrostatic energy stored in the region of space R > b around an electric 
dipole of moment p. 
P.3-43 Prove that Eqs. (3-180) for stored electrostatic energy hold true for any 
two-conductor capacitor. 
P.3-44 A parallel-plate capacitor of width w, length L, and separation d is partially filled 
with a dielectric medium of dielectric constant er, as shown in Fig. 3-43. A battery of V0 
volts is connected between the plates. 

a) Find D, E, and ps in each region. 
b) Find distance x such that the electrostatic energy stored in each region is the same. 

T 
d I I - ^ V Q 

FIGURE 3-43 
A parallel-plate capacitor (Problem P.3-44). 

P.3-45 Using the principle of virtual displacement, derive an expression for the force 
between two point charges + Q and - Q separated by a distance x in free space. 
P.3-46 A constant voltage V0 is applied to a partially filled parallel-plate capacitor shown 
in Fig. 3-44. The permittivity of the dielectric is e, and the area of the plates is S. Find the 
force on the upper plate. 
P.3-47 The conductors of an isolated two-wire transmission line, each of radius b, are 
spaced at a distance D apart. Assuming D » b and a voltage V0 between the lines, find the 
force per unit length on the lines. 

i+ 

* I T 
« x *\ 
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£ 
FIGURE 3-44 
A parallel-plate capacitor (Problem P.3-46). 

x" 
P.3-48 A parallel-plate capacitor of width w, length L, and separation d has a solid 
dielectric slab of permittivity e in the space between the plates. The capacitor is charged to 
a voltage V0 by a battery, as indicated in Fig. 3-45. Assuming that the dielectric slab is 
withdrawn to the position shown, determine the force acting on the slab 

a) with the switch closed, 
b) after the switch is first opened. 

Switch 

T 
d r ■VQ 

FIGURE 3-45 
A partially filled parallel-plate capacitor (Problem P.3-48). 



4 
Solution of 
Electrostatic Problems 

4—1 Introduction 

Electrostatic problems are those which deal with the effects of electric charges at rest. 
These problems can present themselves in several different ways according to what is 
initially known. The solution usually calls for the determination of electric potential, 
electric field intensity, and/or electric charge distribution. If the charge distribution 
is given, both the electric potential and the electric field intensity can be found by the 
formulas developed in Chapter 3. In many practical problems, however, the exact 
charge distribution is not known everywhere, and the formulas in Chapter 3 cannot 
be applied directly for finding the potential and field intensity. For instance, if the 
charges at certain discrete points in space and the potentials of some conducting 
bodies are given, it is rather difficult to find the distribution of surface charges on the 
conducting bodies and/or the electric field intensity in space. When the conducting 
bodies have boundaries of a simple geometry, the method of images may be used to 
great advantage. This method will be discussed in Section 4-4. 

In another type of problem the potentials of all conducting bodies may be known, 
and we wish to find the potential and field intensity in the surrounding space as 
well as the distribution of surface charges on the conducting boundaries. Differential 
equations must be solved subject to the appropriate boundary conditions. These are 
boundary-value problems. The techniques for solving boundary-value problems in the 
various coordinate systems will be discussed in Sections 4-5 through 4-7. 

4—2 Poisson's and Laplace's Equations 

In Section 3-8 we pointed out that Eqs. (3-98) and (3-5) are the two fundamental 
governing differential equations for electrostatics in any medium. These equations are 

152 
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repeated below for convenience. 
Eq. (3-98): V • D = p. (4-1) 
Eq. (3-5): V x E = 0. (4-2) 

The irrotational nature of E indicated by Eq. (4-2) enables us to define a scalar 
electric potential V, as in Eq. (3-43). 

Eq. (3-43): E = - V 7 . (4-3) 

In a linear and isotropic medium D = eE, and Eq. (4-1) becomes 
V • eE = p. (4-4) 

Substitution of Eq. (4-3) in Eq. (4-4) yields 
V - ( e V F ) = - p , (4-5) 

where e can be a function of position. For a simple medium; that is, for a medium 
that is also homogeneous, e is a constant and can then be taken out of the divergence 
operation. We have 

V 2 F = - ^ - (4-6) 

In Eq. (4-6) we have introduced a new operator, V2 (del square), the Laplacian 
operator, which stands for "the divergence of the gradient of," or V • V. Equation 
(4-6) is known as Poisson's equation, it states that the Laplacian (the divergence of 
the gradient) of V equals — p/e for a simple medium, where e is the permittivity of 
the medium (which is a constant) and p is the volume density of free charges (which 
may be a function of space coordinates). 

Since both divergence and gradient operations involve first-order spatial deriv
atives, Poisson's equation is a second-order partial differential equation that holds 
at every point in space where the second-order derivatives exist. In Cartesian coor
dinates, 

' d d d\ ( 8V dV 8V^ 

and Eq. (4-6) becomes 

(4-7) 

Similarly, by using Eqs. (2-93) and (2-110) we can easily verify the following expres
sions for \2V in cylindrical and spherical coordinates. 

Cylindrical coordinates: 
1 

(4-8) 

\2V = V- \V= a 

d2V 82V d2V 
~d^2+'dy2+~dz2~ 

_P_ 
e 

(V/m2). 

r or 
6T 
dr I r 

J2V d2V 
1W + ~fcr' 
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Spherical coordinates: 

R2dR\K dR + 
1 

R2 sin 9 89 sin 9 dV\ 1 d2V 
39 ) + R2 sin2 9 W' (4-9) 

The solution of Poisson's equation in three dimensions subject to prescribed boundary 
conditions is, in general, not an easy task. 

At points in a simple medium where there is no free charge, p = 0 and Eq. (4-6) 
reduces to 

\2V = 0, (4-10) 

which is known as Laplace's equation. Laplace's equation occupies a very important 
position in electromagnetics. It is the governing equation for problems involving a 
set of conductors, such as capacitors, maintained at different potentials. Once V is 
found from Eq. (4-10), E can be determined from - \V, and the charge distribution 
on the conductor surfaces can be determined from ps = eE„ (Eq. 3-72). 

EXAMPLE 4-1 The two plates of a parallel-plate capacitor are separated by a dis
tance d and maintained at potentials 0 and V0, as shown in Fig. 4 - 1 . Assuming negli
gible fringing effect at the edges, determine (a) the potential at any point between the 
plates, and (b) the surface charge densities on the plates. 

Solution 

a) Laplace's equation is the governing equation for the potential between the plates, 
since p = 0 there. Ignoring the fringing effect of the electric field is tantamount 
to assuming that the field distribution between the plates is the same as though 
the plates were infinitely large and that there is no variation of V in the x and z 
directions. Equation (4-7) then simplifies to 

d2V n 

W = 0, (4-11) 

where d2/dy2 is used instead of d2/dy2, since y is the only space variable here. 
Integration of Eq. (4-11) with respect to v gives 

dy ~ C " 

Yo w 111 
\d+ + + 

FIGURE 4-1 
A parallel-plate capacitor (Example 4-1). 
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where the constant of integration C t is yet to be determined. Integrating again, 
we obtain 

V=Ciy + C2. (4-12) 
Two boundary conditions are required for the determination of the two constants 
of integration, Cx and C2: 

At y = 0, V = 0. (4-13a) 
At y = d, V=V0. (4-13b) 

Substitution of Eqs. (4-13a) and (4-13b) in Eq. (4-12) yields immediately Cx = 
V0/d and C2 = 0. Hence the potential at any point y between the plates is, from 
Eq. (4-12), 

v = ~y. (4-14) 
a 

The potential increases linearly from y = 0 to y = d. 
b) In order to find the surface charge densities, we must first find E at the conducting 

plates at y = 0 and y = d. From Eqs. (4-3) and (4-14) we have 

dy~ " ' d 
which is a constant and is independent ofy. Note that the direction of E is opposite 
to the direction of increasing V. The surface charge densities at the conducting 
plates are obtained by using Eq. (3-72), 

9 

E = - a y — = - a , - ^ , (4-15) 

At the lower plate, 

a„ = ay, 

At the upper plate, 

a„= - a y , 

£„ = a„-E = 

F Vo 

F F o 

r s 
e 

eF° 

n € F ° 
9» = -T' 

Electric field lines in an electrostatic field begin from positive charges and end in 
negative charges. ™ 

EXAMPLE 4-2 Determine the E field both inside and outside a spherical cloud of 
electrons with a uniform volume charge density p = — p0 (where p0 is a positive 
quantity) for 0 < R < b and p = 0 for R > b by solving Poisson's and Laplace's 
equations for V. 

Solution We recall that this problem was solved in Chapter 3 (Example 3-7) by 
applying Gauss's law. We now use the same problem to illustrate the solution of 
one-dimensional Poisson's and Laplace's equations. Since there are no variations in 
6 and cf> directions, we are dealing only with functions of R in spherical coordinates. 
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a) Inside the cloud, 
0 < R < b, p = -p0. 

In this region, Poisson's equation (V2Vi = ~p/e0) holds. Dropping d/d6 and d/d(f) 
terms from Eq. (4-9), we have 

1 d fn2dVi\ p0 

which reduces to 
R2 dR\R dR 

d (n2dVi\_P0 D 2 _ [R* —± = ™ R\ (4-16) 
dR\ dR e0

 v ' 

= W^R + -^J- (4-17) 

Integration of Eq. (4-16) gives 

dR 3e0 R 
The electric field intensity inside the electron cloud is 

*--'"—©■ 
Since E£ cannot be infinite at R = 0, the integration constant Cj in Eq. (4-17) 
must vanish. We obtain 

Et= -aR^-R, 0<R<b. (4-18) 
3e0 

b) Outside the cloud, 
R>b, p = 0. 

Laplace's equation holds in this region. We have \2V0 = 0 or 

J-Afc^o. (4-19) 
R2 dR\ dR y 

(4-20) 

(4-21) 

The integration constant C2 can be found by equating E0 and Et at R = b, where 
there is no discontinuity in medium characteristics. 

^ = ^-b 
b2 3 e / ' 

from which we find 
Pob" 
3e0 

and 

Integrating Eq. (4-19), we obtain 
dK C2 

dR R2 

or 

«. = -^ = —S = a °> a s R 2 

C2 = ^ - (4-22) 

E " = - a « ^ ' * -^ f c - ( 4 " 2 3 ) 

Je0i< 
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Since the total charge contained in the electron cloud is 

Eq. (4-23) can be written as 

47T T ,. 
Q= -Poyfr3, 

E0 = *RTZ~^> ( 4 - 2 4 ) 
Q 

Ane^R 

which is the familiar expression for the electric field intensity at a point R from 
a point charge Q. ™ 

or 

Further insight to this problem can be gained by examining the potential as a 
function of R. Integrating Eq. (4-17), remembering that Cx = 0, we have 

Vi = ^ + C \ . (4-25) 
6e0 

It is important to note that C\ is a new integration constant and is not the same as 
Ct. Substituting Eq. (4-22) in Eq. (4-20) and integrating, we obtain 

K = - ^ + C2. (4-26) 

However, C2 in Eq. (4-26) must vanish, since V0 is zero at infinity (R -*■ GO). AS electro
static potential is continuous at a boundary, we determine C\ by equating Vt and 
V0atR = b: 

Pob2
 + c = Pob2 

6e0
 1 3e0 

C\ = - ^ ; (4-27) 

We see that Vt in Eq. (4-28) is the same as V in Eq. (3-172), with p = —pQ. 

4—3 Uniqueness of Electrostatic Solutions 

In the two relatively simple examples in the last section we obtained the solutions 
by direct integration. In more complicated situations, other methods of solution 
must be used. Before these methods are discussed, it is important to know that a 
solution of Poisson's equation (of which Laplace's equation is a special case) that 
satisfies the given boundary conditions is a unique solution. This statement is called 
the uniqueness theorem. The implication of the uniqueness theorem is that a solution 
of an electrostatic problem satisfying its boundary conditions is the only possible 

and, from Eq. (4-25), 
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FIGURE 4-2 
Surface S0 enclosing volume T with conducting bodies. 

solution, irrespective of the method by which the solution is obtained. A solution ob
tained even by intelligent guessing is the only correct solution. The importance of this 
theorem will be appreciated when we discuss the method of images in Section 4-4. 

To prove the uniqueness theorem, suppose a volume T is bounded outside by a 
surface S0, which may be a surface at infinity. Inside the closed surface S0 there are 
a number of charged conducting bodies with surfaces S l9 S2, ■ ■ ■, Sn at specified 
potentials, as depicted in Fig. 4-2. Now assume that, contrary to the uniqueness 
theorem, there are two solutions, V1 and V2, to Poisson's equation in T: 

\2V, = - - , (4-29a) 

S/2V2 = - - ■ (4-29b) 

Also assume that both Vx and V2 satisfy the same boundary conditions on Sx, 
S2,..., Sn and S0. Let us try to define a new difference potential: 

Vd = VL - V2. (4-30) 

From Eqs. (4-29a) and (4-29b) we see that Vd satisfies Laplace's equation in v. 

\2Vd - 0. (4-31) 

On conducting boundaries the potentials are specified and Vd = 0. 
Recalling the vector identity (Problem P.2-28), 

V - ( / A ) = / V - A + A-V/ ; (4-32) 

and letting f =Vd and A = \Vd; we have 

V • (Vd\Vd) = Vd\2Vd + \\Vd\\ (4-33) 

where, because of Eq. (4-31), the first term on the right side vanishes. Integration 
of Eq. (4-33) over the volume T yields 

§s(Vd\Vd)'Kds = jx\VVd\2dv, (4-34) 

where a„ denotes the unit normal outward from x. Surface S consists of S0 as well as 
S1,S2,..., and Sn. Over the conducting boundaries, Vd = 0. Over the large surface 
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S0, which encloses the whole system, the surface integral on the left side of Eq. (4-34) 
can be evaluated by considering S0 as the surface of a very large sphere with radius R. 
As R increases, both V1 and V2 (and therefore also Vd) fall off as 1/R; consequently, 
\Vd falls off as 1/R2, making the integrand (Vd\Vd) fall off as 1/R3. The surface area 
S0, however, increases as R2. Hence the surface integral on the left side of Eq. (4-34) 
decreases as 1/R and approaches zero at infinity. So must also the volume integral 
on the right side. We have 

jj\Vd\2dv = 0. (4-35) 

Since the integrand \VVd\2 is nonnegative everywhere, Eq. (4-35) can be satisfied only 
if \VVd\ is identically zero. A vanishing gradient everywhere means that Vd has the 
same value at all points in T as it has on the bounding surfaces, Slt S2,..., S„, 
where Vd = 0. It follows that Vd = 0 throughout the volume T. Therefore Vl = V2, 
and there is only one possible solution. 

It is easy to see that the uniqueness theorem holds if the surface charge distri
butions (ps = eEn = — edV/dn), rather than the potentials, of the conducting bodies 
are specified. In such a case, \Vd will be zero, which in turn, makes the left side of 
Eq. (4-34) vanish and leads to the same conclusion. In fact, the uniqueness theorem 
applies even if an inhomogeneous dielectric (one whose permittivity varies with posi
tion) is present. The proof, however, is more involved and will be omitted here. 

4 - 4 Method of Images 

There is a class of electrostatic problems with boundary conditions that appear to 
be difficult to satisfy if the governing Poisson's or Laplace's equation is to be solved 
directly, but the conditions on the bounding surfaces in these problems can be set 
up by appropriate image (equivalent) charges, and the potential distributions can 
then be determined in a straightforward manner. This method of replacing bounding 
surfaces by appropriate image charges in lieu of a formal solution of Poisson's or 
Laplace's equation is called the method of images. 

Consider the case of a positive point charge, Q, located at a distance d above a 
large grounded (zero-potential) conducting plane, as shown in Fig. 4-3(a). The prob
lem is to find the potential at every point above the conducting plane (y > 0). The 
formal procedure for doing so would be to solve Laplace's equation in Cartesian 
coordinates: 

_ d2V d2V d2V rt 
V F = ^ + a / + ^ = 0 ' (4"36) 

which must hold for y > 0 except at the point charge. The solution V(x, y, z) should 
satisfy the following conditions: 

1. At all points on the grounded conducting plane, the potential is zero; that is, 
V(x, 0, z) = 0. 
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Grounded 
plane conductor 

(2(0, d, 0) 

-& 

(a) Physical arrangement. 

->x 

2Q 
(Image charge) 

(b) Image charge and field lines. 
FIGURE 4-3 
Point charge and grounded plane conductor. 

2. At points very close to Q the potential approaches that of the point charge alone; 
that is 

Q V , as R -> 0, 
4n€0R 

where R is the distance to Q. 
3. At points very far from Q(x -> ± oo, y -> + co, or z -> + oo) the potential ap

proaches zero. 
4. The potential function is even with respect to the x and z coordinates; that is, 

V{x,y,z)= V(-x,y,z) 
and 

V(x,y,z)= V(x,y, -z). 

It does appear difficult to construct a solution for V that will satisfy all of these 
conditions. 

From another point of view, we may reason that the presence of a positive charge 
Q at y = d would induce negative charges on the surface of the conducting plane, 
resulting in a surface charge density ps. Hence the potential at points above the 
conducting plane would be 

V(x, y, z) Q 
+ 4nejx2 + (y~d)2 + z2 ^ o J s * i ^:Ljrds> 

where Rx is the distance from ds to the point under consideration and S is the surface 
of the entire conducting plane. The trouble here is that ps must first be determined 
from the boundary condition V(x, 0, z) = 0. Moreover, the indicated surface integral 
is difficult to evaluate even after ps has been determined at every point on the con
ducting plane. In the following subsections we demonstrate how the method of images 
greatly simplifies these problems. 
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4-4.1 POINT CHARGE AND CONDUCTING PLANES 

The problem in Fig. 4-3(a) is that of a positive point charge, Q, located at a distance 
d above a large plane conductor that is at zero potential. If we remove the conductor 
and replace it by an image point charge -Q at y = -d, then the potential at a point 
P(x, y, z) in the y > 0 region is 

"<***>=4 (£-*:)■ (4"37) 
where R+ and R_ are the distances from Q and —Q, respectively, to the point P. 

R_ = [x2 + (y + d)2+z2yi2. 

It is easy to prove by direct substitution (Problem P.4-5a) that V(x, y, z) in Eq. (4-37) 
satisfies the Laplace's equation in Eq. (4-36), and it is obvious that all four conditions 
listed after Eq. (4-36) are satisfied. Therefore Eq. (4-37) is a solution of this problem; 
and, in view of the uniqueness theorem, it is the only solution. 

Electric field intensity E in the y > 0 region can be found easily from — VFwith 
Eq. (4-37). It is exactly the same as that between two point charges, + Q and — Q, 
spaced a distance 2d apart. A few of the field lines are shown in Fig. 4-3(b). The 
solution of this electrostatic problem by the method of images is extremely, simple; 
but it must be emphasized that the image charge is located outside the region in 
which the field is to be determined. In this problem the point charges + Q and — Q 
cannot be used to calculate the V or E in the y < 0 region. As a matter of fact, both 
V and E are zero in the y < 0 region. Can you explain that? 

It is readily seen that the electric field of a line charge pe above an infinite con
ducting plane can be found from pt and its image — pt (with the conducting plane 
removed). 

EXAMPLE 4-3 A positive point charge Q is located at distances d1 and d2, respec
tively, from two grounded perpendicular conducting half-planes, as shown in Fig. 
4-4(a). Determine the force on Q caused by the charges induced on the planes. 

Solution A formal solution of Poisson's equation, subject to the zero-potential 
boundary condition at the conducting half-planes, would be quite difficult. Now an 
image charge — Q in the fourth quadrant would make the potential of the horizontal 
half-plane (but not that of the vertical half-plane) zero. Similarly, an image charge 
— Q in the second quadrant would make the potential of the vertical half-plane (but 
not that of the horizontal plane) zero. But if a third image charge + Q is added in 
the third quadrant, we see from symmetry that the image-charge arrangement in Fig. 
4-4(b) satisfies the zero-potential boundary condition on both half-planes and is 
electrically equivalent to the physical arrangement in Fig. 4-4(a). 

Negative surface charges will be induced on the half-planes, but their effect on 
<2 can be determined from that of the three image charges. Referring to Fig. 4-4(c), 
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dv 
Q 

1 
d2 
I 

(a) Physical arrangement. 

-e 
•— 
i 
i 
i 
i 

-Q J2 0. 

H >x 

+Q 1 • 
-Q 

(b) Equivalent image-charge 
arrangement. 

+Q -Q 
(c) Forces on charge Q. 

FIGURE 4-4 
Point charge and perpendicular conducting planes. 

we have, for the net force on Q, 

where 

Therefore, 

F l *y 47re0(2d2)2' 

F = F t + F 2 + F3 , 

Q2 

F 2 = - a 

F 3 = 

Q: 

47re0(2^1)2' 

Q2 

4ne0[(2d1)2 + {2d2ff 
{^Id, + ay2d2). 

F = Q: 

16ne0 

di 
(dj + d2

2)312 d\ + a„ 
d2 1 

(dj + dlf'2 ~ d2 

The electric potential and electric field intensity at points in the first quadrant and 
the surface charge density induced on the two half-planes can also be found from 
the system of four charges (Problem P.4-8). 

4-4.2 LINE CHARGE AND PARALLEL CONDUCTING CYLINDER 

We now consider the problem of a line charge pe (C/m) located at a distance d from 
the axis of a parallel, conducting, circular cylinder of radius a. Both the line charge 
and the conducting cylinder are assumed to be infinitely long. Figure 4-5(a) shows a 
cross section of this arrangement. Preparatory to the solution of this problem by the 
method of images, we note the following: (1) The image must be a parallel line charge 
inside the cylinder in order to make the cylindrical surface at r = a an equipotential 
surface. Let us call this image line charge pt. (2) Because of symmetry with respect 
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to the line OP, the image line charge must lie somewhere along OP, say at point Pu 
which is at a distance dt from the axis (Fig. 4-5b). We need to determine the two 
unknowns, pi and dt. 

As a first approach, let us assume that 

Pi = ~Pt- (4-38) 

At this stage, Eq. (4-38) is just a trial solution (an intelligent guess), and we are not 
sure that it will hold true. We will, on one hand, proceed with this trial solution until 
we find that it fails to satisfy the boundary conditions. On the other hand, if Eq. 
(4-38) leads to a solution that does satisfy all boundary conditions, then by the 
uniqueness theorem it is the only solution. Our next job will be to see whether we 
can determine d{. 

The electric potential at a distance r from a line charge of density pe can be 
obtained by integrating the electric field intensity E given in Eq. (3-40): 

V=- f Erdr = 
Jro 

2n€Q r 

Pt 
2n€0 

rr 1 
Jro r dr 

(4-39) 

Note that the reference point for zero potential, r0, cannot be at infinity because 
setting r0 = oo in Eq. (4-39) would make V infinite everywhere else. Let us leave 
r0 unspecified for the time being. The potential at a point on or outside the cylindrical 
surface is obtained by adding the contributions of pe and pt. In particular, at a point 
M on the cylindrical surface shown in Fig. 4-5(b) we have 

VM = "M 2ne0 

p* _ i n ^ p* 
r 2n€0 

l n ^ 
(4-40) 

2ne0 r 

(a) Line charge and parallel conducting cylinder. (b) Line charge and its image. 

FIGURE 4-5 
Cross section of line charge and its image in a parallel, conducting, circular cylinder. 
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In Eq. (4-40) we have chosen, for simplicity, a point equidistant from pe and pt as 
the reference point for zero potential so that the In r0 terms cancel. Otherwise, a 
constant term should be included in the right side of Eq. (4-40), but it would not 
affect what follows. Equipotential surfaces are specified by 

- = Constant. (4-41) 

If an equipotential surface is to coincide with the cylindrical surface (OM = a), the 
point Pi must be located in such a way as to make triangles OMPt and OPM similar. 
Note that these two triangles already have one common angle, LMOPt. Point Pt 
should be chosen to make L OMPt = L OPM. We have 

I\M OPi OM 
TM~7M~~UP 

or 
ri di a _ 
- = — = - = Constant. (4-42) 
r a d 

From Eq. (4-42) we see that if 

di 
a2 

d 

the image line charge — p£, together with p^ will make the dashed cylindrical sur
face in Fig. 4-5(b) equipotential. As the point M changes its location on the dashed 
circle, both rt and r will change; but their ratio remains a constant that equals a/d. 
Point Pt is called the inverse point of P with respect to a circle of radius a. 

The image line charge — pe can then replace the cylindrical conducting surface, 
and V and E at any point outside the surface can be determined from the line charges 
Pi and — pe. By symmetry we find that the parallel cylindrical surface surrounding 
the original line charge pe with radius a and its axis at a distance d{ to the right of 
P is also an equipotential surface. This observation enables us to calculate the capaci
tance per unit length of an open-wire transmission line consisting of two parallel 
conductors of circular cross section. 

EXAMPLE 4-4 Determine the capacitance per unit length between two long, paral
lel, circular conducting wires of radius a. The axes of the wires are separated by a 
distance D. 

Solution Refer to the cross section of the two-wire transmission line shown in Fig. 
4-6. The equipotential surfaces of the two wires can be considered to have been 
generated by a pair of line charges + pe and — pe separated by a distance (D — 2d^ = 
d — dt. The potential difference between the two wires is that between any two points 
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FIGURE 4-6 
Cross section of two-wire transmission 
line and equivalent line charges 
(Example 4-4). 

on the respective wires. Let subscripts 1 and 2 denote the wires surrounding the 
equivalent line charges + pe and —p£, respectively. We have, from Eqs. (4-40) and 
(4-42). 

Pe i- a 
V? = 

2ne0 d 
and, similarly, 

2nen d 

We note that Vx is a positive quantity, whereas V2 is negative because a < d. The 
capacitance per unit length is 

C nef 
V1-V2 \n(d/a)' 

where 

from which we obtain1-

d = D-d; = D 

d = ±(D + V l > 2 - 4 a 2 ) . 

Using Eq. (4-45) in Eq. (4-44), we have 

C = ner 

In [(D/2a) + J(D/2a)2 - 1] 
(F/m). 

Since 
In [x + yjx2 — 1] = cosh 1 x 

(4-44) 

(4-45) 

(4-46) 

f The other solution, d = \{D - yJD2 -4a2), is discarded because both D and d are usually much larger 
than a. 
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P(x,y) 

>x FIGURE 4-7 
Cross section of a pair of line charges. 

for x > 1, Eq. (4-46) can be written alternatively as 

C = 
TZ€r 

cosh"1 (D /2a) 
(F/m). (4-47) 

The potential distribution and electric field intensity around the two-wire line in 
Fig. 4-6 can also be determined easily from the equivalent line charges. 

We now consider the more general case of a two-wire line of different radii. We 
know that our problem would be solved if we could find the location of the equivalent 
line charges that make the wire surfaces equipotential. Let us then first study the 
potential distribution around a pair of positive and negative line charges, a cross 
section of which is given in Fig. 4-7. The potential at any point P(x, y) due to + pe 
and — pe is, from Eq. (4-40), 

Pe V„ = 2ne0 
i n ^ - (4-48) 

In the xy-plane the equipotential lines are defined by r2/r1 — k (constant). We have 

r2 _ V(x + b)2 + y2 

n ~ V(x - b)2 + y2 

which reduces to 

x — 
k2 + l 
k2-\ b) +r 

= K 

2k M 

/ c 2 - l 

Equation (4-49) represents a family of circles in the xy-plane with radii 

2kb 
a = k2-l 

(4-49) 

(4-50) 

(4-51) 

where the absolute-value sign is necessary because k in Eq. (4-49) can be less than 
unity and a must be positive. The centers of the circles are displaced from the origin 
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by a distance 

c = 
fe2 + l 

A particularly simple relation exists among a, b, and c: 

c2 = a2 + b2, 
or b = 4cr^a2~. 

(4-52) 

(4-53) 

(4-54) 

Two families of the displaced circular equipotential lines are shown in Fig. 4-8: 
one family around +p^ for k > 1 and another around -pt for k < 1. The y-axis is 
the zero-potential line (a circle of infinite radius) corresponding to k = 1. The dashed 
lines in Fig. 4-8 are circles representing electric field lines, which are everywhere 
perpendicular to the equipotential lines (Problem P.4-12). Thus the electrostatic 

+ X 

FIGURE 4-8 
Equipotential (solid) and electric field (dashed) lines around a pair of line charges, 
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> x 

FIGURE 4-9 
Cross section of two parallel wires with different radii. 

problem of a two-wire line with different radii is that of two equipotential circles of 
unequal radii, one on each side of the y-axis in Fig. 4-8; it can be solved by deter
mining the locations of the equivalent line charges. 

Assume that the radii of the wires are a1 and a2 and that their axes are separated 
by a distance D, as shown in Fig. 4-9. The distance b of the line charges to the 
origin is to be determined. This can be done by first expressing c1 and c2 in terms 
of au a2, and D. From Eq. (4-54) we have 

b2 = c{ - a{ (4-55) 
and 

But 
b2 = c2 - a2 

cx + c2 = D. 

Solution of Eqs. (4-55), (4-56), and (4-57) gives 

1 

and 

Cl= — {D2 + a{-al) 

c2= — (D2 + a2-a2). 

(4-56) 

(4-57) 

(4-58) 

(4-59) 

The distance b can then be found from Eq. (4-55) or Eq. (4-56). 
An interesting variation of the two-wire problem is that of an off-center con

ductor inside a conducting cylindrical tunnel shown in Fig. 4-10(a). Here the two 
equipotential surfaces are on the same side of a pair of equal and opposite line 
charges. This is depicted in Fig. 4-10(b). We have, in addition to Eqs. (4-55) and 
(4-56), 

c2-c1= D. (4-60) 
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Combination of Eqs. (4-55), (4-56), and (4-60) yields 

c. = ~ (a2 - a \ - D2) 

and 

c2 = ^(a2
2-a2

1+D2). 

♦> X 

(a) A cross-sectional view. 

y. 

> x 

(b) Equivalent line charges. 

FIGURE 4-10 
An off-center conductor inside a 
cylindrical tunnel. 
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The distance b can be found from Eq. (4-55) or Eq. (4-56). With the locations of the 
equivalent line charges known, the determination of the potential and electric field 
distributions and of the capacitance between the conductors per unit length becomes 
straightforward (Problems P.4-13 and P.4-14). 

4-4.3 POINT CHARGE AND CONDUCTING SPHERE 

The method of images can also be applied to solve the electrostatic problem of a 
point charge in the presence of a spherical conductor. Referring to Fig. 4-11(a), in 
which a positive point charge Q is located at a distance d from the center of a grounded 
conducting sphere of radius a {a < d), we now proceed to find the V and E at points 
external to the sphere. By reason of symmetry we expect the image charge Qt to be 
a negative point charge situated inside the sphere and on the line joining 0 and Q. 
Let it be at a distance di from 0. It is obvious that Qt cannot be equal to —Q, since 
- Q and the original Q do not make the spherical surface R = a a zero-potential 
surface as required. (What would the zero-potential surface be if Qt = - Q?) We must 
therefore treat both dt and Qt as unknowns. 

In Fig. 4-11(b) the conducting sphere has been replaced by the image point 
charge Qh which makes the potential at all points on the spherical surface R = a zero. 
At a typical point M, the potential caused by Q and Qt is 

'M — 'M 

which requires 
4ne0 r r; 

= 0, 

r- 0 
- = -7T = Constant. 
r Q 

(4-63) 

(4-64) 

Noting that the requirement on the ratio rjr is the same as that in Eq. (4-41), we 
conclude from Eqs. (4-42), (4-43), and (4-64) that 

Q d 

(a) Point charge and grounded conducting sphere. 

FIGURE 4-11 
Point charge and its image in a grounded sphere. 

(b) Point charge and its image. 
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or 

and 

Q^~dQ 

A a 
di = - -

(4-65) 

(4-66) 

The point Qt is thus the inverse point of Q with respect to a sphere of radius a. The 
V and E of all points external to the grounded sphere can now be calculated from the 
V and E caused by the two point charges Q and -aQ/d. 

EXAMPLE 4-5 A point charge Q is at a distance d from the center of a grounded 
conducting sphere of radius a {a < d). Determine (a) the charge distribution induced 
on the surface of the sphere, and (b) the total charge induced on the sphere. 

Solution The physical problem is that shown in Fig. 4-11(a). We solve the problem 
by the method of images and replace the grounded sphere by the image charge Qt = 
-aQ/d at a distance di = a2/d from the center of the sphere, as shown in Fig. 4-12. 
The electric potential V at an arbitrary point P(R, 6) is 

vw-j-d-« 4ne0 \RQ dRQiJ' 

where, by the law of cosines, 

RQ = [R2 + d2-2Rdcose~]ll2 

and 

* « . = 
, 2 \ 2 

R2 + i — \ -2R l-r cos •]"" 

(4-67) 

(4-68) 

(4-69) 

P(R,d) 

FIGURE 4-12 
Diagram for computing induced charge distribution 
(Example 4-5). 
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Note that 6 is measured from the line OQ. The K-component of the electric field 
intensity, ER, is 

Using Eq. (4-67) in Eq. (4-70) and noting Eqs. (4-68) and (4-69), we have 

r to m 2 ( R-dcos6 a[R- (a2/d) cos &] 
47ie0 [(tf2 + d2 - 2/ta cos 9ft2 d[R2 + (a2/d)2 - 2R(a2/d) cos 0]3/2J ' 

(4-71) 
a) To find the induced surface charge on the sphere, we set R = a in Eq. (4-71) and 

evaluate 
ps = e0£i?(a, 0), (4-72) 

which yields the following after simplification: 
Q(d2 - a2) 

Ps ~ 4na(a2 + d2 - lad cos 6>)3/2' ( 4 " ? 3 ) 

Eq. (4-73) tells us that the induced surface charge is negative and that its magni
tude is maximum at 6 = 0 and minimum at 6 = n, as expected. 

b) The total charge induced on the sphere is obtained by integrating ps over the 
surface of the sphere. We have 

Total induced charge = (pps ds = % psa2 sin 6 d6 d<\> 
a ° ° (4-74) 

We note that the total induced charge is exactly equal to the image charge Qt 
that replaced the sphere. Can you explain this? ^ 

If the conducting sphere is electrically neutral and is not grounded, the image of 
a point charge Q at a distance d from the center of the sphere would still be Qt at 
dt given by Eqs. (4-65) and (4-66), respectively, in order to make the spherical surface 
R = a equipotential. However, an additional point charge 

Q'=-Qi = ~Q (4-75) 

at the center would be needed to make the net charge on the replaced sphere zero. 
The electrostatic problem of a point charge Q in the presence of an electrically 
neutral sphere can then be solved as a problem with three point charges : Q' at R = 0, 
Qi at R = a2Id, and QdXR = d. 

4-4.4 CHARGED SPHERE AND GROUNDED PLANE 
When a charged conducting sphere is near a large, grounded, conducting plane, as in 
Fig. 4-13(a), the charge distribution on and the electric field between the conducting 
bodies are obviously nonuniform. Since the geometry contains a mixture of spherical 
and Cartesian coordinates, field determination and capacitance calculation through a 
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solution of Laplace's equation is a rather difficult problem. We shall now show how 
the repeated application of the method of images can be used to solve this problem. 

Assume that a charge Q0 is put at the center of the sphere. We wish to find a system 
of image charges that, together with Q0, will make both the sphere and the plane 
equipotential surfaces. The problem of a charged sphere near a grounded plane can 
then be replaced by that of the much simpler system of point charges. A cross sec
tion in the xy-plane is shown in Fig. 4-13(b). The presence of Q0 at ( —c, 0) requires 
an image charge - Q0 at (c, 0) to make the yz-plane equipotential; but the pair 
of charges Q0 and - Q0 destroy the equipotential property of the sphere unless, 
according to Eqs. (4-65) and (4-66), an image charge Q1 = {a/2c)Q0 is placed at 
( -c + a2/2c, 0) inside the dashed circle. This, in turn, requires an image charge - g i 
to make the yz-plane equipotential. This process of successive application of the 
method of images is continued, and we obtain two groups of image point charges: 
one group { — Q0, —Ql5 -Q2, ■ ■ •) o n t n e right side of the y-axis, and another group 
(6i> 02> • • •) inside the sphere. We have 

(4-76a) 

(4-76b) 

* " * 

<23 = 
2 c - a 

Qi = 

2c-a-
2c 

(1 - a2) 1 - 1-or 

Qo, (4-76c) 

/ 
/ 

\ 

—. 

\ 
QoQxQi \ 
9 w 9 

/ 

/ 
4-/ 

2c -

0 ' 

a2 1 

- ia2l2c) ! 2c -

-Q2-Q1-Q0 

a2 / 
- (a2/2c) 

\2c -

(a) Physical arrangement. (b) Two groups of image point charges. 

FIGURE 4-13 
Charged sphere and grounded conducting plane. 



174 4 Solution of Electrostatic Problems 

where 
a a = - . (4-77) 

The total charge on the sphere is 

Q = Qo + Qi + Q2 + ■ ■ ■ 

The series in Eq. (4-78) usually converges rapidly (a < 1/2). Now since the charge 
pairs ( — Qo, Qx), ( —Qi> Qi)^ • • • yield a zero potential on the sphere, only the original 
Q0 contributes to the potential of the sphere, which is 

(4-79) 

Hence the capacitance between the sphere and the conducting plane is, from Eqs. 
(4-78) and (4-79), 

v0 - - u " r • - • ! - * < C = fp = 4n€0a{ 1 + a + j + ■■■ ), (4-80) 

which is larger than the capacitance of an isolated sphere of radius a, as expected. 
The potential and electric field distributions between the sphere and the conducting 
plane can also be obtained from the image point charges. 

4—5 Boundary-Value Problems in Cartesian Coordinates 

We saw in the preceding section that the method of images is very useful in solving 
certain types of electrostatic problems involving free charges near conducting bound
aries that are geometrically simple. However, if the problem consists of a system of 
conductors maintained at specified potentials and with no isolated free charges, it 
cannot be solved by the method of images. This type of problem requires the solu
tion of Laplace's equation. Example 4-1 (p. 154) was such a problem where the 
electric potential was a function of only one coordinate. Of course, Laplace's equation 
applied to three dimensions is a partial differential equation, where the potential is, 
in general, a function of all three coordinates. We will now develop a method for 
solving three-dimensional problems where the boundaries, over which the potential 
or its normal derivative is specified, coincide with the coordinate surfaces of an or
thogonal, curvilinear coordinate system. In such cases, the solution can be expressed 
as a product of three one-dimensional functions, each depending separately on one 
coordinate variable only. The procedure is called the method of separation of 
variables. 

Problems (electromagnetic or otherwise) governed by partial differential equa
tions with prescribed boundary conditions are called boundary-value problems?. 
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Boundary-value problems for potential functions can be classified into three types: 
(1) Dirichlet problems, in which the value of the potential is specified everywhere on 
the boundaries; (2) Neumann problems, in which the normal derivative of the poten
tial is specified everywhere on the boundaries; (3) Mixed boundary-value problems, 
in which the potential is specified over some boundaries and the normal derivative of 
the potential is specified over the remaining ones. Different specified boundary con
ditions will require the choice of different potential functions, but the procedure of 
solving these types of problems—that is, by the method of separation of variables— 
for the three types of problems is the same. The solutions of Laplace's equation are 
often called harmonic functions. 

Laplace's equation for scalar electric potential V in Cartesian coordinates is 

d2V d2V d2V 1 1 
dx2 dy2 dz 2 + ^ + ^ = 0- (4-81) 

To apply the method of separation of variables, we assume that the solution V(x, y, z) 
can be expressed as a product in the following form: 

V(x, y, z) = X(x)Y(y)Z(z), (4-82) 

where X(x), Y(y), and Z(z) are functions of only x, y, and z, respectively. Substituting 
Eq. (4-82) in Eq. (4-81), we have 

d2X(x) d2Y(y) d2Z(z) 

which, when divided through by the product X(x)Y(y)Z(z), yields 

1 d2X(x) 1 d2Y(y) 1 d2Z(z) n 
+ ^T^ —TT1 + ^7T —TV- = °- (4"83) X(x) dx2 Y(y) dy2 Z{z) dz2 

Note that each of the three terms on the left side of Eq. (4-83) is a function of only 
one coordinate variable and that only ordinary derivatives are involved. In order for 
Eq. (4-83) to be satisfied for all values of x, y, z, each of the three terms must be a 
constant. For instance, if we differentiate Eq. (4-83) with respect to x, we have 

d 
dx 

1 d2X{x) 
= 0, (4-84) X{x) dx2 

since the other two terms are independent of x. Equation (4-84) requires that 

1 d2X(x) 
X{x) dx: = ~kl (4-85) 

where k2
x is a constant of integration to be determined from the boundary conditions 

of the problem. The negative sign on the right side of Eq. (4-85) is arbitrary, just as 
the square sign on kx is arbitrary. The separation constant kx can be a real or an 
imaginary number. If kx is imaginary, k2

x is a negative real number, making - k2
x a. 
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TABLE 4-1 
Possible Solutions of X"(x) + k2

xX(x) = 0 

kx kx 

0 0 
+ k 
- jk 

X(x) 

A0x + B0 

A1 sin kx + B1 cos kx 
A2 sinh kx + B2 cosh kx 

Exponential forms1 of X(x) 

Cie
jkx + Die-jkx 

C2ekx + D2e~kx 

* The exponential forms of X(x) are related to the trigonometric and hyperbolic forms 
listed in the third column by the following formulas: 

e±jkx _ C Q S fa _j_ j s j n fa^ C Q S fa _ l^gJkx _j_ e-jkx^ s j n fa= (gjkx _ g-jkxy^ 

e±kx = cosh kx + sinh kx, cosh /ex = ^(^* + e'kx), sinh /ex = \{ekx — e~kx). 

positive real number. It is convenient to rewrite Eq. (4-85) as 

d2X{x 
dx2 + k2

xX{x) = 0. (4-86) 

In a similar manner, we have 

and 

^ P ^ + fc,2r()0 = o (4-87) 

d2Z(z) 
dz: + k2Z(z) = 0, (4-88) 

where the separation constants ky and kz will, in general, be different from kx; but, 
because of Eq. (4-83), the following condition must be satisfied: 

k2
x + k2 + k2 = 0. (4-89) 

Our problem has now been reduced to finding the appropriate solutions—X(x), Y(y), 
and Z(z)—from the second-order ordinary differential equations Eqs. (4-86), (4-87), 
and (4-88), respectively. The possible solutions of Eq. (4-86) are known from our 
study of ordinary differential equations with constant coefficients. They are listed in 
Table 4 - 1 . That the listed solutions satisfy Eq. (4-86) is easily verified by direct 
substitution. 

Of the listed solutions in Table 4 -1 , the first one, A0x + B0 for kx = 0, is a straight 
line with a slope A0 and an intercept B0 at x = 0. When A0 = 0, X(x) = B0, which 
means that V, the solution of Laplace's equation, is independent of the dimension x. 

We are, of course, familiar with the sine and cosine functions, both of which are 
periodic with a period lit. If plotted versus x, sin kx and cos 'kx have a period 
2n/k. Frequently, a careful examination of a given problem enables us to decide 
whether a sine or a cosine function is the proper choice. For example, if the solution 
is to vanish at x = 0, sin kx must be chosen; on the other hand, if the solution is 
expected to be symmetrical with respect to x = 0, then cos kx is the right choice. In 
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► kx 

FIGURE 4-14 
Hyperbolic and exponential functions. 

the general case, both terms are required. Sometimes it may be desirable to write 
A1 sin kx + B1 cos kx as As sin (kx + \J/S) or Ac cos (kx + ij/^ 

For kx = jk the solution converts to hyperbolic functions: 

and 
sin jkx = —j sinh kx 

cos jkx = cosh kx. 

Hyperbolic functions are combinations of exponential functions with real exponents, 
and are nonperiodic. They are plotted in Fig. 4-14 for easy reference. The important 
characteristics of sinh kx are that it is an odd function of x and that its value ap
proaches + oo as x goes to + oo. The function cosh kx is an even function of x, equals 
unity at x = 0, and approaches + oo as x goes to + oo or — oo. 

The specified boundary conditions will determine the choice of the proper form 
of the solution and of the constants A and B or C and D. The solutions of Eqs. (4-87) 
and (4-88) for Y(y) and Z(z) are entirely similar. 

EXAMPLE 4-6 Two grounded, semi-infinite, parallel-plane electrodes are separated 
by a distance b. A third electrode perpendicular to and insulated from both is main
tained at a constant potential V0 (see Fig. 4-15). Determine the potential distribution 
in the region enclosed by the electrodes. 

f As sin {kx + I/JS) = {As cos I/JS) sin kx + (As sin I/JS) cos kx; A1 = As cos \\is, B1 = As sin i/̂ s; As = {A\ + B\)xtl, 
\\is = tan"1 (B1/A1). Ac cos (kx + \\ic) = ( — Ac sin i//c) sin kx + (Ac cos I/JC) cos kx; A1 = —Ac sin \\ic, Bx = 
Ac cos \jjc; Ac = (A\ + Bj)1'2, \jjc = tan"1 {-AJB^. 
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't v=o —►« 

v=v0 
\ \ N \ ^ \ " ^ N ^~~^~^N I FIGURE 4-15 

I * \ '̂  , I ' j > b Cross-sectional figure for 
IJ y ^ ^^' _ _ - - " y | Example 4-6. The plane 

In the ^-direction: 

Av^7///J7//r////////////7/u^//////^////u//////^///u/////u////////m ► x electrodes are infinite in 
u V=0 —►«» z-direction. 

Solution Referring to the coordinates in Fig. 4 - 1 5 , we write down the boundary 
conditions for the potential function V(x, y , z) as follows. 

With V independent of z: 
V(x,y,z)=V(x,y). (4-90a) 

In the x-direction: 
V(0,y)=Vo (4-90b) 

7(00, y) = 0. (4-90c) 

V(x, 0) = 0 (4-90d) 

V(x, b) = 0. (4-90e) 

Condition (4-90a) implies kz = 0, and from Table 4 - 1 , 

Z(z) = B0. (4-91) 

The constant A0 vanishes because Z is independent of z. From Eq. (4-89) we have 

k2
y = -k2

x = k\ (4-92) 

where k is a real number. This choice of k implies that kx is imaginary and that ky 
is real. The use of kx =jk, together with the condition of Eq. (4-90c), requires us to 
choose the exponentially decreasing form for X(x), which is 

X{x) = D2e'kx. (4-93) 

In the ^-direction, ky = k. Condition (4-90d) indicates that the proper choice for 
Y{y) from Table 4-1 is 

Y(y) = A1 sin ky. (4-94) 

Combining the solutions given by Eqs. (4-91), (4-93), and (4-94) in Eq. (4-82), we 
obtain an appropriate solution of the following form: 

Vn(x,y) = (B0D2A1)e-kx sin ky 
= Cne~kx sin ky, (4-95) 

where the arbitrary constant C„ has been written for the product B0D2A1. 
Now, of the five boundary conditions listed in Eqs. (4-90a) through (4-90e) we 

have used conditions (4-90a), (4-90c), and (4-90d). To meet condition (4-90e), we 
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require 
Vn(x,b) = Cne-kxsinkb = 0, 

which can be satisfied, for all values of x, only if 
sin kb = 0 

or 

(4-96) 

or 
k = nn 

kb = nn 

n = 1, 2, 3 , . . . . (4-97) 

Therefore, Eq. (4-95) becomes 

nn Vn(xy)-=C„e-™xibsmTy. (4-98) 

Question: Why are 0 and negative integral values of n not included in Eq. (4-97)? 
We can readily verify by direct substitution that V„{x, y) in Eq. (4-98) satisfies the 

Laplace's equation (4-81). However, V„(x,y) alone cannot satisfy the remaining 
boundary condition (4-90b) at x = 0 for all values of y from 0 to b. Since Laplace's 
equation is a.,linear partial differential equation, a sum (superposition) of Vn(x, y) of 
the form in Eq. (4-98) with different values of n is also a solution. At x = 0, we write 

oo oo 

V(0,y)=YJVn(0,y)=YJCnsmn^-y 
n=l n = l 

(4-99) 

= V0, 0<y<b. 
Equation (4-99) is essentially a Fourier-series expansion of the periodic rectangular 
wave at x = 0 shown in Fig. 4-16, which has a constant value V0 in the interval 
0 < y < b. 

In order to evaluate the coefficients C„, we multiply both sides of Eq. (4-99) by 

sin -— y and integrate the products from y = 0 to y = b: b 
00 

Z Cb „ . nn . mn rb T . mn 
Jo C„ sin — y sin — y dy = JQ V0 sin — y dy. (4-100) 

V(0,y) 
A 

^0 

-b 0 

-V, 

2b 
+ y 

FIGURE 4-16 
For Fourier-series expansion of boundary condition at 
x = 0 (Example 4-6). 
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The integral on the right side of Eq. (4-100) is easily evaluated: 

[2bV0 

J oF 0sm —j,dj,= mn 
if m is odd, 

if m is even. 
(4-101) 

Each integral on the left side of Eq. (4-100) is 

f b . nn . mn Cn n (n — m)n (n + m)n 
cos y — cos y 

(C 
-^■b if m = n, 

„0 if m # n. 

Substituting Eqs. (4-101) and (4-102) in Eq. (4-100), we obtain 

if n is odd, 

if n is even. 

dy 

(4-102) 

(4Vr 

C = 
o 

nn (4-103) 
0 

The desired potential distribution is, then, a superposition of Vn(x, y) in Eq. (4-98). 
OO 

V(x, y)=Yj cne~nnxlb sin ^ y 

= ̂  V -e-^sin^y, (4-104) 
n —̂' n b n = odd 

n = 1, 3, 5 , . . . , 
x > 0 and 0 < y < b. 

Equation (4-104) is a rather complicated expression to plot in two dimensions; 
but since the amplitude of the sine terms in the series decreases very rapidly as n 
increases, only the first few terms are needed to obtain a good approximation. Several 
equipotential lines are sketched in Fig. 4-15. mm 

v=o 

V= VQ 

o 
v///;;;;;///////;;;j///JJJSJ////;//s//\ 

b Y\V=0 

V=0 
-*x 

FIGURE 4-17 
Cross-sectional figure for Example 4-7. 
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EXAMPLE 4-7 Consider the region enclosed on three sides by grounded con
ducting planes shown in Fig. 4-17. The end plate on the left is insulated from the 
grounded sides and has a constant potential V0. All planes are assumed to be infinite 
in extent in the z-direction. Determine the potential distribution within this region. 

Solution The boundary conditions for the potential function V{x, y, z) are as follows. 

With V independent of z: 
V(x,y,z)=V(x,y) 

In the x-direction: 
V(0,y)=Vo, 
V(a,y) = 0. 

In the y-direction: 
V(x,0) = 0, 

V(x, b) = 0. 

Condition (4-105a) implies that kz = 0, and, from Table 4 - 1 , 

Z{z) = B0. (4-106) 

As a consequence, Eq. (4-89) reduces to 

k2
y = - k 2

x = k 2 , (4-107) 

which is the same as Eq. (4-92) in Example 4-6. 
The boundary conditions in the ^-direction, Eqs. (4-105d) and Eq. (4-105e), are 

the same as those specified by Eqs. (4-90d) and (4-90e). To make V(x, 0) = 0 for all 
values of x between 0 and a, Y(0) must be zero, and we have 

Y{y) = Ax sin ky, (4-108) 

as in Eq. (4-94). However, X(x) given by Eq. (4-93) is obviously not a solution here 
because it does not satisfy the boundary condition (4-105c). In this case it is conve
nient to use the general form for kx = jk given in the third column of Table 4 - 1 . 
(The exponential solution form given in the last column could be used as well, but 
it would not be as convenient because it is not as easy to see the condition under 
which the sum of two exponential terms vanishes at x = a as it is to make a sinh 
term zero. This will be clear presently.) We have 

X(x) = A2 sinh kx + B2 cosh kx. (4-109) 

A relation exists between the arbitrary constants A2 and B2 because of the boundary 
condition in Eq. (4-105c), which demands that X(a) = 0; that is, 

0 = A2 sinh ka + B2 cosh ka 
or 

_ sinh ka 
2 2 cosh ka 

(4-105a) 

(4-105b) 
(4-105c) 

(4-105d) 
(4-105e) 



182 4 Solution of Electrostatic Problems 

From Eq. (4-109) we have 

X(x) = A2 sinh kx —— cosh kx 
cosh ka 

[cosh ka sinh kx — sinh ka cosh kx] (4-110) 
cosh /ca 

= A3 sinh /c(x — a), 
where A3 has been written for ^2/cosh ka. It is evident that Eq. (4-110) satisfies the 
condition X(a) = 0. With experience we should be able to write the solution given 
in Eq. (4-110) directly, without the steps leading to it, as only a shift in the argument 
of the sinh function is needed to make it vanish at x = a. 

Collecting Eqs. (4-106), (4-108) and (4-110), we obtain the appropriate product 
solution 

VJix> y) = Bo A iA 3 sinh k{x — a) sin ky 

= Cn sinh — (x — a) sin — y, 
b b 

n = 1, 2, 3 , . . . , 
(4-111) 

where Cn = BQA^A^, and k has been set to equal mz/b in order to satisfy boundary 
condition (4-105e). 

We have now used all of the boundary conditions except Eq. (4-105b), which 
may be satisfied by a Fourier-series expansion of 7(0, y) = 70 over the interval from 
y = 0 to y = b. We have 

00 00 

Z v—\ YVK YVK 

W y)=-lu
c»sinh TasinTy' 0<y<b- (4-112) 

n = l n=l 
We note that Eq. (4-112) is of the same form as Eq. (4-99), except that Cn is replaced 
by — C'n sinh (nna/b). The values for the coefficient C'n can then be written down from 
Eq. (4-103): 

— — if n is odd, 
(4-113) 

Cn = <J mi sinh (nna/b) 
0 if n is even. 

The desired potential distribution within the enclosed region in Fig. 4-17 is a summa
tion of 7„(x, y) in Eq. (4-111): 

uu 

Z mi mi 

C'n sinh -—(x — a) sin — y 
b b n = l 

47n v^ sinh \nn{a - *)/&] . n7r 
u v L J sin —- >;, 

_ 4 K0 ^-i sinn [ 
7r ZJ_ _ n si 

n = odd 

n - 1, 3, 5 , . . . , 
0 < x < a and 

sinh (nna/b) 
(4-114) 

0<y<b. 

The electric field distribution within the enclosure is obtained by the relation 
E(x,y)=-\V(x,y). 
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4—6 Boundary-Value Problems in Cylindrical Coordinates 

For problems with circular cylindrical boundaries we write the governing equations 
in the cyclindrical coordinate system. Laplace's equation for scalar electric potential 
V in cylindrical coordinates is, from Eq. (4-8), 

1 d ( dV\ 1 d2V d2V n 

-r8r{r^) + SW + ^ = °' i4'U5) 

A general solution of Eq. (4-115) requires the knowlege of Bessel functions, the 
discussion of which will be deferred until Chapter 10. In situations in which the 
lengthwise dimension of the cylindrical geometry is large in comparison to its radius, 
the associated field quantities may be considered to be approximately independent 
of z. In such cases, d2V/dz2 = 0 and Eq. (4-115) becomes the governing equation of 
a two-dimensional problem: 

rdr\ dr) + r2 d(t> 
- \ r ~ ) + 3 r^7y = 0. (4-116) 

Applying the method of separation of variables, we assume a product solution 

V(r, 4) = K(r)0>(</>), (4-117) 

where R{r) and <!>(</>) are, respectively, functions of r and (f) only. Substituting solution 
(4-117) in Eq. (4-116) and dividing by K(r)<D(0), we have 

r d T dR{r)l 1 d2^) n 

W)*l'^\ + m-*r~°- (4""8) 
In Eq. (4-118) the first term on the left side is a function of r only, and the second 
term is a function of <j> only. (Note that ordinary derivatives have replaced partial de
rivatives.) For Eq. (4-118) to hold for all values of r and 0, each term must be a 
constant and be the negative of the other. We have 

R(r) dr 
and 

ra= (4-119) 

1 d2O>(0) J 2 
; = -k2, (4-120) d>((£) dp 

where k is a separation constant. 
Equation (4-120) can be rewritten as 

d2®((b) 
-I£P- + k2®($) = 0. (4-121) 

This is of the same form as Eq. (4-86), and its solution can be any one of those listed 
in Table 4 -1 . For circular cylindrical configurations, potential functions and there
fore <b((j)) are periodic in 0, and the hyperbolic functions do not apply. In fact, if the 
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range of 0 is unrestricted, k must be an integer. Let k equal n. The appropriate so
lution is 

0(0) = A^ sin n(j) + B^ cos n(j), (4-122) 

where A^ and B^ are arbitrary constants. 
We now turn our attention to Eq. (4-119), which can be rearranged as 

r2 — 4 ^ + r — ^ - n2#W = 0, (4-123) 
dr dr 

where integer n has been written for k, implying a 2% range for 0. The solution of 
Eq. (4-123) is 

R(r) = Arrn + Brr~n. (4-124) 

This can be verified by direct substitution. Taking the product of the solutions in 
(4-122) and (4-124), we obtain a general solution of z-independent Laplace's equa
tion (4-116) for circular cylindrical regions with an unrestricted range for 0: 

Vn(r, 0) = rn(An sin rc0 + Bn cos rc0) + r~n(A'n sin rc0 + B'n cos n(f>), n =£ 0. 
(4-125) 

Depending on the boundary conditions the complete solution of a problem may be 
a summation of the terms in Eq. (4-125). It is useful to note that, when the region 
of interest includes the cylindrical axis where r — 0, the terms containing the r~n fac
tor cannot exist. On the other hand, if the region of interest includes the point at 
infinity, the terms containing the rn factor cannot exist, since the potential must be 
zero as r -> oo. 

Eq. (4-121) has the simplest form when k = 0. We have 

d2<D((/>) n 
- ^ = 0. (4-126) 

The general solution of Eq. (4-126) is 0(0) = ^ o 0 + B0. If there is no circumferential 
variation, A0 vanishes^ and we have 

0(0) = B0, k = 0. (4-127) 

The equation for R(r) also becomes simpler when k = 0. We obtain from Eq. (4-119) 

d dR{r) 
r~dT = 0, (4-128) 

dr 
which has a solution 

R(r) = C0\nr + D0, k = 0. (4-129) 

The product of Eqs. (4-127) and (4-129) gives a solution that is independent of either 
z or 0: 

V{r) - Cx In r + C2, (4-130) 

where the arbitrary constants Cx and C2 are determined from boundary conditions. 

f The term A0<j) should be retained if there is circumferential variation, such as in problems involving a 
wedge. (See Problem P.4-23.) 
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_ FIGURE 4-18 
TTT Cross section of a coaxial cable (Example 4-8). 

We shall now illustrate the above procedures with two examples. One (Example 
4-8) deals with a situation that is circularly symmetrical, and the other (Example 
4-9) solves a problem with circumferential variation. 

EXAMPLE 4-8 Consider a very long coaxial cable. The inner conductor has a 
radius a and is maintained at a potential V0. The outer conductor has an inner radius 
b and is grounded. Determine the potential distribution in the space between the 
conductors. 

Solution Figure 4-18 shows a cross section of the coaxial cable. We assume no z-
dependence and, by symmetry, also no ^-dependence (k = 0). Therefore, the electric 
potential is a function of r only and is given by Eq. (4-130). 

The boundary conditions are 

V(b) = 0, (4-13 la) 
V(a) = V0. (4-131b) 

Substitution of Eqs. (4-13la) and (4-13lb) in Eq. (4-130) leads to two relations: 

C1 In b + C2 = 0, (4-132a) 

C1 In a + C2 = V0. (4-132b) 

From Eqs. (4-132a) and (4-132b), C1 and C2 are readily determined: 

c V° c ^V°lnb 
1 \n(b/a)' 2 ln(b/a) 

Therefore, the potential distribution in the space a < r < b is 

"w = E&to©- (4-133) 
Obviously, equipotential surfaces are coaxial cylindrical surfaces. « 

EXAMPLE 4-9 An infinitely long, thin, conducting circular tube of radius b is split 
in two halves. The upper half is kept at a potential V = V0 and the lower half at 
V= —V0. Determine the potential distribution both inside and outside the tube. 
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>x 

/ FIGURE 4-19 
^ / Cross section of split circular cylinder and equipotential lines 

- -" (Example 4-9). 

Solution A cross section of the split circular tube is shown in Fig. 4-19. Since the 
tube is assumed to be infinitely long, the potential is independent of z and the two-
dimensional Laplace's equation (4-116) applies. The boundary conditions are 

V(b, </>) = V0 

-V0 

for 0 < </> < 7i, 
for n < (/> < 2%. 

(4-134) 

These conditions are plotted in Fig. 4-20. Obviously, V(r, (/>) is an odd function of 
0. We shall determine V(r, (/>) inside and outside the tube separately. 

a) Inside the tube, 
r < 

Because this region includes r = 0, terms containing the r " factor cannot exist. 
Moreover, since V(r, (/>) is an odd function of (/>, the appropriate form of solution 

™ Vn 
H ° 

L _ J 

0 

-Vo 

IT 

> 1 

2T j > 

L FIGURE 4-20 
Boundary condition for Example 4-9. 
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is, from Eq. (4-125), 
Vn(r, 4>) = Anrn sin m/>. (4-135) 

However, a single such term does not satisfy the boundary conditions specified 
in Eq. (4-134). We form a series solution 

00 

v(r, 0 = £ vjr, 4) 
"7 (4-136) 

= > Anrn sin n4>, 
n = l 

and require that Eq. (4-134) be satisfied at r = b. This amounts to expanding 
the rectangular wave (period = 2n) shown in Fig. 4-20 into a Fourier sine series. 

Z , . , f K> for 0 < <b < Ti, Anbnsmn4> = \ ° ^!L0
 (4~137) 

(. - ^0 for 7T < 0 < 27T. 
n— 1 

The coefficients An can be found by the method illustrated in Example 4-6. As 
a matter of fact, because we already have the result in Eq. (4-103), we can directly 
write 

'W0 
A={ if n is odd, 

nnbn (4-138) 
0 if n is even. 

The potential distribution inside the tube is obtained by substituting Eq. (4-138) 
in Eq. (4-136): 

4Fn v^ 1 / A " V(r,(f)) = —± ) - - sinn</>, r < b. (4-139) n z—i n \bj 
n = odd v y 

b) Outside the tube, 
r>b. 

In this region the potential must decrease to zero as r -» oo. Terms containing 
the factor r" cannot exist, and the appropriate form of solution is, from Eq. 
(4-125), 

K(r,0)=£KM) 
« = i 

00 

= 2_̂  B'„r~n sin ncj). 
(4-140) 

At r = b, 
« = i 

V{b,4>)= ^5;6-"sinn</) 
« = i 

V0 for 0 < (j) < n, 
— V0 for n < 4> < 2n. 

(4-141) 
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The coefficients B'n in Eq. (4-141) are analogous to A„ in Eq. (4-137). From Eq. 
(4-138) we obtain 

\4V°b" f • AA 
n, it n is odd, 
B„ = < nn (4-142) 

0 if n is even. 
Therefore, the potential distribution outside the tube is, from Eq. (4-140), 

V(r, </>) = — ^T - ( - ) sin n(j>, r > b. (4-143) 
n = odd ^ / 

Several equipotential lines both inside and outside the tube have been sketched 
in Fig. 4-19. ram 

4—7 Boundary-Value Problems in Spherical Coordinates 

The general solution of Laplace's equation in spherical coordinates is a very involved 
procedure, so we will limit our discussion to cases in which the electric potential is 
independent of the azimuthal angle $. Even with this limitation we will need to 
introduce some new functions. From Eq. (4-9) we have 

R2 dR \ dR + 
1 

sin 0 ^ 1 = 0. (4-144) 
R2 sin 0 39 

Applying the method of separation of variables, we assume a product solution 

V(R, 9) = T(R)®(&). (4-145) 

Substitution of this solution in Eq. (4-144) yields, after rearrangement, 

1 d 
T(R) dR 

[R2dT(R)l 
I dR j 

1 d 
0(0) sin 6 d9 

sin 6——— 
[_ d6 

= 0. (4-146) 

In Eq. (4-146) the first term on the left side is a function of R only, and the second 
term is a function of 9 only. If the equation is to hold for all values of R and 9, each 
term must be a constant and be the negative of the other. We write 

and 

1 
T(R) 

1 
0(0) sin I 

d 
dR 

d 
9d9 

R 

sin 

2 dT(R) 
dR 

= k2 

d@(9) 
d9 = -k2, 

(4-147) 

(4-148) 

where k is a separation constant. We must now solve the two second-order, ordinary 
differential equations, Eqs. (4-147) and (4-148). 
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TABLE 4-2 
Several Legendre 
Polynomials 

n 

0 
1 
2 
3 

P„(cos 0) 

1 
cos 0 

%3 cos2 0 - 1 ) 
±(5 cos3 0 - 3 cos 0) 

Equation (4-147) can be rewritten as 

R2 '-^^^ + 2R 
d2nR)^1J?dT(R) 
~dR2~ + 2 R ^ T 

k2T{R) = 0, 

which has a solution of the form 

(4-149) 

(4-150) 

In Eq. (4-150), An and B„ are arbitrary constants, and the following relation be
tween n and k can be verified by substitution: 

n(n + 1) = k2, 

where n = 0, 1, 2 , . . . is a positive integer. 
With the value of /c2 given in Eq. (4-151), we have, from Eq. (4-148), 

d_ 
Id 

sin 9 
d®{9) 

+ n{n + 1)0(0) sin 9 = 0, 

(4-151) 

(4-152) 

which is a form of Legendre's equation. For problems involving the full range of 9, from 
0 to n, the solutions to Legendre's equation (4-152) are called Legendre functions, 
usually denoted by P(cos 9). Since Legendre functions for integral values of n are 
polynomials in cos 9, they are also called Legendre polynomials. We write 

®n(9) = Pn(cos 9). (4-153) 

Table 4-2 lists the expressions for Legendre polynomials1" for several values of n. 
Combining solutions (4-150) and (4-153) in Eq. (4-145), we have, for spherical 

boundary-value problems with no azimuthal variation, 

Vn{R, 9) = [AnRn + BnR-«+V]Pn(cos 9). (4-154) 

Depending on the boundary conditions of the given problem, the complete solution 
may be a summation of the terms in Eq. (4-154). We illustrate the application of 

f Actually, Legendre polynomials are Legendre functions of the first kind. There is another set of solutions 
to Legendre's equation, called Legendre functions of the second kind; but they have singularities at 9 = 0 
and n and must therefore be excluded if the polar axis is a region of interest. 
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■ Electric field lines 
Equipotential lines 

FIGURE 4-21 
Conducting sphere in a uniform electric field 
(Example 4-10). 

Legendre polynomials in the solution of a simple boundary-value problem in the 
following example. 

EXAMPLE 4-10 An uncharged conducting sphere of radius b is placed in an ini
tially uniform electric field E0 = az£0 . Determine (a) the potential distribution V(R, 9\ 
and (b) the electric field intensity E(R, 9) after the introduction of the sphere. 

Solution After the conducting sphere is introduced into the electric field, a separa
tion and redistribution of charges will take place in such a way that the surface of 
the sphere is maintained equipotential. The electric field intensity within the sphere 
is zero. Outside the sphere the field lines will intersect the surface normally, and the 
field intensity at points very far away from the sphere will not be affected appreciably. 
The geometry of this problem is depicted in Fig. 4-21. The potential is, obviously, 
independent of the azimuthal angle </>, and the solution obtained in this section 
applies. 

a) To determine the potential distribution V(R, 9) for R>b,we note the following 
boundary conditions: 

V(b, 9) = 0* (4-155a) 
V(R, 9) = -E0z= -E0R cos 9, for R » b. (4-155b) 

Equation (4-155b) is a statement that the original E0 is not disturbed at points 
very far away from the sphere. By using Eq. (4-154) we write the general solution 

t For this problem it is convenient to assume that V = 0 in the equatorial plane (9 = n/2), which leads to 
V(b, 9) = 0, since the surface of the conducting sphere is equipotential. (See Problem P.4-28 for 
V(b,G)=V0.) 
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V{R, 6)=YJ \-A"Rn + BttR-^n+1)]Pn{cos 6), R>b. (4-156) 
n = 0 

However, in view of Eq. (4-155b), all An except Ax must vanish, and Ax = — E0. 
We have, from Eq. (4-156) and Table 4-2, 

V{R, 6) = -EQRP^COS 0) + ^ BnR-(tt + 1)Pn{cos 6) 
n = 0 

= BQR-1 + {B^R-2 - E0R) cos 6 + ]T BnR-in+1)Pn(cos 6), R>b. 
n=2 (4-157) 

Actually, the first term on the right side of Eq. (4-157) corresponds to the potential 
of a charged sphere. Since the sphere is uncharged, B0 = 0, and Eq. (4-157) 
becomes 

V{R, Q) = (jji- E0R) COS 6 + £ fl„ir(n+1)P„(cos 6), R>b. (4-158) 

Now applying boundary condition (4-155a) at R = b, we require 

0 = U ± - E0b) cos 0 + £ Bnb-«>+Vpn(cos 6), 

from which we obtain 

and 

n = 2 

B, = E0b~ 

Bn = 0, n > 2. 
We have, finally, from Eq. (4-158), 

V(R, 6) = -[-©I - - Kcosfl, R>b. (4-159) 

b) The electric field intensity E{R, 6) for R > b can be easily determined from 
-\v(R,ey. 

E(R, 6) = aRER + aeEe, (4-160) 
where 

and 
<■[■♦$ cos 0, R > fc (4-160a) 

£ e = - ^ = - £ ° l 1 " U sin 0, R > b. (4-160b) 

The surface charge density on the sphere can be found by noting that 

ps(6) = €0ER\ = 3e0£0 cos 6, (4-161) 
\R = b 

which is proportional to cos 6, being zero at 9 = n/2. Some equipotential and 
field lines are sketched in Fig. 4-21. B B 
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It is interesting to note from Eq. (4-159) that the potential is the sum of two 
terms: — E0R cos 9 due to the applied uniform electric field; and (E0b3 cos 6)/R2 due 
to an electric dipole of a dipole moment: 

p = az4ne0b3E0 (4-162) 

at the center of the sphere. The contribution of the equivalent dipole can be verified 
by referring to Eq. (3-53). The expressions in Eqs. (4-160a) and (4-160b) for the 
resultant electric field intensity, being derived from the potential, obviously also rep
resent the combination of the applied uniform field and that of the equivalent dipole, 
given in Eq. (3-54). 

In this chapter we have discussed the analytical solution of electrostatic problems 
by the method of images and by direct solution of Laplace's equation. The method 
of images is useful when charges exist near conducting bodies of a simple and com
patible geometry: a point charge near a conducting sphere or an infinite conducting 
plane; and a line charge near a parallel conducting cylinder or a parallel conducting 
plane. The solution of Laplace's equation by the method of separation of variables 
requires that the boundaries coincide with coordinate surfaces. These requirements 
restrict the usefulness of both methods. In practical problems we are often faced with 
more complicated boundaries, which are not amenable to neat analytical solutions. 
In such cases we must resort to approximate graphical or numerical methods. These 
methods are beyond the scope of this book.T 

Review Questions 

R.4-1 Write Poisson's equation in vector notation 
a) for a simple medium, 
b) for a linear and isotropic but inhomogeneous medium. 

R.4-2 Repeat in Cartesian coordinates both parts of Question R.4-1. 
R.4-3 Write Laplace's equation for a simple medium 

a) in vector notation, b) in Cartesian coordinates. 
R.4-4 If \2U = 0, why does it not follow that U is identically zero? 
R.4-5 A fixed voltage is connected across a parallel-plate capacitor. 

a) Does the electric field intensity in the space between the plates depend on the 
permittivity of the medium? 

b) Does the electric flux density depend on the permittivity of the medium? 
Explain. 
R.4-6 Assume that fixed charges +Q and —Q are deposited on the plates of an isolated 
parallel-plate capacitor. 

a) Does the electric field intensity in the space between the plates depend on the 
permittivity of the medium? 

b) Does the electric flux density depend on the permittivity of the medium? 
Explain. 

1 See, for instance, B. D. Popovic, Introductory Engineering Electromagnetics, Chapter 5, Addison-Wesley 
Publishing Co., Reading, Mass., 1971. 
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R.4-7 Why is the electrostatic potential continuous at a boundary? 
R.4-8 State in words the uniqueness theorem of electrostatics. 
R.4-9 What is the image of a spherical cloud of electrons with respect to an infinite 
conducting plane? 
R.4-10 Why cannot the point at infinity be used as the point for the zero reference 
potential for an infinite line charge as it is for a point charge? What is the physical reason 
for this difference? 
R.4-11 What is the image of an infinitely long line charge of density pe with respect to a 
parallel conducting circular cylinder? 
R.4-12 Where is the zero-potential surface of the two-wire transmission line in Fig. 4-6? 
R.4-13 In finding the surface charge induced on a grounded sphere by a point charge, can 
we set R = a in Eq. (4-67) and then evaluate ps by — e0 dV(a, 9)/dRl Explain. 
R.4-14 What is the method of separation of variables? Under what conditions is it useful 
in solving Laplace's equation? 
R.4-15 What are boundary-value problems? 
R.4-16 Can all three separation constants (kx, ky, and kz) in Cartesian coordinates be real? 
Can they all be imaginary? Explain. 
R.4-17 Can the separation constant k in the solution of the two-dimensional Laplace's 
equation (4-120) be imaginary? Explain. 
R.4-18 What should we do to modify the solution in Eq. (4-133) for Example 4-8 if the 
inner conductor of the coaxial cable is grounded and the outer conductor is kept at a 
potential K0? 
R.4-19 What should we do to modify the solution in Eq. (4-139) for Example 4-9 if 
the conducting circular cylinder is split vertically in two halves, with V = VQ for 
-Tt/2<(f)< n/2 and V = - V0 for n/2 < cfx 3n/21 
R.4-20 Can functions V^R, 9) = C^R cos 9 and V2(R, 9) = C2R~2 cos 9, where Cx and C2 
are arbitrary constants, be solutions of Laplace's equation in spherical coordinates? 
Explain. 

Problems 

P.4-1 The upper and lower conducting plates of a large parallel-plate capacitor are 
separated by a distance d and maintained at potentials V0 and 0, respectively. A dielectric 
slab of dielectric constant 6.0 and uniform thickness 0.8d is placed over the lower plate. 
Assuming negligible fringing effect, determine 

a) the potential and electric field distribution in the dielectric slab, 
b) the potential and electric field distribution in the air space between the dielectric 

slab and the upper plate, 
c) the surface charge densities on the upper and lower plates. 
d) Compare the results in part (b) with those without the dielectric slab. 

P.4-2 Prove that the scalar potential V in Eq. (3-61) satisfies Poisson's equation, Eq. (4-6). 
P.4-3 Prove that a potential function satisfying Laplace's equation in a given region 
possesses no maximum or minimum within the region. 



4 Solution of Electrostatic Problems 

P.4-4 Verify that 
V, = CJR and V2 = C2z/(x2 + y2 + z2)3'2, 

where Cx and C2 are arbitrary constants, are solutions of Laplace's equation. 
P.4-5 Assume a point charge Q above an infinite conducting plane at y = 0. 

a) Prove that V{x, y, z) in Eq. (4-37) satisfies Laplace's equation if the conducting plane 
is maintained at zero potential. 

b) What should the expression for V(x, y, z) be if the conducting plane has a nonzero 
potential V01 

c) What is the electrostatic force of attraction between the charge Q and the 
conducting plane? 

P.4-6 Assume that the space between the inner and outer conductors of a long coaxial 
cylindrical structure is filled with an electron cloud having a volume density of charge 
p = A/r for a < r < b, where a and b are, the radii of the inner and outer conductors, 
respectively. The inner conductor is maintained at a potential V0, and the outer conductor 
is grounded. Determine the potential distribution in the region a < r < b by solving 
Poisson's equation. 
P.4-7 A point charge Q exists at a distance d above a large grounded conducting plane. 
Determine 

a) the surface charge density ps, 
b) the total charge induced on the conducting plane. 

P.4-8 For a positive point charge Q located at distances dx and d2, respectively, from two 
grounded perpendicular conducting half-planes shown in Fig. 4-4(a), find the expressions 
for 

a) the potential and the electric field intensity at an arbitrary point P(x, y) in the first 
quadrant, 

b) the surface charge densities induced on the two half-planes. Sketch the variations 
of the surface charge densities in the xy-plane. 

P.4-9 Determine the systems of image charges that will replace the conducting boundaries 
that are maintained at zero potential for 

a) a point charge Q located between two large, grounded, parallel conducting planes as 
shown in Fig. 4-22(a), 

b) an infinite line charge pf located midway between two large, intersecting conducting 
planes forming a 60-degree angle, as shown in Fig. 4-22(b). 

(a) Point charge between (b) Line charge between 
grounded parallel planes. grounded intersecting plane. 

FIGURE 4-22 
Diagrams for Problem P.4-9. 
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P.4-10 A straight conducting wire of radius a is parallel to and at height h from the surface 
of the earth. Assuming that the earth is perfectly conducting, determine the capacitance and 
the force per unit length between the wire and the earth. 
P.4-11 A very long two-wire transmission line, each wire of radius a and separated by a 
distance d, is supported at a height h above a fiat conducting ground. Assuming both d and 
h to be much larger than a, find the capacitance per unit length of the line. 
P.4-12 For the pair of equal and opposite line charges shown in Fig. 4-7, 

a) write the expression for electric field intensity E at point P(x, y) in Cartesian 
coordinates, 

b) find the equation of the electric field lines sketched in Fig. 4-8. 
P.4-13 Determine the capacitance per unit length of a two-wire transmission line with 
parallel conducting cylinders of different radii a1 and a2, their axes being separated by a 
distance D (where D > a^ + a2). 
P.4-14 A long wire of radius a : lies inside a conducting circular tunnel of radius a2, as 
shown in Fig. 4-10(a). The distance between their axes is D. 

a) Find the capacitance per unit length. 
b) Determine the force per unit length on the wire if the wire and the tunnel carry 

equal and opposite line charges of magnitude pe. 
P.4-15 A point charge Q is located inside and at distance d from the center of a grounded 
spherical conducting shell of radius b (where b > d). Use the method of images to determine 

a) the potential distribution inside the shell, 
b) the charge density ps induced on the inner surface of the shell. 

P.4-16 Two conducting spheres of equal radius a are maintained at potentials V0 and 0, 
respectively. Their centers are separated by a distance D. 

a) Find the image charges and their locations that can electrically replace the two 
spheres. 

b) Find the capacitance between the two spheres. 
P.4-17 Two dielectric media with dielectric constants ex and e2 are separated by a plane 
boundary at x = 0, as shown in Fig. 4-23. A point charge Q exists in medium 1 at distance 
d from the boundary. 

Q (Point charge) 

+Q2 
(Image charge) 

x = 0 

FIGURE 4-23 
Image charges in dielectric media (Problem P.4-17). 
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a) Verify that the field in medium 1 can be obtained from Q and an image charge -Qlt 
both acting in medium 1. 

b) Verify that the field in medium 2 can be obtained from Q and an image charge + Q2 
coinciding with Q, both acting in medium 2. 

c) Determine Q1 and Q2. (Hint: Consider neighboring points P1 and P2 in media 1 
and 2, respectively, and require the continuity of the tangential component of the 
E-field and of the normal component of the D-field.) 

P.4-18 Describe the geometry of the region in which the potential function can be 
represented by a single term as follows: 

a) V(x,y) = c1xy, 
b) V(x, y) = c2 sin kx sinh ky. 

Find cl9 c2, and k in terms of the dimensions and a fixed potential V0. 
P.4-19 In what way should we modify the solution in Eq. (4-114) for Example 4-7 if the 
boundary conditions on the top, bottom, and right planes in Fig. 4-17 are dV/dn = 0? 
P.4-20 In what way should we modify the solution in Eq. (4-114) for Example 4-7 if the 
top, bottom, and left planes in Fig. 4-17 are grounded (V = 0) and an end plate on the 
right is maintained at a constant potential F0? 
P.4-21 Consider the rectangular region shown in Fig. 4-17 as the cross section of an 
enclosure formed by four conducting plates. The left and right plates are grounded, and the 
top and bottom plates are maintained at constant potentials Vx and V2, respectively. 
Determine the potential distribution inside the enclosure. 
P.4-22 Consider a metallic rectangular box with sides a and b and height c. The side walls 
and the bottom surface are grounded. The top surface is isolated and kept at a constant 
potential V0. Determine the potential distribution inside the box. 
P.4-23 Two infinite insulated conducting planes maintained at potentials 0 and V0 form a 
wedge-shaped configuration, as shown in Fig. 4-24. Determine the potential distributions 
for the regions: (a) 0 < </>< a, and (b) a < </>< 2%. 

FIGURE 4-24 
Two infinite insulated conducting planes 
maintained at constant potentials (Problem 
P.4-23). 

P.4-24 An infinitely long, thin conducting circular cylinder of radius b is split in four 
quarter-cylinders, as shown in Fig. 4-25. The quarter-cylinders in the second and fourth 
quadrants are grounded, and those in the first and third quadrants are kept at potentials V0 
and - VQ, respectively. Determine the potential distribution both inside and outside the 
cylinder. 
P.4-25 A long, grounded conducting cylinder of radius b is placed along the z-axis in an 
initially uniform electric field E0 = ax£0. Determine potential distribution V(r, <f>) and 
electric field intensity E(r, </>) outside the cylinder. Show that the electric field intensity at 
the surface of the cylinder may be twice as high as that in the distance, which may cause a 
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v = o 

V= -VQ FIGURE 4-25 
Cross section of long circular cylinder split in four 
quarters (Problem P.4-24). 

local breakdown or corona. (This phenomenon of corona discharge along the rigging and 
spars of ships and on airplanes near storms is known as St. Elmo's fire..*) 
P.4-26 A long dielectric cylinder of radius b and dielectric constant er is placed along the 
z-axis in an initially uniform electric field E0 = ax£0 . Determine V(r, 0) and E(r, 0) both 
inside and outside the dielectric cylinder. 
P.4-27 An infinite conducting cone of half-angle a is maintained at potential V0 and 
insulated from a grounded conducting plane, as illustrated in Fig. 4-26. Determine 

a) the potential distribution V(9) in the region oc < 6 < n/2, 
b) the electric field intensity in the region a < 6 < n/2, 
c) the charge densities on the cone surface and on the grounded plane. 

\// ////// /; /////////-? ////////////;////i 

FIGURE 4-26 
An infinite conducting cone and 
a grounded conducting plane 
(Problem P.4-27). 

P.4-28 Rework Example 4-10, assuming'that V(b, 9) = V0 in Eq. (4-155a). 
P.4-29 A dielectric sphere of radius b and dielectric constant er is placed in an initially 
uniform electric field, E0 = az£0 , in air. Determine V(R, 6) and E(R, 9) both inside and 
outside the dielectric sphere. 

f R. H. Golde (Ed.), Lightning, Academic Press, New York, 1977, vol. 2, Chap. 21. 



5 
Steady 
Electric Currents 

5—1 Introduction 

In Chapters 3 and 4 we dealt with electrostatic problems, field problems associated 
with electric charges at rest. We now consider the charges in motion that constitute 
current flow. There are several types of electric currents caused by the motion of free 
charges.'' Conduction currents in conductors and semiconductors are caused by drift 
motion of conduction electrons and/or holes; electrolytic currents are the result of 
migration of positive and negative ions; and convection currents result from motion 
of electrons and/or ions in a vacuum. In this chapter we shall pay special attention to 
conduction currents that are governed by Ohm's law. We will proceed from the point 
form of Ohm's law that relates current density and electric field intensity and obtain 
the V = IR relationship in circuit theory. We will also introduce the concept of elec
tromotive force and derive the familiar Kirchhoff's voltage law. Using the principle 
of conservation of charge, we will show how to obtain a point relationship between 
current and charge densities, a relationship called the equation of continuity from 
which Kirchhoff's current law follows. 

When a current flows across the interface between two media of different con
ductivities, certain boundary conditions must be satisfied, and the direction of cur
rent flow is changed. We will discuss these boundary conditions. We will also show 
that for a homogeneous conducting medium, the current density can be expressed 
as the gradient of a scalar field, which satisfies Laplace's equation. Hence, an analo
gous situation exists between steady-current and electrostatic fields that is the basis 
for mapping the potential distribution of an electrostatic problem in an electrolytic 
tank. 

The electrolyte in an electrolytic tank is essentially a liquid medium with a low 
conductivity, usually a diluted salt solution. Highly conducting metallic electrodes 

* In a time-varying situation there is another type of current caused by bound charges. The time-rate of 
change of electric displacement leads to a displacement current. This will be discussed in Chapter 7. 

198 
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are inserted in the solution. When a voltage or potential difference is applied to the 
electrodes, an electric field is established within the solution, and the molecules of 
the electrolyte are decomposed into oppositely charged ions by a chemical process 
called electrolysis. Positive ions move in the direction of the electric field, and nega
tive ions move in a direction opposite to the field, both contributing to a current 
flow in the direction of the field. An experimental model can be set up in an electro
lytic tank, with electrodes of proper geometrical shapes simulating the boundaries in 
electrostatic problems. The measured potential distribution in the electrolyte is then 
the solution to Laplace's equation for difficult-to-solve analytic problems having 
complex boundaries in a homogeneous medium. 

Convection currents are the result of the motion of positively or negatively 
charged particles in a vacuum or rarefied gas. Familiar examples are electron beams 
in a cathode-ray tube and the violent motions of charged particles in a thunderstorm. 
Convection currents, the result of hydrodynamic motion involving a mass transport, 
are not governed by Ohm's law. 

The mechanism of conduction currents is different from that of both electrolytic 
currents and convection currents. In their normal state the atoms of a conductor 
occupy regular positions in a crystalline structure. The atoms consist of positively 
charged nuclei surrounded by electrons in a shell-like arrangement. The electrons in 
the inner shells are tightly bound to the nuclei and are not free to move away. The 
electrons in the outermost shells of a conductor atom do not completely fill the shells; 
they are valence or conduction electrons and are only very loosely bound to the nuclei. 
These latter electrons may wander from one atom to another in a random manner. 
The atoms, on the average, remain electrically neutral, and there is no net drift mo
tion of electrons. When an external electric field is applied on a conductor, an orga
nized motion of the conduction electrons will result, producing an electric current. 
The average drift velocity of the electrons is very low (on the order of 10 " 4 or 
10"3 m/s) even for very good conductors because they collide with the atoms in the 
course of their motion, dissipating part of their kinetic energy as heat. Even with the 
drift motion of conduction electrons, a conductor remains electrically neutral. Elec
tric forces prevent excess electrons from accumulating at any point in a conductor. 
We will show analytically that the charge density in a conductor decreases expo
nentially with time. In a good conductor the charge density diminishes extremely 
rapidly toward zero as the state of equilibrium is approached. 

5 - 2 Current Density and Ohm's Law 

Consider the steady motion of one kind of charge carriers, each of charge q (which 
is negative for electrons), across an element of surface As with a velocity u, as shown 
in Fig. 5-1. If AT is the number of charge carriers per unit volume, then in time At 
each charge carrier moves a distance u At, and the amount of charge passing through 
the surface As is 

AQ = NqwanAsAt (C). (5-1) 



200 5 Steady Electric Currents 

FIGURE 5-1 
Conduction current due to drift motion of charge carriers across a surface. 

Since current is the time rate of change of charge, we have 

AQ 
AI = — = Nqu • a„ As = Nqu • As (A). (5-2) 

In Eq. (5-2) we have written As = anAs as a vector quantity. It is convenient to 
define a vector point function, volume current density, or simply current density, J, 
in amperes per square meter, 

J = Nqu (A/m2), (5-3) 

so that Eq. (5-2) can be written as 

AI = J • As. (5-4) 

The total current / flowing through an arbitrary surface S is then the flux of the J 
vector through S: 

I = $sJ-ds (A). (5-5) 

Noting that the product Nq is in fact free charge per unit volume, we may rewrite 
Eq. (5-3) as 

J = pu (A/m2), (5-6) 

which is the relation between the convection current density and the velocity of the 
charge carrier. 

EXAMPLE 5-1 In vacuum-tube diodes, electrons are emitted from a hot cathode 
at zero potential and collected by an anode maintained at a potential V0, resulting 
in a convection current flow. Assuming that the cathode and the anode are parallel 
conducting plates and that the electrons leave the cathode with a zero initial veloc
ity (space-charge limited condition), find the relation between the current density J 
and V0. 
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Solution The region between the cathode and the anode is shown in Fig. 5-2, where 
a cloud of electrons (negative space charge) exists such that the force of repulsion 
makes the electrons boiled off the hot cathode leave essentially with a zero velocity. 
In other words, the net electric field at the cathode is zero. Neglecting fringing effects, 
we have 

dV(v)\ 
E(0) = a,E,(0)=-a„ U)l 

dy 
= 0. (5-7) 

y = 0 

In the steady state the current density is constant, independent of y: 

J = -ayJ = ayP{y)u(y), (5-8) 

where the charge density p(y) is a negative quantity. The velocity u = ayu(y) is related 
to the electric field intensity E(y) = ayE(y) by Newton's law of motion: 

du(y) dV(y) 
m —;— = — eE(y) = e dt dy 

(5-9) 

where m = 9.11 x 10 31 (kg) and — e = —1.60 x 10 19 (C) are the mass and charge, 
respectively, of an electron. Noting that 

du du dy du 
m—- = m—-—- — mu—-

dt dy dt dy 
1 

we can rewrite Eq. (5-9) as 

Integration of Eq. (5-10) gives 

= Ty\2m" 

d (\ , \ dV 
— - muz = e —— 
dy \2 ) dy 

\mu2 = eV, 

(5-10) 

(5-11) 

where the constant of integration has been set to zero because at y = 0, w(0) = V(0) = 0. 
From Eq. (5-11) we obtain 

'2e \ 1 / 2 

u = { — V ) . (5-12) 
m 

Cathode 
FIGURE 5-2 
Space-charge-limited vacuum diode (Example 5-1). 
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In order to find V(y) in the interelectrode region we must solve Poisson's equa
tion with p expressed in terms of V(y) from Eq. (5-8): 

p=J-=-j l"-V-™. (5-13) 
u \j 2e 

We have, from Eq. (4-6), 
d2V p J (m 
T T = = - h-V 1/2. (5-14) 

Equation (5-14) can be integrated if both sides are first multiplied by 2dV/dy. The 
result is , 

'dV\2 AJ fm ... 
— = — —VW + c. (5-15) 

KdyJ €0 \j2e 
At y = 0, V = 0, and dV/dy = 0 from Eq. (5-7), so c = 0. Equation (5-15) becomes 

fj_ fmV'4 
V'llUV = 2^{2e) ^ (5-16) 

Integrating the left side of Eq. (5-16) from V = 0 to V0 and the right side from y = 0 
to d, we obtain 

tvr-2 lifer*. 
or 

J = wMvr <A/m2)- (5"17) 
Equation (5-17) states that the convection current density in a space-charge limited 
vacuum diode is proportional to the three-halves power of the potential difference 
between the anode and the cathode. This nonlinear relation is known as the Child-
Langmuir law. ^ 

In the case of conduction currents there may be more than one kind of charge 
carriers (electrons, holes, and ions) drifting with different velocities. Equation (5-3) 
should be generalized to read 

J = £ Namt (A/m2). (5-18) 
i 

As indicated in Section 5-1, conduction currents are the result of the drift motion 
of charge carriers under the influence of an applied electric field. The atoms remain 
neutral (p = 0). It can be justified analytically that for most conducting materials the 
average drift velocity is directly proportional to the electric field intensity. For metal
lic conductors we write 

u = -iiJL (m/s), (5-19) 

where \ie is the electron mobility measured in (m2/V-s). The electron mobility for 
copperis3.2 x 10"3 (m2/V-s). Itis 1.4 x 10"4 (m2/V-s) for aluminum and 5.2 x 10~3 
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(m2/V-s) for silver. From Eqs. (5-3) and (5-19) we have 

J = -pji& (5-20) 

where pe = — Ne is the charge density of the drifting electrons and is a negative 
quantity. Equation (5-20) can be rewritten as 

J = <TE (A/m2), (5-21) 

where the proportionality constant, a = —pe\ie, is a macroscopic constitutive pa
rameter of the medium called conductivity. 

For semiconductors, conductivity depends on the concentration and mobility of 
both electrons and holes: 

ff=-P^c + P*^» (5-22) 

where the subscript h denotes hole. In general, \ie =£ ph. For germanium, typical 
values are jie = 0.38, ph = 0.18; for silicon, \ie = 0.12, \ih = 0.03 (m2/V-s). 

Equation (5-21) is a constitutive relation of a conducting medium. Isotropic 
materials for which the linear relation Eq. (5-21) holds are called ohmic media. The 
unit for a is ampere per volt-meter (A/V-m) or Siemens per meter (S/m). Copper, the 
most commonly used conductor, has a conductivity 5.80 x 107 (S/m). On the other 
hand, the conductivity of germanium is around 2.2 (S/m), and that of silicon is 
1.6 x 10"3 (S/m). The conductivity of semiconductors is highly dependent of (increases 
with) temperature. Hard rubber, a good insulator, has a conductivity of only 
10~15 (S/m). Appendix B-4 lists the conductivities of some other frequently used 
materials. However, note that, unlike the dielectric constant, the conductivity of ma
terials varies over an extremely wide range. The reciprocal of conductivity is called 
resistivity, in ohm-meters (Q-m). We prefer to use conductivity; there is really no 
compelling need to use both conductivity and resistivity. 

We recall Ohm's law from circuit theory that the voltage V12 across a resistance 
R, in which a current / flows from point 1 to point 2, is equal to RI; that is, 

V12 = RI. (5-23) 

Here R is usually a piece of conducting material of a given length; V12 is the voltage 
between two terminals 1 and 2; and J is the total current flowing from terminal 1 to 
terminal 2 through a finite cross section. 

Equation (5-23) is not a point relation. Although there is little resemblance 
between Eq. (5-21) and Eq. (5-23), the former is generally referred to as the point 
form of Ohm's law. It holds at all points in space, and a can be a function of space 
coordinates. 

Let us use the point form of Ohm's law to derive the voltage-current relationship 
of a piece of homogeneous material of conductivity a, length / , and uniform cross 
section S, as shown in Fig. 5-3. Within the conducting material, J = erE, where both 
J and E are in the direction of current flow. The potential difference or voltage 
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FIGURE 5-3 
Homogeneous conductor with a constant cross section. 

between terminals 1 and 2 isf 

or 

The total current is 

or 

Vl2 = Et 

V12 E = 
f 

1 = jsJ-ds = JS 

I 

Using Eqs. (5-24) and (5-25) in Eq. (5-21), we obtain 

/ V12 

or 

V12 = [-)I = RI, 

(5-24) 

(5-25) 

(5-26) 

which is the same as Eq. (5-23). From Eq. (5-26) we have the formula for the 
resistance of a straight piece of homogeneous material of a uniform cross section for 
steady current (d.c): 

(5-27) 

We could have started with Eq. (5-23) as the experimental Ohm's law and applied 
it to a homogeneous conductor of length / and uniform cross-section S. Using the 
formula in Eq. (5-27), we could derive the point relationship in Eq. (5-21). 

f We will discuss the significance of V12 and E more in detail in Section 5-3. 
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EXAMPLE 5 -2 Determine the d-c resistance of 1 -(km) of wire having a 1 -(mm) radius 
(a) if the wire is made of copper, and (b) if the wire is made of aluminum. 

Solution Since we are dealing with conductors of a uniform cross section, Eq. (5-27) 
applies. 

a) For copper wire, acu = 5.80 x 107 (S/m): 

/ = 103(m), S = 7r(l(T3)2 = 10-67r (m2). 
We have 

R„. = 
102 

<jcuS 5.80 x 107 x 10"6TI 

b) For aluminum wire, oal = 3.54 x 107 (S/m): 

= 5.49 (Q). 

l ^ = - ^ = ^ = ^ x 5.49 = 8.99 (O). ™ 
aalb aal 3.54 

The conductance, G, or the reciprocal of resistance, is useful in combining resis
tances in parallel. The unit for conductance is (O -1), or Siemens (S). 

G-i- . J (S). (5-28) 

From circuit theory we know the following: 

a) When resistances i?! and R2 are connected in series (same current), the total 
resistance R is 

Rsr = R,+ R2. (5-29) 

b) When resistances J^ and R2 are connected in parallel (same voltage), we have 

or 

Gu = G1 + G2. 

(5-30a) 

(5-30b) 

5—3 Electromotive Force and Kirchhoffs Voltage Law 

In Section 3-2 we pointed out that static electric field is conservative and that the 
scalar line integral of static electric intensity around any closed path is zero; that is, 

E-d€ = 0. (5-31) 



206 5 Steady Electric Currents 

Electric battery 
FIGURE 5-4 
Electric fields inside an electric battery. 

For an ohmic material J = crE, Eq. (5-31) becomes 

- J • d€ = 0. (5-32) 

Equation (5-32) tells us that a steady current cannot be maintained in the same direc
tion in a closed circuit by an electrostatic field. A steady current in a circuit is the 
result of the motion of charge carriers, which, in their paths, collide with atoms and 
dissipate energy in the circuit. This energy must come from a nonconservative field, 
since a charge carrier completing a closed circuit in a conservative field neither gains 
nor loses energy. The source of the nonconservative field may be electric batteries 
(conversion of chemical energy to electric energy), electric generators (conversion of 
mechanical energy to electric energy), thermocouples (conversion of thermal energy 
to electric energy), photovoltaic cells (conversion of light energy to electric energy), 
or other devices. These electrical energy sources, when connected in an electric circuit, 
provide a driving force for the charge carriers. This force manifests itself as an equiv
alent impressed electric field intensity Et. 

Consider an electric battery with electrodes 1 and 2, shown schematically in Fig. 
5-4. Chemical action creates a cumulation of positive and negative charges at elec
trodes 1 and 2, respectively. These charges give rise to an electrostatic field intensity 
E both outside and inside the battery. Inside the battery, E must be equal in magni
tude and opposite in direction to the nonconservative E£ produced by chemical action, 
since no current flows in the open-circuited battery and the net force acting on the 
charge carriers must vanish. The line integral of the impressed field intensity E ; from 
the negative to the positive electrode (from electrode 2 to electrode 1 in Fig. 5-4) 
inside the battery is customarily called the electromotive forcef (emf) of the bat
tery. The SI unit for emf is volt, and an emf is not a force in newtons. Denoted by 
"f, the electromotive force is a measure of the strength of the nonconservative source. 
We have 

* - = . ! > • « = - / > • « . (5-33) 
Inside 

the source 

1 Also called electromotance. 
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The conservative electrostatic field intensity E satisfies Eq. (5-31): 

& E • di = J* E • d€ 4- £ E • dt = 0. (5-34) 
Outside Inside 

the source the source 

Combining Eqs. (5-33) and (5-34), we have 

r = j*E'd€ (5-35) 
Outside 

the source 
or 

r=V12 = V1-V2.. (5-36) 
In Eqs. (5-35) and (5-36) we have expressed the emf of the source as a line integral 
of the conservative E and interpreted it as a voltage rise. In spite of the nonconserva-
tive nature of Ei9 the emf can be expressed as a potential difference between the posi
tive and negative terminals. This was what we did in arriving at Eq. (5-24). 

When a resistor in the form of Fig. 5-3 is connected between terminals 1 and 2 
of the battery, completing the circuit, the total electric field intensity (electrostatic 
E caused by charge cumulation, as well as impressed Et caused by chemical action), 
must be used in the point form of Ohm's law. We have, instead of Eq. (5-21), 

J = <T(E + Ej), (5-37) 

where Ef exists inside the battery only, while E has a nonzero value both inside and 
outside the source. From Eq. (5-37) we obtain 

J 
E + Ej = — (5-38) 

(7 

The scalar line integral of Eq. (5-38) around the closed circuit yields, in view of Eqs. 
(5-31) and (5-33), 

r = (j) (E + E;) • d€ = j) - J • d€. (5-39) 

Equation (5-39) should be compared to Eq. (5-32), which holds when there is no 
source of nonconservative field. If the resistor has a conductivity a, length /, and 
uniform cross section S, J = I/S and the right side of Eq. (5-39) becomes RI. We 
have1" 

Y = RI. (5-40) 

If there are more than one source of electromotive force and more than one resistor 
(including the internal resistances of the sources) in the closed path, we generalize 

f We assume the battery to have a negligible internal resistance; otherwise, its effect must be included in 
Eq. (5-40). An ideal voltage source is one whose terminal voltage is equal to its emf and is independent 
of the current flowing through it. This implies that an ideal voltage source has a zero internal resistance. 
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Eq. (5-40) to 
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(5-41) 

Equation (5-41) is an expression of Kirchhoff's voltage law. It states that, around a 
closed path in an electric circuit, the algebraic sum of the emf's (voltage rises) is equal 
to the algebraic sum of the voltage drops across the resistances. It applies to any 
closed path in a network. The direction of tracing the path can be arbitrarily assigned, 
and the currents in the different resistances need not be the same. Kirchhoff's voltage 
law is the basis for loop analysis in circuit theory. 

5—4 Equation of Continuity and Kirchhoff s Current Law 

The principle of conservation of charge is one of the fundamental postulates of physics. 
Electric charges may not be created or destroyed; all charges either at rest or in 
motion must be accounted for at all times. Consider an arbitrary volume V bounded 
by surface S. A net charge Q exists within this region. If a net current / flows across 
the surface out of this region, the charge in the volume must decrease at a rate that 
equals the current. Conversely, if a net current flows across the surface into the region, 
the charge in the volume must increase at a rate equal to the current. The current 
leaving the region is the total outward flux of the current density vector through the 
surface S. We have 

dQ ' SyP*>-/ = (J)J ds 
dt dt 

(5-42) 

Divergence theorem, Eq. (2-115), may be invoked to convert the surface integral of 
J to the volume integral of V - J. We obtain, for a stationary volume, 

L*'Jdv=-L dt 
dv. (5-43) 

In moving the time derivative of p inside the volume integral, it is necessary to use 
partial differentiation because p may be a function of time as well as of space co
ordinates. Since Eq. (5-43) must hold regardless of the choice of V, the integrands 
must be equal. Thus we have 

(5-44) 

This point relationship derived from the principle of conservation of charge is called 
the equation of continuity. 
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For steady currents, charge density does not vary with time, dp/dt = 0. Equation 
(5-44) becomes 

V • J = 0. (5-45) 

Thus, steady electric currents are divergenceless or solenoidal. Equation (5-45) is a 
point relationship and holds also at points where p = 0 (no flow source). It means 
that the field lines or streamlines of steady currents- close upon themselves, unlike 
those of electrostatic field intensity that originate and end on charges. Over any 
enclosed surface, Eq. (5-45) leads to the following integral form: 

J • ds = 0, 
which can be written as 

(5-46) 

(5-47) 

Equation (5-47) is an expression of Kirchhoff's current law. It states that the algebraic 
sum of all the currents flowing out of a junction in an electric circuit is zero.1 Kirchhoff's 
current law is the basis for node analysis in circuit theory. 

In Section 3-6, we stated that charges introduced in the interior of a conductor 
will move to the conductor surface and redistribute themselves in such a way as to 
make p = 0 and E = 0 inside under equilibrium conditions. We are now in a position 
to prove this statement and to calculate the time it takes to reach an equilibrium. 
Combining Ohm's law, Eq. (5-21), with the equation of continuity and assuming a 
constant a, we have 

dt 

In a simple medium, V • E = p/e, and Eq. (5-48) becomes 

The solution of Eq. (5-49) is 

-£- + - p = 0. 
dt € 

p = p0e-w* (C/m3), 

(5-48) 

(5-49) 

(5-50) 

where p0 is the initial charge density at t = 0. Both p and p0 can be functions of the 
space coordinates, and Eq. (5-50) says that the charge density at a given location 
will decrease with time exponentially. An initial charge density p0 will decay to 1/e 

f This includes the currents of current generators at the junction, if any. An ideal current generator is 
one whose current is independent of its terminal voltage. This implies that an ideal current source has an 
infinite internal resistance. 
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or 36.8% of its value in a time equal to 

T = - (s). (5-51) 
a 

The time constant T is called the relaxation time. For a good conductor such as 
copper—o = 5.80 x 107 (S/m), e ^ e0 = 8.85 x 10"1 2 (F/m)—T equals 1.52 x 
10"1 9 (s), a very short time indeed. The transient time is so brief that, for all practical 
purposes, p can be considered zero in the interior of a conductor—see Eq. (3-69) in 
Section 3-6. The relaxation time for a good insulator is not infinite but can be hours 
or days. 

5 - 5 Power Dissipation and Joule's Law 

In Section 5-1 we indicated that under the influence of an electric field, conduction 
electrons in a conductor undergo a drift motion macroscopically. Microscopically, 
these electrons collide with atoms on lattice sites. Energy is thus transmitted from 
the electric field to the atoms in thermal vibration. The work Aw done by an electric 
field E in moving a charge q a distance A£ is qE • (A£), which corresponds to a power 

Aw 
p = lim — = qE • u, (5-52) 

At-0 At 

where u is the drift velocity. The total power delivered to all the charge carriers in a 
volume dv is 

dP = Y4Pi = E'(T,N'q*Vdv> 
which, by virtue of Eq. (5-18), is 

dP = E-Jdv 
or 

dP 
— = E - J (W/m3). (5-53) 
dv 

Thus the point function E • J is a power density under steady-current conditions. 
For a given volume V the total electric power converted into heat is 

P = jvE-Jdv (W). (5-54) 

This is known as Joule's law. (Note that the SI unit for P is watt, not joule, which is 
the unit for energy or work.) Equation (5-53) is the corresponding point relationship. 

In a conductor of a constant cross section, dv = ds d£t with d£ measured in the 
direction J. Equation (5-54) can be written as 

P = jLEdt jsJds= VI, 
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where / is the current in the conductor. Since V = RI, we have 

P = I2R (W). 

211 

(5-55) 

Equation (5-55) is, of course, the familiar expression for ohmic power representing 
the heat dissipated in resistance R per unit time. 

5 - 6 Boundary Conditions for Current Density 

When current obliquely crosses an interface between two media with different con
ductivities, the current density vector changes both in direction and in magnitude. A 
set of boundary conditions can be derived for J in a way similar to that used in 
Section 3-9 for obtaining the boundary conditions for D and E. The governing 
equations for steady current density J in the absence of nonconservative energy 
sources are 

Governing Equations for Steady Current Density 

Differential Form 

V-J = 0 

"■©-

Integral Form 

<£ J • ds = 0 

(f) i j - d / = 0 Jc G 

(5-56) 

(5-57) 

The divergence equation is the same as Eq. (5-45), and the curl equation is obtained 
by combining Ohm's law (J = crE) with V x E = 0. By applying Eqs. (5-56) and 
(5-57) at the interface between two ohmic media with conductivities u1 and cr2, we 
obtain the boundary conditions for the normal and tangential components of J. 

Without actually constructing a pillbox at the interface as was done in Fig. 3-23, 
we know from Section 3-9 that the normal component of a divergenceless vector 
field is continuous. Hence from \ • J = 0 we have 

Jln = J2n (A/m2). (5-58) 

Similarly, the tangential component of a curl-free vector field is continuous across an 
interface. We conclude from V x (J/<r) = 0 that 

(5-59) 
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A 

n 
FIGURE 5-5 
Boundary conditions at interface between two 
conducting media (Example 5-3). 

Equation (5-59) states that the ratio of the tangential components of 3 at two sides 
of an interface is equal to the ratio of the conductivities. Comparing the boundary 
conditions Eqs. (5-58) and (5-59) for steady current density in ohmic media with 
the boundary conditions Eqs. (3-123) and (3-119), respectively, for electrostatic flux 
density at an interface of dielectric media where there are no free charges, we note 
an exact analogy of J and a with D and e. 

EXAMPLE 5-3 Two conducting media with conductivities a1 and o2 are separated 
by an interface, as shown in Fig. 5-5. The steady current density in medium 1 at point 
P1 has a magnitude J1 and makes an angle a1 with the normal. Determine the 
magnitude and direction of the current density at point P2 in medium 2. 

Solution Using Eqs. (5-58) and (5-59), we have 

and 
Jx cos a1 = J2 cos a2 

a2Jx sin OLX = oxJ2 sin a2. 

Division of Eq. (5-61) by Eq. (5-60) yields 

(5-60) 

(5-61) 

(5-62) 

If medium 1 is a much better conductor than medium 2 (a1 » o2 or o2jox -> 0), a2 

approaches zero, and J 2 emerges almost perpendicularly to the interface (normal to 
the surface of the good conductor). The magnitude of J 2 is 

Ji = yJJlt + Jln = V(J2 sin cc2)2 + (J2 cos a2)7 

<?2 T ■ 

— J\ sin oq + {Jx cos a if 
1/2 
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or 

(5-63) 

By examining Fig. 5-5, can you tell whether medium 1 or medium 2 is the better 
conductor? mm 

For a homogeneous conducting medium the differential form of Eq. (5-57) sim
plifies to 

V x J = 0. (5-64) 

From Section 2-11 we know that a curl-free vector field can be expressed as the 
gradient of a scalar potential field. Let us write 

J = - V i A . (5-65) 

Substitution of Eq. (5-65) into V • J = 0 yields a Laplace's equation in i[/; that is, 

V2iA = 0. (5-66) 

A problem in steady-current flow can therefore be solved by determining \j/ (A/m) 
from Eq. (5-66), subject to appropriate boundary conditions and then by finding J 
from its negative gradient in exactly the same way as a problem in electrostatics is 
solved. As a matter of fact, \j/ and electrostatic potential are simply related: \ji = aV. 
As indicated in Section 5-1 , this similarity between electrostatic and steady-current 
fields is the basis for using an electrolytic tank to map the potential distribution of 
difficult-to-solve electrostatic boundary-value problems.1" 

When a steady current flows across the boundary between two different lossy 
dielectrics (dielectrics with permittivities €1 and e2 and finite conductivities <r1 and <r2), 
the tangential component of the electric field is continuous across the interface as 
usual; that is, E2t = Elt, which is equivalent to Eq. (5-59). The normal component 
of the electric field, however, must simultaneously satisfy both Eq. (5-58) and Eq. 
(3-121b). We require 

J In — *2n 

Dm ~ D2n = Ps -
* UlE\n = °2E2n 

e l £ l n - e 2 £ 2 « = Ps 

(5-67) 
(5-68) 

where the reference unit normal is outward from medium 2. Hence, unless cr2/a1 = 
€2/6^ a surface charge must exist at the interface. From Eqs. (5-67) and (5-68) we 
find 

Ps = (€1 — - e2 )E2n = I €1 - €2 — )Eln. (5-69) 

f See, for instance, E. Weber, Electromagnetic Fields, Vol. I: Mapping of Fields, pp. 187-193, John Wiley 
and Sons, 1950. 
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dl FIGURE 5-6 
Parallel-plate capacitor with two lossy 
dielectrics (Example 5-4). 

Again, if medium 2 is a much better conductor than medium 1 (a2 » ^i or oJo2 -> 0), 
Eq. (5-69) becomes approximately 

Ps = ClEln = Dln, (5-70) 

which is the same as Eq. (3-122). 

EXAMPLE 5-4 An emf Y is applied across a parallel-plate capacitor of area S. The 
space between the conducting plates is filled with two different lossy dielectrics of 
thicknesses dx and d2, permittivities e1 and e2, and conductivities ox and o2, respec
tively. Determine (a) the current density between the plates, (b) the electric field 
intensities in both dielectrics, and (c) the surface charge densities on the plates and 
at the interface. 

Solution Refer to Fig. 5-6. 

a) The continuity of the normal component of J assures that the current densities 
and therefore the currents in both media are the same. By KirchhorT's voltage 
law we have 

^ 1 + K 2 K H i L + A,, 
Hence, 

y axa2r 
S (di/ffi) + (d2/(T2) M i + M 2 

(A/m2). (5-71) 

b) To determine the electric field intensities Ex and E2 in both media, two equations 
are needed. Neglecting fringing effect at the edges of the plates, we have 

IT = Exdx + E2d2 (5-72) 
and 

a1E1 = a2E2. (5-73) 

Equation (5-73) comes from JX=J2. Solving Eqs. (5-72) and (5-73), we obtain 
a2r 

and 

Ex = 

E,= 

o2dx + Q\d2 

axr 

(V/m) 

(V/m). 

(5-74) 

(5-75) 
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c) The surface charge densities on the upper and lower plates can be determined by 
using Eq. (5-70): 

^ = e ^ = 7 7 T 7 7 ( C / m 2 ) (5-76) 

Ps2 = - € 2 £ 2 = Yf« A (C /m2)- ( 5-? 7 ) 

The negative sign in Eq. (5-77) comes about because E2 and the outward normal 
at the lower plate are in opposite directions. 

Equation (5-69) can be used to find the surface charge density at the inter
face of the dielectrics. We have 

f a , \ o2r 
o2d1 + a,d2 (5_?8) 

JW-Wf (c/m2)> 
a2d1 + G\d2 

From these results we see that ps2 # — ps l but that psl + ps2 + psi = 0. sass 

In Example 5-4 we encounter a situation in which both static charges and a 
steady current exist. As we shall see in Chapter 6, a steady current gives rise to a 
steady magnetic field. We have, then, both a static electric field and a steady mag
netic field. They constitute an electromagnetostatic field. The electric and magnetic 
fields of an electromagnetostatic field are coupled through the constitutive relation 
J = <rE of the conducting medium. 

5—7 Resistance Calculations 

In Section 3-10 we discussed the procedure for finding the capacitance between two 
conductors separated by a dielectric medium. These conductors may be of arbitrary 
shapes, as was shown in Fig. 3-27, which is reproduced here as Fig. 5-7. In terms 
of electric field quantities the basic formula for capacitance can be written as 

n ^ D- ds CD eE • ds 
C = f = ^ = 4 ■ ,5-79, 

where the surface integral in the numerator is carried out over a surface enclosing 
the positive conductor and the line integral in the denominator is from the negative 
(lower-potential) conductor to the positive (higher-potential) conductor (see Eq. 5-35). 

When the dielectric medium is lossy (having a small but nonzero conductivity), 
a current will flow from the positive to the negative conductor, and a current-density 
field will be established in the medium. Ohm's law, J = <rE, ensures that the stream
lines for J and E will be the same in an isotropic medium. The resistance between 
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FIGURE 5-7 
Two conductors in a lossy dielectric medium. 

the conductors is 

* = T = 
F -J><* -J><* 

J • ds Q) <TE • ds 
s Js 

(5-80) 

where the line and surface integrals are taken over the same L and S as those in 
Eq. (5-79). Comparison of Eqs. (5-79) and (5-80) shows the following interesting 
relationship: 

*c = £ = £. 
G a 

(5-81) 

Equation (5-81) holds if e and o of the medium have the same space dependence or 
if the medium is homogeneous (independent of space coordinates). In these cases, if 
the capacitance between two conductors is known, the resistance (or conductance) 
can be obtained directly from the e/o ratio without recomputation. 

EXAMPLE 5-5 Find the leakage resistance per unit length (a) between the inner 
and outer conductors of a coaxial cable that has an inner conductor of radius a, an 
outer conductor of inner radius b, and a medium with conductivity a, and (b) of a 
parallel-wire transmission line consisting of wires of radius a separated by a distance 
D in a medium with conductivity a. 

Solution 

a) The capacitance per unit length of a coaxial cable has been obtained as Eq. 
(3-139) in Example 3-18: 

In(b/a) 
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Hence the leakage resistance per unit length is, from Eq. (5-81), 

* ' = K < 9 = ^ i n © (fim)- ,5^82) 
The conductance per unit length is Gx = l/i^. 

b) For the parallel-wire transmission line, Eq. (4-47) in Example 4-4 gives the 
capacitance per unit length: 

C',= ^ v (F/m). COsh~'fe 
Therefore the leakage resistance per unit length is, without further ado, 

1 o\C'J no \2a 

= -*-\n\^-+ \\~) - 1 | (Q-m). YD 
la \ l(

D\ ,1 'W J 
(5-83) 

The conductance per unit length is G\ = 1/R'V esaa 

It must be emphasized here that the resistance between the conductors for a 
length / of the coaxial cable is RJt, not £RX\ similarly, the leakage resistance of a 
length / of the parallel-wire transmission line is R'Jt, not {R\. Do you know why? 

In certain situations, electrostatic and steady-current problems are not exactly 
analogous, even when the geometrical configurations are the same. This is because 
current flow can be confined strictly within a conductor (which has a very large a in 
comparison to that of the surrounding medium), whereas electric flux usually cannot 
be contained within a dielectric slab of finite dimensions. The range of the dielectric 
constant of available materials is very limited (see Appendix B-3), and the flux-
fringing around conductor edges makes the computation of capacitance less accurate. 

The procedure for computing the resistance of a piece of conducting material 
between specified equipotential surfaces (or terminals) is as follows: 

1. Choose an appropriate coordinate system for the given geometry. 
2. Assume a potential difference V0 between conductor terminals. 
3. Find electric field intensity E within the conductor. (If the material is homoge

neous, having a constant conductivity, the general method is to solve Laplace's 
equation \2V = 0 for V in the chosen coordinate system, and then obtain E = 
-\V.) 

4. Find the total current 

where S is the cross-sectional area over which / flows. 
5. Find resistance R by taking the ratio V0/I. 
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It is important to note that if the conducting material is inhomogeneous and if the 
conductivity is a function of space coordinates, Laplace's equation for V does not 
hold. Can you explain why and indicate how E can be determined under these 
circumstances? 

When the given geometry is such that J can be determined easily from a total 
current /, we may start the solution by assuming an I. From /, J and E = J/a are 
found. Then the potential difference V0 is determined from the relation 

V0=-JE-d€t 

where the integration is from the low-potential terminal to the high-potential terminal. 
The resistance R = V0/I is independent of the assumed /, which will be canceled in 
the process. 

EXAMPLE 5-6 A conducting material of uniform thickness h and conductivity a 
has the shape of a quarter of a flat circular washer, with inner radius a and outer 
radius b, as shown in Fig. 5-8. Determine the resistance between the end faces. 

Solution Obviously, the appropriate coordinate system to use for this problem is 
the cylindrical coordinate system. Following the foregoing procedure, we first assume 
a potential difference V0 between the end faces, say V = 0 on the end face at y = 0 
(</> = 0) and V = V0 on the end face at x = 0 (</> = n/2). We are to solve Laplace's 
equation in V subject to the following boundary conditions: 

K = 0 
V=V0 

at 
at 

</> = 0, 
4 = n/2. 

(5-84a) 
(5-84b) 

Since potential V is a function of </> only, Laplace's equation in cylindrical coordinates 
simplifies to 

d2V w=0- ,5-85) 
The general solution of Eq. (5-85) is 

V = cx(j) + c2, 

FIGURE 5-8 
A quarter of a flat conducting circular washer (Example 

+ x 5-6). 
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which, upon using the boundary conditions in Eqs. (5-84a) and (5-84b), becomes 

The current density is 

7 = ^ 4 . ( » 
n 

dV 2(TV0 (5-87) 
v rd<p v nr 

The total current I can be found by integrating J over the 4> = n/2 surface at which 
ds = -a^hdr. We have 

Z=f J - A ^ h f ^ 
J S * ^ V (5-88) 

2ohV0, b 
— — In — 

% a 
Therefore, 

R-i-2*hhi(b/a)' (5_89) 

Note that, for this problem, it is not convenient to begin by assuming a total 
current I because it is not obvious how J varies with r for a given I. Without J, E 
and V0 cannot be determined. M 

Review Questions 

R.5-1 Explain the difference between conduction and convection currents. 
R.5-2 Explain the operation of an electrolytic tank. In what ways do electrolytic currents 
differ from conduction and convection currents? 
R.5-3 Define mobility of the electron in a conductor. What is its SI unit? 
R.5-4 What is the Child-Langmuir law"? 
R.5-5 What is the point form for Ohrrts law? 
R.5-6 Define conductivity. What is its SI unit? 
R.5-7 Why does the resistance formula in Eq. (5-27) require that the material be 
homogeneous and straight and that it have a uniform cross section? 
R.5-8 Prove Eqs. (5-29) and (5-30b). 
R.5-9 Define electromotive force in words. 
R.5-10 What is the difference between impressed and electrostatic field intensities? 
R.5-11 State Kirchhoff's voltage law in words. 
R.5-12 What are the characteristics of an ideal voltage source? 
R.5-13 Can the currents in different branches (resistors) of a closed loop in an electric 
network flow in opposite directions? Explain. 
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R.5-14 What is the physical significance of the equation of continuity! 
R.5-15 State Kirchhoff's current law in words. 
R.5-16 What are the characteristics of an ideal current source? 
R.5-17 Define relaxation time. What is the order of magnitude of the relaxation time in 
copper? 
R.5-18 In what ways should Eq. (5-48) be modified when a is a function of space 
coordinates? 
R.5-19 State Joule's law. Express the power dissipated in a volume 

a) in terms of E and a, 
b) in terms of J and a. 

R.5-20 Does the relation V x J = 0 hold in a medium whose conductivity is not constant? 
Explain. 
R.5-21 What are the boundary conditions of the normal and tangential components of 
steady current at the interface of two media with different conductivities? 
R.5-22 What quantities in electrostatics are analogous to the steady current density vector 
and conductivity in an ohmic medium? 
R.5-23 What is the basis of using an electrolytic tank to map the potential distribution of 
electrostatic boundary-value problems? 
R.5-24 What is the relation between the resistance and the capacitance formed by two 
conductors immersed in a lossy dielectric medium that has permittivity e and conductivity ol 
R.5-25 Under what situations will the relation between R and C in R.5-24 be only 
approximately correct? Give a specific example. 

Problems 

P.5-1 Assuming S to be the area of the electrodes in the space-charge-limited vacuum 
diode in Fig. 5-2, find 

a) V(y) and E(y) within the interelectrode region, 
b) the total amount of charge in the interelectrode region, 
c) the total surface charge on the cathode and on the anode, 
d) the transit time of an electron from the cathode to the anode with V0 = 200 (V) and 

d = 1 (cm). 
P.5-2 Starting with Ohm's law as expressed in Eq. (5-26) applied to a resistor of length tf, 
conductivity G, and uniform cross-section S, verify the point form of Ohm's law represented 
by Eq. (5-21). 
P.5-3 A long, round wire of radius a and conductivity a is coated with a material of 
conductivity 0.1a. 

a) What must be the thickness of the coating so that the resistance per unit length of 
the uncoated wire is reduced by 50%? 

b) Assuming a total current / in the coated wire, find J and E in both the core and 
the coating material. 

P.5-4 Find the current and the heat dissipated in each of the five resistors in the network 
shown in Fig. 5-9 if 

Rx = i (Q), R2 = 20 (Q), R3 = 30 (Q), R4 = 8 (SI), R5 = 10 (Q), 



221 

FIGURE 5-9 
A network problem (Problem P. 5-4). 

and if the source is an ideal d-c voltage generator of 0.7 (V) with its positive polarity at 
terminal 1. What is the total resistance seen by the source at terminal pair 1-2? 
P.5-5 Solve Problem P.5-4, assuming that the source is an ideal current generator that 
supplies a direct current of 0.7 (A) out of terminal 1. 
P.5-6 Lightning strikes a lossy dielectric sphere—e = 1.2 e0, a = 10 (S/m)—of radius 0.1 (m) 
at time t = 0, depositing uniformly in the sphere a total charge 1 (mC). Determine, for all t, 

a) the electric field intensity both inside and outside the sphere, 
b) the current density in the sphere. 

P.5-7 Refer to Problem P.5-6. 
a) Calculate the time it takes for the charge density in the sphere to diminish to 1% of 

its initial value. 
b) Calculate the change in the electrostatic energy stored in the sphere as the charge 

density diminishes from the initial value to 1% of its value. What happens to this 
energy? 

c) Determme the electrostatic energy stored in the space outside the sphere. Does this 
energy change with time? 

P.5-8 A d-c voltage of 6 (V) applied to the ends of 1 (km) of a conducting wire of 0.5 (mm) 
radius results in a current of 1/6 (A). Find 

a) the conductivity of the wire, 
b) the electric field intensity in the wire, 
c) the power dissipated in the wire, 
d) the electron drift velocity, assuming electron mobility in the wire to be 1.4 x 1 0 - 3 

(m2/V-s). 
P.5-9 Two lossy dielectric media with permittivities and conductivities (el5 crj and (e2, a2) 
are in contact. An electric field with a magnitude Ex is incident from medium 1 upon the 
interface at an angle ax measured from the common normal, as in Fig. 5-10. 

E, 

FIGURE 5-10 
Boundary between two lossy dielectric media (Problem 
P.5-9). 
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a) Find the magnitude and direction of E2 in medium 2. 
b) Find the surface charge density at the interface. 
c) Compare the results in parts (a) and (b) with the case in which both media are 

perfect dielectrics. 
P.5-10 The space between two parallel conducting plates each having an area S is filled 
with an inhomogeneous ohmic medium whose conductivity varies linearly from ox at one 
plate (y = 0) to o2 at the other plate (y = d). A d-c voltage V0 is applied across the plates 
as in Fig. 5-11. Determine 

a) the total resistance between the plates, 
b) the surface charge densities on the plates, 
c) the volume charge density and the total amount of charge between the plates. 

,d 

<f(y) [ 

JO | FIGURE 5-11 

^Area = S conductivity o{y) (Problem P.5-10). 
Inhomogeneous ohmic medium with 

P.5-11 Refer to Example 5-4. 
a) Draw the equivalent circuit of the two-layer, parallel-plate capacitor with lossy 

dielectrics, and identify the magnitude of each component. 
b) Determine the power dissipated in the capacitor. 

P.5-12 Refer again to Example 5-4. Assuming that a voltage V0 is applied across the 
parallel-plate capacitor with the two layers of different lossy dielectrics at t = 0, 

a) express the surface charge density psi at the dielectric interface as a function of t, 
b) express the electric field intensities E1 and E2 as functions of t. 

P.5-13 A d-c voltage VQ is applied across a cylindrical capacitor of length L. The radii of the 
inner and outer conductors are a and b, respectively. The space between the conductors is 
filled with two different lossy dielectrics having, respectively, permittivity ex and conductivity 
ov in the region a <r < c, and permittivity e2

 a n d conductivity o2 in the region c <r < b. 
Determine 

a) the current density in each region, 
b) the surface charge densities on the inner and outer conductors and at the interface 

between the two dielectrics. 
P.5-14 Refer to the fiat conducting quarter-circular washer in Example 5-6 and Fig. 5-8. 
Find the resistance between the curved sides. 
P.5-15 Find the resistance between two concentric spherical surfaces of radii Rt and 
R2 (Rt < R2) if the space between the surfaces is filled with a homogeneous and isotropic 
material having a conductivity a. 
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P.5-16 Determine the resistance between two concentric spherical surfaces of radii Ri and 
R2(Ri < R2), assuming that a material of conductivity a = a0(l + k/R) fills the space between 
them. (Note: Laplace's equation for V does not apply here.) 
P.5-17 A homogeneous material of uniform conductivity a is shaped like a truncated 
conical block and defined in spherical coordinates by 

RX<R<R2 and 0 < B < 0O. 
Determine the resistance between the R = i ^ and R = R2 surfaces. 
P.5-18 Redo Problem P.5-17, assuming that the truncated conical block is composed 
of an inhomogeneous material with a nonuniform conductivity a(R) = a0RjR, where 
Ri<R<R2. 
P.5-19 Two conducting spheres of radii bx and b2 that have a very high conductivity are 
immersed in a poorly conducting medium (for example, they are buried very deep in the 
ground) of conductivity a and permittivity e. The distance, d, between the spheres is very 
large in comparison with the radii. Determine the resistance between the conducting spheres. 
(Hint: Find the capacitance between the spheres by following the procedure in Section 3-10 
and using Eq. (5-81).) 
P.5-20 Justify the statement that the steady-current problem associated with a conductor 
buried in a poorly conducting medium near a plane boundary with air, as shown in Fig. 
5-12(a), can be replaced by that of the conductor and its image, both immersed in the 
poorly conducting medium as shown in Fig. 5—12(b). 

<r = 0 / 

Boundary 
removed 

(a) Conductor in a poorly (b) Image conductor in conducting 
conducting medium near medium replacing the 
a plane boundary. plane boundary. 

FIGURE 5-12 
Steady-current problem with a plane boundary (Problem P.5-20). 

P.5-21 A ground connection is made by burying a hemispherical conductor of radius 
25 (mm) in the earth with its base up, as shown in Fig. 5-13. Assuming the earth 
conductivity to be 10 ~6 S/m, find the resistance of the conductor to far-away points in 
the ground. (Hint: Use the image method in P.5-20.) 

a = [<T6 (S/m) 
FIGURE 5-13 
Hemispherical conductor in ground (Problem P.5 -21). 



224 5 Steady Electric Currents 

P.5-22 Assume a rectangular conducting sheet of conductivity a, width a, and height b. A 
potential difference V0 is applied to the side edges, as shown in Fig. 5-14. Find 

a) the potential distribution, 
b) the current density everywhere within the sheet. (Hint: Solve Laplace's equation in 

Cartesian coordinates subject to appropriate boundary conditions.) 

V=0 

dn 

v=y0 
dV 

to. FIGURE 5-14 
A conducting sheet (Problem P.5-22). 

P.5-23 A uniform current density J = axJ0 flows in a very large rectangular block of 
homogeneous material of a uniform thickness having a conductivity a. A hole of radius 
b is drilled in the material. Find the new current density J' in the conducting material. 
(Hint: Solve Laplace's equation in cylindrical coordinates and note that V approaches 
— (J0r/a) cos (j> as r -*■ oo, where </> is the angle measured from the x-axis.) 



6 
Static Magnetic 
Fields 

"—1 Introduction 

In Chapter 3 we dealt with static electric fields caused by electric charges at rest. 
We saw that electric field intensity E is the only fundamental vector field quantity 
required for the study of electrostatics in free space. In a material medium it is con
venient to define a second vector field quantity, the electric flux density (or electric 
displacement) D, to account for the effect of polarization. The following two equa
tions form the basis of the electrostatic model: 

V • D = p, (6-1) 
\ x E = 0. (6-2) 

The electrical property of the medium determines the relation between D and E. If 
the medium is linear and isotropic, we have the simple constitutive relation D = eE, 
where the permittivity e is a scalar. 

When a small test charge q is placed in an electric field E, it experiences an elec
tric force Fe, which is a function of the position of q. We have 

Fe = «E (N). (6-3) 

When the test charge is in motion in a magnetic field (to be defined presently), 
experiments show that it experiences another force, Fm, which has the following 
characteristics: (1) The magnitude of Fm is proportional to q; (2) the direction of Fm 

at any point is at right angles to the velocity vector of the test charge as well as to 
a fixed direction at that point; and (3) the magnitude of Fm is also proportional to 
the component of the velocity at right angles to this fixed direction. The force Fm is 
a magnetic force; it cannot be expressed in terms of E or D. The characteristics of ¥m 
can be described by defining a new vector field quantity, the magnetic flux density B, 
that specifies both the fixed direction and the constant of proportionality. In SI units 
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the magnetic force can be expressed as 

Fm = quxB (N), (6-4) 

where u (m/s) is the velocity vector, and B is measured in webers per square meter 
(Wb/m2) or teslas (T).f The total electromagnetic force on a charge q is, then, 
F = Fe + Fm; that is, 

F = # + u x B ) (N), (6-5) 

which is called Lorentz's force equation. Its validity has been unquestionably estab
lished by experiments. We may consider FJq for a small q as the definition for electric 
field intensity E (as we did in Eq. 3-2), and FJq = u x B as the defining relation 
for magnetic flux density B. Alternatively, we may consider Lorentz's force equation 
as a fundamental postulate of our electromagnetic model; it cannot be derived from 
other postulates. 

We begin the study of static magnetic fields in free space by two postulates 
specifying the divergence and the curl of B. From the solenoidal character of B a 
vector magnetic potential is defined, which is shown to obey a vector Poisson's 
equation. Next we derive the Biot-Savart law, which can be used to determine the 
magnetic field of a current-carrying circuit. The postulated curl relation leads directly 
to Ampere's circuital law, which is particularly useful when symmetry exists. 

The macroscopic effect of magnetic materials in a magnetic field can be studied 
by defining a magnetization vector. Here we introduce a fourth vector field quantity, 
the magnetic field intensity H. From the relation between B and H we define the 
permeability of the material, following which we discuss magnetic circuits and the 
microscopic behavior of magnetic materials. We then examine the boundary condi
tions of B and H at the interface of two different magnetic media; self- and mutual 
inductances; and magnetic energy, forces, and torques. 

6—2 Fundamental Postulates of Magnetostatics in Free Space 

To study magnetostatics (steady magnetic fields) in free space, we need only consider 
the magnetic flux density vector, B. The two fundamental postulates of magnetostatics 
that specify the divergence and the curl of B in free space are 

V • B = 0, (6-6) 

V x B = ^0J. (6-7) 

f One weber per square meter or one tesla equals 104 gauss in CGS units. The earth magnetic field is 
about \ gauss or 0.5 x 10"4 T. (A weber is the same as a volt-second.) 
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In Eq. (6-7), /x0 is the permeability of free space: 
H0 = 4TC x 1(T7 (H/m) 

(see Eq. 1-9), and J is the current density. Since the divergence of the curl of any 
vector field is zero (see Eq. 2-149), we obtain from Eq. (6-7) 

V • J = 0, (6-8) 
which is consistent with Eq. (5-44) for steady currents. 

Comparison of Eq. (6-6) with the analogous equation for electrostatics in free 
space, V • E = p/e0 (Eq. 3-4), leads us to conclude that there is no magnetic analogue 
for electric charge density p. Taking the volume integral of Eq. (6-6) and applying 
the divergence theorem, we have 

B • ds = 0, (6-9) 

where the surface integral is carried out over the bounding surface of an arbitrary 
volume. Comparing Eq. (6-9) with Eq. (3-7), we again deny the existence of isolated 
magnetic charges. There are no magnetic flow sources, and the magnetic flux lines 
always close upon themselves. Equation (6-9) is also referred to as an expression for 
the law of conservation of magnetic flux because it states that the total outward 
magnetic flux through any closed surface is zero. 

The traditional designation of north and south poles in a permanent bar magnet 
does not imply that an isolated positive magnetic charge exists at the north pole and 
a corresponding amount of isolated negative magnetic charge exists at the south pole. 
Consider the bar magnet with north and south poles in Fig. 6-1(a). If this magnet 
is cut into two segments, new south and north poles appear, and we have two shorter 
magnets as in Fig. 6-1(b). If each of the two shorter magnets is cut again into two 
segments, we have four magnets, each with a north pole and a south pole as in Fig. 
6-1(c). This process could be continued until the magnets are of atomic dimensions; 
but each infinitesimally small magnet would still have a north pole and a south pole. 
Obviously, then, magnetic poles cannot be isolated. The magnetic flux lines follow 
closed paths from one end of a magnet to the other end outside the magnet and then 

S 
(a) 

FIGURE 6-1 
Successive division of a bar magnet. 
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continue inside the magnet back to the first end. The designation of north and south 
poles is in accordance with the fact that the respective ends of a bar magnet freely 
suspended in the earth's magnetic field will seek the north and south directions.T 

The integral form of the curl relation in Eq. (6-7) can be obtained by integrating 
both sides over an open surface and applying Stokes's theorem. We have 

J>xB) ds=^LJ ds 

or 

j)cB'dt=n0I, (6-10) 

where the path C for the line integral is the contour bounding the surface S, and / 
is the total current through S. The sense of tracing C and the direction of current 
flow follow the right-hand rule. Equation (6-10) is a form of Ampere's circuital law, 
which states that the circulation of the magnetic flux density in free space around 
any closed path is equal to /i0 times the total current flowing through the surface 
bounded by the path. Ampere's circuital law is very useful in determining the mag
netic flux density B caused by a current / when there is a closed path C around the 
current such that the magnitude of B is constant over the path. 

The following is a summary of the two fundamental postulates of magnetostatics 
in free space: 

Postulates of Magnetostatics in 
Free Space 

Differential Form Integral Form 

V B = 0 B • ds = 0 

V x B = ii0J & B-d£ = ii0I 

EXAMPLE 6-1 An infinitely long, straight conductor with a circular cross section 
of radius b carries a steady current I Determine the magnetic flux density both inside 
and outside the conductor. 

1 We note here parenthetically that examination of some prehistoric rock formations has led to the belief 
that there have been dramatic reversals of the earth's magnetic field every ten million years or so. The 
earth's magnetic field is thought to be produced by the rolling motions of the molten iron in the earth's 
outer core, but the exact reasons for the field reversals are still not well understood. The next such reversal 
is predicted to be only about 2000 years from now. One cannot conjecture all the dire consequences of 
such a reversal, but among them would be disruptions in global navigation and drastic changes in the 
migratory patterns of birds. 
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Solution First we note that this is a problem with cylindrical symmetry and that 
Ampere's circuital law can be used to advantage. If we align the conductor along 
the 2-axis, the magnetic flux density B will be ^-directed and will be constant along 
any circular path around the z-axis. Figure 6-2(a) shows a cross section of the con
ductor and the two circular paths of integration, C1 and C2, inside and outside, 
respectively, the current-carrying conductor. Note again that the directions of Cx 
and C2 and the direction of I follow the right-hand rule. (When the fingers of the 
right hand follow the directions of Ct and C2, the thumb of the right hand points 
to the direction of I.) 

a) Inside the conductor: 
Bi = a ^ l 5 dt = a ^ ! # 

£ B1>de = £ " J V i d<t> = 2™"i V 
The current through the area enclosed by Ct is 

I. 

Therefore, from Ampere's circuital law, 

B ^ a ^ ^ a , ^ , rt<b. (6-1 la) 

FIGURE 6-2 
■► Magnetic flux density of an infinitely long circular 

conductor carrying a current / out of paper 
(Example 6-i). 
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b) Outside the conductor: 
B2 = a ^ 2 , de = 2i<t>r2d(j) 

c2 
B,-de = 2nr7B 2 - ^ 2 • 

Path C9 outside the conductor encloses the total current I Hence 

B2 = a ^ 2 = a 2nr7 
r7 > b. (6-1 lb) 

Examination of Eqs. (6-1 la) and (6-1 lb) reveals that the magnitude of B in
creases linearly with ry from 0 until r1 = b, after which it decreases inversely with 
r2. The variation of B^ versus r is sketched in Fig. 6-2(b). ma 

If the problem is not that of a solid cylindrical conductor carrying a total steady 
current /, but that of a very thin circular tube carrying a surface current, then it is 
obvious from Ampere's circuital law that B = 0 inside the tube. Outside the tube, 
Eq. (6-1 lb) still applies with / = total current flowing in the tube. Thus, for an 
infinitely long, hollow cylinder carrying a surface current density J s = azJs (A/m), 
/ = 2nbJ.. we have 

r <b, 

r>b. 
(6-12) 

EXAMPLE 6-2 Determine the magnetic flux density inside a closely wound toroidal 
coil with an air core having JV turns and carrying a current L The toroid has a mean 
radius b, and the radius of each turn is a. 

FIGURE 6-3 
A current-carrying toroidal oil 
(Example 6-2). 
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Solution Figure 6-3 depicts the geometry of this problem. Cylindrical symmetry 
ensures that B has only a ^-component and is constant along any circular path about 
the axis of the toroid. We construct a circular contour C with radius r as shown. 
For (b — a) < r < b + a, Eq. (6-10) leads directly to 

(j) B • d€ = InrB^ = fi0NI, 

where we have assumed that the toroid has an air core with permeability //0. Therefore, 

B = a+B+ = a, 
2nr 

(b-a)<r<(b + a). (6-13) 

It is apparent that B = 0 for r < (b — a) and r > (b + a), since the net total current 
enclosed by a contour constructed in these two regions is zero. BES 

EXAMPLE 6-3 Determine the magnetic flux density inside an infinitely long sole
noid with air core having n closely wound turns per unit length and carrying a cur
rent / as shown in Fig. 6-4. 

Solution This problem can be solved in two ways. 

a) As a direct application of Ampere's circuital law. It is clear that there is no mag
netic field outside of the solenoid. To determine the B-field inside, we construct 
a rectangular contour C of length L that is partially inside and partially outside 
the solenoid. By reason of symmetry the B-field inside must be parallel to the 
axis. Applying Ampere's circuital law, we have 

BL = pLQnLI 
or 

B = fi0nl. (6-14) 

The direction of B goes from right to left, conforming to the right-hand rule with 
respect to the direction of the current / in the solenoid, as indicated in Fig. 6-4. 

b) As a special case of toroid. The straight solenoid may be regarded as a special 
case of the toroidal coil in Example 6-2 with an infinite radius (b -> oo). In such 

FIGURE 6-4 
A current-carrying long solenoid 
(Example 6-3). 
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a case the dimensions of the cross section of the core are very small in comparison 
with b, and the magnetic flux density inside the core is approximately constant. 
We have, from Eq. (6-13), 

< = > -
which is the same as Eq. (6-14). — 

6 - 3 Vector Magnetic Potential 

The divergence-free postulate of B in Eq. (6-6), V ■ B = 0, assures that B is solenoidal. 
As a consequence, B can be expressed as the curl of another vector field, say A, such 
that (see Identity II, Eq. (2-149), in Section 2-11) 

B = V x A (T). (6-15) 

The vector field A so defined is called the vector magnetic potential. Its SI unit is 
weber per meter (Wb/m). Thus if we can find A of a current distribution, B can be 
obtained from A by a differential (curl) operation. This is quite similar to the intro
duction of the scalar electric potential V for the curl-free E in electrostatics (Section 
3-5) and the obtaining of E from the relation E = —VV. However, the definition of 
a vector requires the specification of both its curl and its divergence. Hence Eq. (6-15) 
alone is not sufficient to define A; we must still specify its divergence. 

How do we choose V • A? Before we answer this question, let us take the curl of 
B in Eq. (6-15) and substitute it in Eq. (6-7). We have 

V x V x A - pi0J. (6-16) 

Here we digress to introduce a formula for the curl curl of a vector: 

V x V x A = \(\ • A) - V2A (6-17a) 
or 

V2A = V(V • A) - V x V x A. (6-17b) 

Equation (6-17a)1" or (6-17b) can be regarded as the definition of V2A, the Laplacian 
of A. For Cartesian coordinates it can be readily verified by direct substitution 
(Problem P.6-16) that 

V2A = ax \2AX + ay \2Ay + az \2AZ. (6-18) 
Thus, for Cartesian coordinates the Laplacian of a vector field A is another vector 
field whose components are the Laplacian (the divergence of the gradient) of the 

r Equation (6-17a) can also be obtained heuristically from the vector triple product formula in Eq. 
(2-20) by considering the del operator, V, a vector: 

V x (V x A) = V(V • A) - (V • V)A = V(V • A) - V2A. 
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corresponding components of A. This, however, is not true for other coordinate 
systems. 

We now expand V x V x A in Eq. (6-16) according to Eq. (6-17a) and obtain 

\{\ • A) - V2A = n0J. (6-19) 

With the purpose of simplifying Eq. (6-19) to the greatest extent possible we choose 

(6-20)t V • A = 0, 

and Eq. (6-19) becomes 

V2A = -/i0J. (6-21) 

This is a vector Poisson's equation. In Cartesian coordinates, Eq. (6-21) is equivalent 
to three scalar Poisson's equations: 

\2AX= -n0Jx, 
\2Ay = -fi0Jy, 
\2AZ=-LI0JZ. 

(6-22a) 
(6-22b) 
(6-22c) 

Each of these three equations is mathematically the same as the scalar Poisson's 
equation, Eq. (4-6), in electrostatics. In free space the equation 

has a particular solution (see Eq. 3-61), 

V 4ne0 Jv R 

Hence the solution for Eq. (6-22a) is 

x 4TT JV R 

We can write similar solutions for Ay and Az. Combining the three components, we 
have the solution for Eq. (6-21): 

(6-23) 

This relation is called Coulomb condition or Coulomb gauge. 
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Equation (6-23) enables us to find the vector magnetic potential A from the volume 
current density J. The magnetic flux density B can then be obtained from V x A by 
differentiation, in a way similar to that of obtaining the static electric field E from 
-\V. 

Vector potential A relates to the magnetic flux O through a given area S that is 
bounded by contour C in a simple way: 

O =LB'd°- (6-24) 

The SI unit for magnetic flux is weber (Wb), which is equivalent to tesla-square meter 
(T-m2). Using Eq. (6-15) and Stokes's theorem, we have 

O = J s (V x A) • ds = (j) A • d€ (Wb). (6-25) 

Thus, vector magnetic potential A does have physical significance in that its line 
integral around any closed path equals the total magnetic flux passing through the 
area enclosed by the path. 

6 - 4 The Biot-Savart Law and Applications 

In many applications we are interested in determining the magnetic field due to a 
current-carrying circuit. For a thin wire with cross-sectional area S, dv' equals S d£', 
and the current flow is entirely along the wire. We have 

Jdv' = JSd€' = Id€', 
and Eq. (6-23) becomes 

A -Six <*■** 

(6-26) 

(6-27) 

where a circle has been put on the integral sign because the current / must flow in 
a closed path,1 which is designated C". The magnetic flux density is then 

B = V x A = V x An Jc R 

= ^ & Vx 
47T JC 

'd€_ 
R 

(6-28) 

t We are now dealing with direct (non-time-varying) currents that give rise to steady magnetic fields. 
Circuits containing time-varying sources may send time-varying currents along an open wire and deposit 
charges at its ends. Antennas are examples. 
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It is very important to note in Eq. (6-28) that the unprimed curl operation implies 
differentiations with respect to the space coordinates of the field point, and that the 
integral operation is with respect to the primed source coordinates. The integrand in 
Eq. (6-28) can be expanded into two terms by using the following identity (see Prob
lem P.2-37): 

V x (/G) = / V x G + (V/) x G. (6-29) 

We have, with / = 1/R and G = dt, 

4TT JC' 
i v xd€' + (v^)xd€' 
R \ R 

(6-30) 

Now, since the unprimed and primed coordinates are independent, V x d{' equals 
0, and the first term on the right side of Eq. (6-30) vanishes. The distance R is 
measured from d€' at (x', / , z') to the field point at (x, y, z). Thus we have 

i = [(x _ xf + (j>-JO2+ (*-*?] _1/2; 

R 
ax(x - x') + ay(y - / ) + az(z - z') 

[(x-xf + (y-yf+(z-zfyi2 

R 1 

(6-31) 

R: R2 

where aR is the unit vector directed from the source point to the field point. Substi
tuting Eq. (6-31) in Eq. (6-30), we get 

(6-32) 
4TT JC' R2 (T). 

Equation (6-32) is known as Biot-Savart law. It is a formula for determining B 
caused by a current / in a closed path C and is obtained by taking the curl of A in 
Eq. (6-27). Sometimes it is convenient to write Eq. (6-32) in two steps: 

with 

B = (JWB (T), 

- ^ ( ^ ) 1% 

(6-33a) 

(6-33b) 
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P(r, 0, 0) 

FIGURE 6-5 
A current-carrying straight wire (Example 6-4). 

which is the magnetic flux density due to a current element / d€'. An alternative and 
sometimes more convenient form for Eq. (6-33b) is 

(6-33c) 

Comparison of Eq. (6-32) with Eq. (6-10) will reveal that Biot-Savart law is, in 
general, more difficult to apply than Ampere's circuital law. However, Ampere's cir
cuital law is not useful for determining B from / in a circuit if a closed path cannot 
be found over which B has a constant magnitude. 

EXAMPLE 6-4 A direct current / flows in a straight wire of length 2L. Find the 
magnetic flux density B at a point located at a distance r from the wire in the bisecting 
plane: (a) by determining the vector magnetic potential A first, and (b) by applying 
Biot-Savart law. 

Solution Currents exist only in closed circuits. Hence the wire in the present problem 
must be a part of a current-carrying loop with several straight sides. Since we do 
not know the rest of the circuit, Ampere's circuital law cannot be used to advantage. 
Refer to Fig. 6-5. The current-carrying line segment is aligned with the z-axis. A 
typical element on the wire is 

d€' = nsdz'. 

The cylindrical coordinates of the field point P are (r, 0, 0). 

a) By finding B from V x A. Substituting R = jz'2 + r2 into Eq. (6-27), we have 
HQI CL dz' 

\L 

A = a, 

= a, 

= a, 

^[ ln(z ' + V^T7)] (6-34) 
- L 

4n fT2 
+ r2 + L 

4UT?-L 
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Therefore, 
1 dA dA 

B = V x A = V x ( M J = a , - - ^ - a , - ^ 

Cylindrical symmetry around the wire assures that dAJdcj) = 0. Thus, 

8 
B = dr 

'li0I , V^ 2 + rZ + L 
—— In 
M y/L2 + r2 - L\ 

= a, 
li0IL 

(6-35) 

When r « L, Eq. (6-35) reduces to 

B . = a, 27rr' 
(6-36) 

which is the expression for B at a point located at a distance r from an infinitely 
long, straight wire carrying current /, as given in Eq. (6-1 lb). 

b) By applying Biot-Savart law. From Fig. 6-5 we see that the distance vector from 
the source element dz' to the field point P is 

R = arr — azz' 
d f x R = az dz' x (a / - azz') = a^rdz'. 

Substitution in Eq. (6-3 3c) gives 

B = fdB - a , M I* '*" 

= a 

471 J - L ( Z ' 2 + r 2 ) 3 / 2 

* Inryf&Tri' 
which is the same as Eq. (6-35). 

EXAMPLE 6-5 Find the magnetic flux density at the center of a square loop, with 
side w carrying a direct current /. 

Solution Assume that the loop lies in the xy-plane, as shown in Fig. 6-6. The mag
netic flux density at the center of the square loop is equal to four times that caused 

FIGURE 6-6 
A square loop carrying current / (Example 6-5). 
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P(0, 0, z) 

FIGURE 6-7 
A circular loop carrying current / (Example 6-6). 

by a single side of length w. We have, by setting L = r = w/2 in Eq. (6-35), 

/2nw nw 
(6-37) 

where the direction of B and that of the current in the loop follow the right-hand 
ru le . B^B 

EXAMPLE 6-6 Find the magnetic flux density at a point on the axis of a circular 
loop of radius b that carries a direct current I. 

Solution We apply Biot-Savart law to the circular loop shown in Fig. 6-7: 

dt' = a^b # ' , 
R = azz — arb, 
R = (z2 + b2)1'2. 

Again it is important to remember that R is the vector from the source element d€' 
to the field point P. We have 

dt' x R = SLJ) dcf)' x (azz — arb) 
= arbz dcf)' + &zb2 d(f)'. 

Because of cylindrical symmetry, it is easy to see that the ar-component is canceled 
by the contribution of the element located diametrically opposite to d£', so we need 
only consider the az-component of this cross product. 

We write, from Eqs. (6-33a) and (6-33c), 

B = 
/J,QI f2ii 

An 
f2n 

Jo a 
b2d<\>' 

(z2 + b2)312 z („2 

or 

B = a. 
l{z2 + b2f12 (T). (6-38) 
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We begin this section with an example. 

EXAMPLE 6-7 Find the magnetic flux density at a distant point of a small circular 
loop of radius b that carries current / (a magnetic dipole). 

Solution It is apparent from the statement of the problem that we are inter
ested in determining B at a point whose distance, R, from the center of the loop 
satisfies the relation R » b; that being the case, we may make certain simplifying 
approximations. 

We select the center of the loop to be the origin of spherical coordinates, as 
shown in Fig. 6-8. The source coordinates are primed. We first find the vector mag
netic potential A and then determine B by V x A: 

4TC JC # ! 
(6-39) 

Equation (6-39) is the same as Eq. (6-27), except for one important point: R in 
Eq. (6-27) denotes the distance between the source element dl' at P' and the field 
point P; but it must be replaced by R1 in accordance with the notation in Fig. 6-8. 
Because of symmetry, the magnetic field is obviously independent of the angle 4> of 
the field point. We pick P(R, 9, n/2) in the j/z-plane for convenience. 

Another point of importance is that a^ at d€' is not the same as â , at point P. 
In fact, â , at P, shown in Fig. 6-8 is — a*, and 

d€' = ( — ax sin ft + ay cos 4>')bd4>'. (6-40) 

For every / d€' there is another symmetrically located differential current element on 
the other side of the j/-axis that will contribute an equal amount to A in the — ax 
direction but will cancel the contribution oiId£' in the ay direction. Equation (6-39) 

FIGURE 6-8 
A small circular loop carrying current / (Example 6-7). 
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can be written as 

x An Jo RX * 
or 

li0Ib M2 sin 0' 

The law of cosines applied to the triangle OPP' gives 
#2 = ^ 2 + b2 _ 2 W » c o s ^ 

where # cos i/V is the projection of # on the radius OP', which is the same as the 
projection of OP" (OP" = R sin 9) on OP'. Hence, 

Rl = R2 + b2 - 26# sin 0 sin <j)', 
and 

l l A fc2 26 . „ . , . V 1 / 2 

*r*( 1 + ^-t f s m * s m 

When i?2 » b2, b2/R2 can be neglected in comparison with 1: 

— = — 1 sin 6 sin 6 
Rx R\ R r 

= - ( l + - s i n 0 s i n 0 ' ] . 

Substitution of Eq. (6-42) in Eq. (6-41) yields 

fi0Ib (V2 

(6-42) 

A = a. 
2nR 

or 
fiolb2 „. 
4R 

r I 1 4- — sin 6 sin 0' I sin 0' d<£' 

A = a „ ^ - s i n 6 > . (6-43) 

The magnetic flux density is B = V x A. Equation (2-139) can be used to find 

B = ^ - (a* 2 cos 61 + a0 sin^), (6-44) 

which is our answer. ^ 

At this point we recognize the similarity between Eq. (6-44) and the expression 
for the electric field intensity in the far field of an electrostatic dipole as given in 
Eq. (3-54). Hence, at distant points the magnetic flux lines of a magnetic dipole 
(placed in the xy-plane) such as that in Fig. 6-8 will have the same form as the dashed 
electric field lines of an electric dipole (lying in the z-direction) given in Fig. 3-15. 
In the vicinity of the dipoles, however, the flux lines of a magnetic dipole are con
tinuous, whereas the field lines of an electric dipole terminate on the charges, always 
going from the positive to the negative charge. This is illustrated in Fig. 6-9. 
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as 

or 

Let us now rearrange the expression of the vector magnetic potential in Eq. (6-43) 

fi0(Inb2) . 

A - * ^ (Wb/m), 

where 
m = ajnb2 = azIS = azm (A-m2) 

(6-45) 

(6-46) 

is defined as the magnetic dipole moment, which is a vector whose magnitude is the 
product of the current in and the area of the loop and whose direction is the direction 
of the thumb as the fingers of the right hand follow the direction of the current. Com
parison of Eq. (6-45) with the expression for the scalar electric potential of an electric 
dipole in Eq. (3-53b), 

P ' *R 
(6-47) V = 

4n60R' 
(V), 

reveals that, for the two cases, A is analogous to V. We call a small current-carrying 
loop a magnetic dipole. 

In a similar manner we can also rewrite Eq. (6-44) as 

B = Hom 
4nR3 (a* 2 cos 9 + ae sin 9) (T). (6-48) 

(a) Electric dipole. (b) Magnetic dipole. 

FIGURE 6-9 
Electric field lines of an electric dipole and magnetic flux lines of a magnetic dipole. 
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Except for the change of p to m and e0 to l/^0, Eq. (6-48) has the same form as 
Eq. (3-54) does for the expression for E at a distant point of an electric dipole. Hence 
the magnetic flux lines of a magnetic dipole lying in the xy-plane will have the same 
form as that of the electric field lines of an electric dipole positioned along the z-axis, 
as noted before. 

Although the magnetic dipole in Example 6-7 was taken to be a circular loop, 
it can be shown (Problem P.6-19) that the same expressions—Eqs. (6-45) and 
(6-48)—are obtained when the loop has a rectangular shape, with m = IS, as given 
in Eq. (6-46). 

6-5.1 SCALAR MAGNETIC POTENTIAL 
In a current-free region J = 0, Eq. (6-7) becomes 

V x B = 0. (6-49) 

The magnetic flux density B is then curl-free and can be expressed as the gradient 
of a scalar field. Let 

B=-^0\Vm, (6-50) 

where Vm is called the scalar magnetic potential (expressed in amperes). The negative 
sign in Eq. (6-50) is conventional (see the definition of the scalar electric potential 
V in Eq. 3-43), and the permeability of free space [i0 is simply a proportionality con
stant. Analogous to Eq. (3-45), we can write the scalar magnetic potential difference 
between two points, P2 and P l s in free space as 

Vm2-Vml=-^2 — B'd€. (6-51) 

If there were magnetic charges with a volume density pm (A/m2) in a volume V, 
we would be able to find Vm from 

V--hSrT" (A)' ( 6" 5 2> 
The magnetic flux density B could then be determined from Eq. (6-50). However, 
isolated magnetic charges have never been observed experimentally; they must be 
considered fictitious. Nevertheless, the consideration of fictitious magnetic charges 
in a mathematical (not physical) model is expedient both to the discussion of some 
magnetostatic relations in terms of our knowledge of electrostatics and to the estab
lishment of a bridge between the traditional magnetic-pole viewpoint of magnetism 
and the concept of microscopic circulating currents as sources of magnetism. 

The magnetic field of a small bar magnet is the same as that of a magnetic dipole. 
This can be verified experimentally by observing the contours of iron filings around 
a magnet. The traditional understanding is that the ends (the north and south poles) 
of a permanent magnet are the location of positive and negative magnetic charges, 
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respectively. For a bar magnet the fictitious magnetic charges +qm and — qm are as
sumed to be separated by a distance d and to form an equivalent magnetic dipole 
of moment 

m = qj = *JS. (6-53) 

The scalar magnetic potential Vm caused by this magnetic dipole can then be found 
by following the procedure used in Subsection 3-5.1 for finding the scalar electric 
potential that is caused by an electric dipole. We obtain, as in Eq. (3-53b), 

". -=£ (A.- W 
Substitution of Eq. (6-54) in Eq. (6-50) yields the same B as is given in Eq. (6-48). 

We note that the expression of the scalar magnetic potential Vm in Eq. (6-54) 
for a magnetic dipole is exactly analogous to that of the scalar electric potential V 
in Eq. (6-47) for an electric dipole. The likeness between the vector magnetic poten
tial A in Eq. (6-45) and V in Eq. (6-47) is, however, not as exact. It is noted that 
the curl-free nature of B indicated in Eq. (6-49), from which the scalar magnetic 
potential Vm is denned, holds only at points with no currents. In a region where cur
rents exist, the magnetic field is not conservative, and the scalar magnetic potential 
is not a single-valued function; hence the magnetic potential difference evaluated 
by Eq. (6-51) depends on the path of integration. For these reasons we will use the 
circulating-current-and-vector-potential approach, instead of the fictitious magnetic-
charge-and-scalar-potential approach, for the study of magnetic fields in magnetic 
materials. We ascribe the macroscopic properties of a bar magnet to circulating 
atomic currents (Amperian currents) caused by orbiting and spinning electrons. Some 
aspects of equivalent (fictitious) magnetic charge densities will be discussed in Sub
section 6-6.1. 

6—6 Magnetization and Equivalent Current Densities 

According to the elementary atomic model of matter, all materials are composed of 
atoms, each with a positively charged nucleus and a number of orbiting negatively 
charged electrons. The orbiting electrons cause circulating currents and form micro
scopic magnetic dipoles. In addition, both the electrons and the nucleus of an atom 
rotate (spin) on their own axes with certain magnetic dipole moments. The magnetic 
dipole moment of a spinning nucleus is usually negligible in comparison to that of 
an orbiting or spinning electron because of the much larger mass and lower angular 
velocity of the nucleus. A complete understanding of the magnetic effects of materials 
requires a knowledge of quantum mechanics. (We give a qualitative description of 
the behavior of different kinds of magnetic materials in Section 6-9.) 

In the absence of an external magnetic field the magnetic dipoles of the atoms 
of most materials (except permanent magnets) have random orientations, resulting 
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in no net magnetic moment. The application of an external magnetic field causes 
both an alignment of the magnetic moments of the spinning electrons and an induced 
magnetic moment due to a change in the orbital motion of electrons. To obtain a 
formula for determining the quantitative change in the magnetic flux density caused 
by the presence of a magnetic material, we let mk be the magnetic dipole moment 
of an atom. If there are n atoms per unit volume, we define a magnetization vector, 
M, as 

nAv 

mk I 
M = lim —A ( A M (6-55) 

which is the volume density of magnetic dipole moment. The magnetic dipole moment 
dm of an elemental volume dv' is dm = Mdv' that, according to Eq. (6-45), will 
produce a vector magnetic potential 

jU0M x aR 

AnR: dA=^^dv'. (6-56) 

Using Eq. (3-83), we can write Eq. (6-56) as 

dA = !p-Mxv(-\dv'. An \R 
Thus, 

A=^A=!J>*v'(^K <«7> 
where V is the volume of the magnetized material. 

We now use the vector identity in Eq. (6-29) to write 

M x S'(j\ = i V x M - V x (j?\ (6-58) 

and expand the right side of Eq. (6-57) into two terms: 

An Jv R An > ' \RJ 

The following vector identity (see Problem P.6-20) enables us to change the volume 
integral of the curl of a vector into a surface integral: 

j y i V x ¥dv' = - ( | , F x ds', (6-60) 

where F is any vector with continuous first derivatives. We have, from Eq. (6-59), 

A = a , f V 1 x M « o r M x < 
47i Jv R An Js' R 

where a|, is the unit outward normal vector from ds' and S' is the surface bounding 
the volume V. 
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A comparison of the expressions on the right side of Eq. (6-61) with the form of 
A in Eq. (6-23) expressed in terms of volume current density J suggests that the 
effect of the magnetization vector is equivalent to both a volume current density 

Jm = V x M (A/m2) 

and a surface current density 

Jms = M x a„ (A/m). 

(6-62) 

(6-63) 

In Eqs. (6-62) and (6-63) we have omitted the primes on V and a„ for simplicity, 
since it is clear that both refer to the coordinates of the source point where the mag
netization vector M exists. However, the primes should be retained when there is a 
possibility of confusing the coordinates of the source and field points. 

The problem of finding the magnetic flux density B caused by a given volume 
density of magnetic dipole moment M is then reduced to finding the equivalent mag
netization current densities Jm and Jms by using Eqs. (6-62) and (6-63), determining 
A from Eq. (6-61), and then obtaining B from the curl of A. The externally applied 
magnetic field, if it also exists, must be accounted for separately. 

The mathematical derivation of Eqs. (6-62) and (6-63) is straightforward. The 
equivalence of a volume density of magnetic dipole moment to a volume current 
density and a surface current density can be appreciated qualitatively by referring 
to Fig. 6-10, in which a cross section of a magnetized material is shown. It is as
sumed that an externally applied magnetic field has caused the atomic circulating 
currents to align with it, thereby magnetizing the material. The strength of this mag
netizing effect is measured by the magnetization vector M. On the surface of the 
material there will be a surface current density Jms, whose direction is correctly given 

0 M, out of paper 

f FIGURE 6-10 
A cross section of a magnetized material. 
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by that of the cross product M x a„. If M is uniform inside the material, the cur
rents of the neighboring atomic dipoles that flow in opposite directions will cancel 
everywhere, leaving no net currents in the interior. This is predicted by Eq. (6-62), 
since the space derivatives (and therefore the curl) of a constant M vanish. How
ever, if M has space variations, the internal atomic currents do not completely cancel, 
resulting in a net volume current density Jm. It is possible to justify the quantitative 
relationships between M and the current densities by deriving the atomic currents 
on the surface and in the interior. But since this additional derivation is really not 
necessary and tends to be tedious, we will not attempt it here. 

EXAMPLE 6-8 Determine the magnetic flux density on the axis of a uniformly mag
netized circular cylinder of a magnetic material. The cylinder has a radius b, length L, 
and axial magnetization M = azM0. 

Solution In this problem concerning a cylindrical bar magnet, let the axis of the 
magnetized cylinder coincide with the z-axis of a cylindrical coordinate system, as 
shown in Fig. 6-11. Since the magnetization M is a constant within the magnet, 
j m = V' x M = 0, and there is no equivalent volume current density. The equivalent 
magnetization surface current density on the side wall is 

Jms = M x a; = (azM0) x ar 

= a0Mo. 

The magnet is then like a cylindrical sheet with a lineal current density of M0 (A/m). 
There is no surface current on the top and bottom faces. To find B at P(0, 0, z), we 
consider a differential length dz' with a current a^M0 dz' and use Eq. (6-38) to obtain 

j W _ a M0M0b2 dz' 
at5~*z2[(z-z')2 + b2Y'2 

zf 
\P(0, 0, z) 
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and 

B = / « = .,£ 
= a. 

li0M0b2 dz' 
2[(z - z'f + b2f'2 

H0M0 L 
/z^TV J(z-L)2 + b2]' 

(6-65) 

6-6.1 EQUIVALENT MAGNETIZATION CHARGE DENSITIES 

In subsection 6-5.1 we noted that in a current-free region we may define a scalar 
magnetic potential Vm, from which the magnetic flux density B can be found by differ
entiation, as in Eq. (6-50). In terms of magnetization vector M (volume density of 
magnetic dipole moment) we may write, in lieu of Eq. (6-54), 

dVm = 
M a R 

4nR2 ' 
(6-66) 

Integrating Eq. (6-66) over a magnetized body (a magnet) carrying no current, we 
have 

4TT iv R: V„ dv'. (6-67) 

Equation (6-67) is of exactly the same form as Eq. (3-81) for the scalar electric 
potential of a polarized dielectric. Following the steps leading to Eq. (3-87), we obtain 

„. ' | ^ + ' f ± « ! t f , ,6-68) 
m 4TT JS' R An Jv R ' 

where a'„ is the outward normal to the surface element ds' of the magnetized body. 
We saw in Section 3-7 that, for field calculations, a polarized dielectric may be 
replaced by an equivalent polarization surface charge density, given in Eq. (3-88), 
and an equivalent polarization volume charge density, given in Eq. (3-89). Similarly, 
we can conclude that, for field calculations, a magnetized body may be replaced by 
an equivalent (fictitious) magnetization surface charge density pms and an equivalent 
(fictitious) magnetization volume charge density pm such that 

Pms = M • a„ (A/m) 

and 

p m = - V - M (A/m2). 

(6-69) 

(6-70) 

The use of the equivalent magnetization charge density concept for determining the 
magnetic flux density of a magnetized body will be illustrated in the following example. 

EXAMPLE 6-9 A cylindrical bar magnet of radius b and length L has a uniform mag
netization M = azM0 along its axis. Use the equivalent magnetization charge density 
concept to determine the magnetic flux density at an arbitrary distant point. 
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P(x,y,z) 

FIGURE 6-12 
A cylindrical bar magnet (Example 6-9). 

Solution Refer to Fig. 6-12. The equivalent magnetization charge densities for M = 
azM0 are, according to Eqs. (6-69) and (6-70): 

f M0 on top face, 
Pms = {— M0 on bottom face, 

I 0 on side wall; 
pm = 0 in the interior. 

At a distant point the total equivalent magnetic charges on the top and bottom 
faces appear as point charges: qm = nb2pms = nb2M0. We have at P(x, y, z) 

V=?~(±-± m 4TT \R+ fl_ (A), (6-71) 

which is similar to Eq. (3-50) for an electric dipole. If R » b, Eq. (6-71) can be re
duced to (see Eq. 3-53a) 

K = 
qmL cos 9 (nb2M0)L cos 9 

4nR2 

MT cos 9 
4nR2 ' 

4nR2 

(6-72) 

where MT = nb2LM0 is the total dipole moment of the cylindrical magnet. The mag
netic flux density B can then be found by applying Eq. (6-50): 

B=-fi0\Vm = VQMT 

4nR2 (&R2 cos 9 + a0 sin 9) (T), (6-73) 
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which is of the same form as the expression in Eq. (6-44) for B at a distant point 
due to a single magnetic dipole having a moment Inb2. —■ 

This problem can be solved just as easily by using the equivalent magnetization 
current density concept. (See Problem P.6-25.) 

6 - 7 Magnetic Field Intensity and Relative Permeability 

Because the application of an external magnetic field causes both an alignment of 
the internal dipole moments and an induced magnetic moment in a magnetic material, 
we expect that the resultant magnetic flux density in the presence of a magnetic 
material will be different from its value in free space. The macroscopic effect of mag
netization can be studied by incorporating the equivalent volume current density, 
Jm in Eq. (6-62), into the basic curl equation, Eq. (6-7). We have 

1 

or 

V x B = J + J = J + V x M 

V x ( — _ M 1 = J. (6-74) 

We now define a new fundamental field quantity, the magnetic field intensity H, such 
that 

H = — - M (A/m). (6-75) 

The use of the vector H enables us to write a curl equation relating the magnetic 
field and the distribution of free currents in any medium. There is no need to deal 
explicitly with the magnetization vector M or the equivalent volume current density 
Jm. Combining Eqs. (6-74) and (6-75), we obtain the new equation 

V x H = J (A/m3 (6-76) 

where J (A/M2) is the volume density of free current. Equations (6-6) and (6-76) 
are the two fundamental governing differential equations for magnetostatics. The 
permeability of the medium does not appear explicitly in these two equations. 

The corresponding integral form of Eq. (6-76) is obtained by taking the scalar 
surface integral of both sides: 

J>xH).A = j ; j ds (6-77) 
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or, according to Stokes's theorem, 

H-d€ = I (A), (6-78) 

where C is the contour (closed path) bounding the surface S and / is the total free 
current passing through S. The relative directions of C and current flow / follow the 
right-hand rule. Equation (6-78) is another form of Ampere's circuital law: It states 
that the circulation of the magnetic field intensity around any closed path is equal to the 
free current flowing through the surface bounded by the path. As we indicated in 
Section 6-2, Ampere's circuital law is most useful in determining the magnetic field 
caused by a current when cylindrical symmetry exists—that is, when there is a closed 
path around the current over which the magnetic field is constant. 

When the magnetic properties of the medium are linear and isotropic, the mag
netization is directly proportional to the magnetic field intensity: 

M = xA (6-79) 

where xm *s a dimensionless quantity called magnetic susceptibility. Substitution of 
Eq. (6-79) in Eq. (6-75) yields 

or 

(6-80a) 

where 

B = /x0(l + *JH 
= /i0//rH = fM (Wb/m2) 

H = - B (A/m), 

1 ■ M 
\ Hr = 1 + Xm = — 

(6-80b) 

(6-81) 

is another dimensionless quantity known as the relative permeability of the medium. 
The parameter /i = /i0fir is the absolute permeability (or sometimes just permeability) 
of the medium and is measured in H/m; xm, and therefore /ir, can be a function of 
space coordinates. For a simple medium—linear, isotropic, and homogeneous—Xm 
and fir are constants. 

The permeability of most materials is very close to that of free space (/i0). For 
ferromagnetic materials such as iron, nickel, and cobalt, /ir could be very large 
(50-5000 and up to 106 or more for special alloys); the permeability depends not 
only on the magnitude of H but also on the previous history of the material. Sec
tion 6-9 contains some qualitative discussions of the macroscopic behavior of mag
netic materials. 
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At this point we note a number of analogous relations between the quantities 
in electrostatics and those in magnetostatics as follows: 

Electrostatics 

E 
D 

e 

P 
P 
V 
• 
X 

Magnetostatics 

B 
H 
1 

- M 
J 
A 
X 

• 

With the above table, most of the equations relating the basic quantities in electro
statics can be converted into corresponding analogous ones in magnetostatics. 

6—8 Magnetic Circuits 

In electric-circuit problems we are required to find the voltages across and the cur
rents in various branches and elements of an electric network that are excited by 
voltage and/or current sources. There is an analogous class of problems dealing with 
magnetic circuits. In a magnetic circuit we are generally concerned with the deter
mination of the magnetic fluxes and magnetic field intensities in various parts of a 
circuit caused by windings carrying currents around ferromagnetic cores. Magnetic 
circuit problems arise in transformers, generators, motors, relays, magnetic recording 
devices, and so on. 

Analysis of magnetic circuits is based on the two basic equations for magneto
statics, (6-6) and (6-76), which are repeated below for convenience: 

V ""B = 0, (6-82) 
V x H = J. (6-83) 

We have seen in Eq. (6-78) that Eq. (6-83) converts to Ampere's circuital law. If 
the closed path C is chosen to enclose N turns of a winding carrying a current / 
that excites a magnetic circuit, we have 

j>cn-d€ = NI = rm. (6-84) 

The quantity Vm (-NI) here plays a role that is analogous to electromotive force 
(emf) in an electric circuit and is therefore called a magnetomotive force (mmf). Its 
SI unit is ampere (A); but, because of Eq. (6-84), mmf is frequently measured in 
ampere-turns (A-t). An mmf is not a force measured in newtons. 
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EXAMPLE 6-10 Assume that N turns of wire are wound around a toroidal core of 
a ferromagnetic material with permeability ^. The core has a mean radius r0, a circular 
cross section of radius a (a « r0), and a narrow air gap of length £g, as shown in Fig. 
6-13. A steady current I0 flows in the wire. Determine (a) the magnetic flux density, 
By, in the ferromagnetic core; (b) the magnetic field intensity, H / ; in the core; and 
(c) the magnetic field intensity, H9, in the air gap. 

Solution 

a) Applying Ampere's circuital law, Eq. (6-84), around the circular contour C in 
Fig. 6-13, which has a mean radius r0, we have 

cH-d€=NI0. (6-85) 

If flux leakage is neglected, the same total flux will flow in both the ferromagnetic 
core and in the air gap. If the fringing effect of the flux in the air gap is also 
neglected, the magnetic flux density B in both the core and the air gap will also 
be the same. However, because of the different permeabilities, the magnetic field 
intensities in both parts will be different. We have 

By = B 9 = a ^ y , (6-86) 

where the subscripts / and g denote ferromagnetic and gap, respectively. In the 
ferromagnetic core, 

H f = a , 5 / ; (6-87) 

and, in the air gap, 

Substituting Eqs. (6-87) and (6-88) in Eq. (6-85), we obtain 

I1 A*o 

Leakage 

FIGURE 6-13 
Coil on ferromagnetic toroid with air gap 
(Example 6-10). 
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B , = a, „ ^ \ \ ° . , • (6-89) 

and 
»ol*NI0 

' fi0{27iro - Q + \xtg 

b) From Eqs. (6-87) and (6-89) we get 

fi0NI0 "^N^-g + K (6-90) 

c) Similarly, from Eqs. (6-88) and (6-89) we have 

H9 = a, ^ 7 ; , • (6-91) 

Since H 3 / # / = ^///0, the magnetic field intensity in the air gap is much stronger 
than that in the ferromagnetic core. «■ 

If the radius of the cross section of the core is much smaller than the mean radius 
of the toroid, the magnetic flux density B in the core is approximately constant, and 
the magnetic flux in the circuit is 

<D ^ BS, (6-92) 

where S is the cross-sectional area of the core. Combination of Eqs. (6-92) and (6-89) 
yields 

NI <j> = flf£ (6-93) 
(2nr0 - QIPLS + SJp0S 

Equation (6-93) can be rewritten as 
if 

<D = — , (6-94) 

with 

where £f = 2nr0 — £g is the length of the ferromagnetic core, and 

(6-95) 

y9 

fi0S 
(6-96) 

Both Stf and $g have the same form as the formula, Eq. (5-27), for the d-c resistance 
of a straight piece of homogeneous material with a uniform cross section S. Both 
are called reluctance: <2tf, of the ferromagnetic core; and 9tgi of the air gap. The SI 
unit for reluctance is reciprocal henry (H_1). The fact that Eqs. (6-95) and (6-96) 
are as they are, even though the core is not straight, is a consequence of assuming 
that B is approximately constant over the core cross section. 

Equation (6-94) is analogous to the expression for the current / in an electric 
circuit, in which an ideal voltage source of emf V is connected in series with two 
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+ >*/ 

>st0 

(a) Magnetic circuit. 

ir-

>Rf 

(b) Electric circuit. 

FIGURE 6-14 
Equivalent magnetic circuit and analogous electric 
circuit for toroidal coil with air gap in Fig. 6-13. 

resistances Rf and Rg: 

/ = ir 
Rf + R9 

(6-97) 

The analogous magnetic and electric circuits are shown in Figs. 6-14(a) and 6-14(b), 
respectively. Magnetic circuits can, by analogy, be analyzed by the same techniques 
we have used in analyzing electric circuits. The analogous quantities are as follows: 

Magnetic Circuits Electric Circuits 

mmf, <Tm( = NI) 
magnetic flux, <D 
reluctance, M 
permeability, /i 

emf, -f 
electric current, / 
resistance, R 
conductivity, a 

In spite of this convenient likeness an exact analysis of magnetic circuits is 
inherently very difficult to achieve. 

First, it is very difficult to account for leakage fluxes, fluxes that stray or leak 
from the main flux paths of a magnetic circuit. For the toroidal coil in Fig. 6-13, 
leakage flux paths encircle every turn of the winding; they partially transverse the 
space around the core, as illustrated, because the permeability of air is not zero. 
(There is little need for considering leakage currents outside the conducting paths of 
electric circuits that carry direct currents. The reason is that the conductivity of air 
is practically zero compared to that of a good conductor.) 

A second difficulty is the fringing effect that causes the magnetic flux lines at the 
air gap to spread and bulge.1" (The purpose of specifying the "narrow air gap" in 
Example 6-10 was to minimize this fringing effect.) 

f To obtain a more accurate numerical result, it is customary to consider the effective area of the air gap 
as slightly larger than the cross-sectional area of the ferromagnetic core, with each of the lineal dimensions 
of the core cross section increased by the length of the air gap. If we were to make a correction like this 
in Eq. (6-86), Bg would become 

a2Bf 

{a + O2 -7-
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A third difficulty is that the permeability of ferromagnetic materials depends on 
the magnetic field intensity; that is, B and H have a nonlinear relationship. (They 
might not even be in the same direction). The problem of Example 6-10, which 
assumes a given \i before either Bc or Hc is known, is therefore not a realistic one. 

In a practical problem the B-H curve of the ferromagnetic material, such as that 
shown later in Fig. 6-17, should be given. The ratio of B to H is obviously not a 
constant, and Bf can be known only when Hf is known. So how does one solve the 
problem? Two conditions must be satisfied. First, the sum of H/g and H/f must 
equal the total mmfN7„: H/g + H/f = NIo. (6_98) 

Second, if we assume no leakage flux, the total flux O in the ferromagnetic core and 
in the air gap must be the same, or Bf = BgJ 

Bf = li0Hr (6-99) 
Substitution of Eq. (6-99) in Eq. (6-98) yields an equation relating Bf and Hf in the 
core: / 

Bf + VofHf = ^NI0. (6-100) 

This is an equation for a straight line in the B-H plane with a negative slope 
(-/i<///^)- T n e intersection of this line and the given B-H curve determines the 
operating point. Once the operating point has been found, \i and Hf and all other 
quantities can be obtained. 

The similarity between Eqs. (6-94) and (6-97) can be extended to the writing of 
two basic equations for magnetic circuits that correspond to Kirchhoff's voltage and 
current laws for electric circuits. Similar to Kirchhoff's voltage law in Eq. (5-41), we 
may write, for any closed path in a magnetic circuit, 

(6-101) 

Equation (6-101) states that around a closed path in a magnetic circuit the algebraic 
sum of ampere-turns is equal to the algebraic sum of the products of the reluctances 
and fluxes. 

Kirchhoff's current law for a junction in an electric circuit, Eq. (5-47), is a con
sequence of V • J = 0. Similarly, the fundamental postulate V • B = 0 in Eq. (6-82) 
leads to Eq. (6-9). Thus, we have 

(6-102) 

f This assumes an equal cross-sectional area for the core and the gap. If the core were to be constructed 
of insulated laminations of ferromagnetic material, the effective area for flux passage in the core would 
be smaller than the geometrical cross-sectional area, and Bc would be larger than Bg by a factor. This 
factor can be determined from the data on the insulated laminations. 
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(a) Magnetic core with current-carrying windings. 

FIGURE 6-15 
A magnetic circuit (Example 6-11). 

/v,/, Nih 

(b) Magnetic circuit for loop analysis. 

which states that the algebraic sum of all the magnetic fluxes flowing out of a junction 
in a magnetic circuit is zero. Equations (6-101) and (6-102) form the bases for the 
loop and node analysis, respectively, of magnetic circuits. 

EXAMPLE 6-11 Consider the magnetic circuit in Fig. 6-15(a). Steady currents Ix 
and 12 flow in windings of Nx and N2 turns, respectively, on the outside legs of the 
ferromagnetic core. The core has a cross-sectional area Sc and a permeability JX. 
Determine the magnetic flux in the center leg. 

Solution The equivalent magnetic circuit for loop analysis is shown in Fig. 6-15(b). 
Two sources of mmf's, NXIX and N2I2, are shown with proper polarities in series 
with reluctances Mx and $2, respectively. This is obviously a two-loop network. Since 
we are determining magnetic flux in the center leg PlP2, it is expedient to choose 
the two loops in such a way that only one loop flux (CD̂  flows through the center 
leg. The reluctances are computed on the basis of average path lengths. These are, 
of course, approximations. We have 

A 
fiSc 

The two loop equations are, from Eq. (6-101), 

Loop 1: NJt = {&x + ^3 ) $ ! + M^2; 
Loop 2: NJt - N2I2 = &&x + {&x + ^2)^2-

(6-103a) 

(6-103b) 

(6-103c) 

(6-104) 
(6-105) 
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Solving these simultaneous equations, we obtain 

M2N1I1 + <M1N2I2 
1 M1M2 + &1&3 + M2@3' 

which is the desired answer. 

Actually, since the magnetic fluxes and therefore the magnetic flux densities in 
the three legs are different, different permeabilities should be used in computing the 
reluctances in Eqs. (6-103a), (6-103b), and (6-103c). But the value of permeability, 
in turn, depends on the magnetic flux density. The only way to improve the accuracy 
of the solution, provided that the B-H curve of the core material is given, is to use 
a procedure of successive approximation. For instance, O l5 <J>2, and $3 (and therefore 
5 l 3 B2, and B3) are first solved with an assumed pi and reluctances computed from 
the three parts of Eq. (6-103). From J3l9 B2, and B3 the corresponding /i l9 \x2, and fi3 
can be found from the B-H curve. These will modify the reluctances. A second 
approximation for Bu B2, and B3 is then obtained with the modified reluctances. 
From the new flux densities, new permeabilities and new reluctances are determined. 
This procedure is repeated until further iterations bring little change in the computed 
values. 

We remark here that the currents in the windings in Fig. 6-15(a) are independent 
of time and that Example 6-11 is strictly a d-c magnetic circuit problem. If the 
currents vary with time, we must deal with the effects of electromagnetic induction, 
and we will have a transformer problem. Other fundamental laws are involved, which 
we shall discuss in Chapter 7. 

6 - 9 Behavior of Magnetic Materials 

In Eq. (6-79), Section 6-7, we described the macroscopic magnetic property of a 
linear, isotropic medium by defining the magnetic susceptibility im, a dimensionless 
coefficient of proportionality between magnetization M and magnetic field intensity 
H. The relative permeability \ir is simply 1 + %m. Magnetic materials can be roughly 
classified into three main groups in accordance with their \ir values. A material is 
said to be 

Diamagnetic, if \ir < 1 (xm is a very small negative number). 
Paramagnetic, if \ir > 1 (xm is a very small positive number). 
Ferromagnetic, if \ir » 1 (xm is a large positive number). 

As mentioned before, a thorough understanding of microscopic magnetic phenomena 
requires a knowledge of quantum mechanics. In the following we give a qualitative 
description of the behavior of the various types of magnetic materials based on the 
classical atomic model. 

In a diamagnetic material the net magnetic moment due to the orbital and spin
ning motions of the electrons in any particular atom is zero in the absence of an 

(6-106) 



258 6 Static Magnetic Fields 

externally applied magnetic field. As predicted by Eq. (6-4), the application of an 
external magnetic field to this material produces a force on the orbiting electrons, 
causing a perturbation in the angular velocities. As a consequence, a net magnetic 
moment is created. This is a process of induced magnetization. According to Lenz's 
law of electromagnetic induction (Section 7-2), the induced magnetic moment always 
opposes the applied field, thus reducing the magnetic flux density. The macroscopic 
effect of this process is equivalent to that of a negative magnetization that can be de
scribed by a negative magnetic susceptibility. This effect is usually very small, and xm 
for most known diamagnetic materials (bismuth, copper, lead, mercury, germanium, 
silver, gold, diamond) is of the order of —10~5. 

Diamagnetism arises mainly from the orbital motion of the electrons within an 
atom and is present in all materials. In most materials it is too weak to be of any 
practical importance. The diamagnetic effect is masked in paramagnetic and ferro
magnetic materials. Diamagnetic materials exhibit no permanent magnetism, and the 
induced magnetic moment disappears when the applied field is withdrawn. 

In some materials the magnetic moments due to the orbiting and spinning elec
trons do not cancel completely, and the atoms and molecules have a net average 
magnetic moment. An externally applied magnetic field, in addition to causing a very 
weak diamagnetic effect, tends to align the molecular magnetic moments in the 
direction of the applied field, thus increasing the magnetic flux density. The macro
scopic effect is, then, equivalent to that of a positive magnetization that is described 
by a positive magnetic susceptibility. The alignment process is, however, impeded 
by the forces of random thermal vibrations. There is little coherent interaction, and 
the increase in magnetic flux density is quite small. Materials with this behavior are 
said to be paramagnetic. Paramagnetic materials generally have very small positive 
values of magnetic susceptibility, of the order of 10"5 for aluminum, magnesium, 
titanium, and tungsten. 

Paramagnetism arises mainly from the magnetic dipole moments of the spinning 
electrons. The alignment forces, acting upon molecular dipoles by the applied field, 
are counteracted by the deranging effects of thermal agitation. Unlike diamagnetism, 
which is essentially independent of temperature, the paramagnetic effect is tempera
ture dependent, being stronger at lower temperatures where there is less thermal 
collision. 

The magnetization of ferromagnetic materials can be many orders of magnitude 
larger than that of paramagnetic substances. (See Appendix B-5 for typical values 
of relative permeability.) Ferromagnetism can be explained in terms of magnetized 
domains. According to this model, which has been experimentally confirmed, a 
ferromagnetic material (such as cobalt, nickel, and iron) is composed of many small 
domains, their linear dimensions ranging from a few microns to about 1 mm. These 
domains, each containing about 1015 or 1016 atoms, are fully magnetized in the sense 
that they contain aligned magnetic dipoles resulting from spinning electrons even in 
the absence of an applied magnetic field. Quantum theory asserts that strong coupling 
forces exist between the magnetic dipole moments of the atoms in a domain, holding 
the dipole moments in parallel. Between adjacent domains there is a transition region 
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FIGURE 6-16 
Domain structure of a polycrystalline ferromagnetic 
specimen. 

about 100 atoms thick called a domain wall. In an unmagnetized state the magnetic 
moments of the adjacent domains in a ferromagnetic material have different direc
tions, as exemplified in Fig. 6-16 by the polycrystalline specimen shown. Viewed as 
a whole, the random nature of the orientations in the various domains results in no 
net magnetization. 

When an external magnetic field is applied to a ferromagnetic material, the walls 
of those domains having magnetic moments aligned with the applied field move in 
such a way as to make the volumes of those domains grow at the expense of other 
domains. As a result, magnetic flux density is increased. For weak applied fields, 
say up to point P1 in Fig. 6-17, domain-wall movements are reversible. But when 
an applied field becomes stronger (past Pt), domain-wall movements are no longer 
reversible, and domain rotation toward the direction of the applied field will also 
occur. For example, if an applied field is reduced to zero at point P 2 , the B-H 
relationship will not follow the solid curve P2P^O, but will go down from P 2 to P 2 , 
along the lines of the broken curve in the figure. This phenomenon of magnetization 
lagging behind the field producing it is called hysteresis, which is derived from a 
Greek word meaning "to lag." As the applied field becomes even much stronger (past 
P2 to P3), domain-wall motion and domain rotation will cause essentially a total 
alignment of the microscopic magnetic moments with the applied field, at which point 
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FIGURE 6-17 
Hysteresis loops in the B-H plane for ferromagnetic 
material. 
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the magnetic material is said to have reached saturation. The curve OPlP2P3 on the 
B-H plane is called the normal magnetization curve. 

If the applied magnetic field is reduced to zero from the value at P3, the magnetic 
flux density does not go to zero but assumes the value at Br. This value is called the 
residual or remanent flux density (in Wb/m2) and is dependent on the maximum 
applied field intensity. The existence of a remanent flux density in a ferromagnetic 
material makes permanent magnets possible. 

To make the magnetic flux density of a specimen zero, it is necessary to apply 
a magnetic field intensity Hc in the opposite direction. This required Hc is called 
coercive force, but a more appropriate name is coercive field intensity (in A/m). Like 
Br, Hc also depends on the maximum value of the applied magnetic field intensity. 

It is evident from Fig. 6-17 that the B-H relationship for a ferromagnetic mate
rial is nonlinear. Hence, if we write B = /zH as in Eq. (6-80a), the permeability \L itself 
is a function of the magnitude of H. Permeability \i also depends on the history of 
the material's magnetization, since—even for the same H—we must know the loca
tion of the operating point on a particular branch of a particular hysteresis loop in 
order to determine the value of \i exactly. In some applications a small alternating 
current may be superimposed on a large steady magnetizing current. The steady 
magnetizing field intensity locates the operating point, and the local slope of the 
hysteresis curve at the operating point determines the incremental permeability. 

Ferromagnetic materials for use in electric generators, motors, and transformers 
should have a large magnetization for a very small applied field; they should have tall, 
narrow hysteresis loops. As the applied magnetic field intensity varies periodically 
between ±iJmax , the hysteresis loop is traced once per cycle. The area of the hysteresis 
loop corresponds to energy loss {hysteresis loss) per unit volume per cycle (Problem 
P.6-29). Hysteresis loss is the energy lost in the form of heat in overcoming the 
friction encountered during domain-wall motion and domain rotation. Ferromagnetic 
materials, which have tall, narrow hysteresis loops with small loop areas, are referred 
to as "soft" materials; they are usually well-annealed materials with very few dis
locations and impurities so that the domain walls can move easily. 

Good permanent magnets, on the other hand, should show a high resistance to 
demagnetization. This requires that they be made with materials that have large 
coercive field intensities Hc and hence fat hysteresis loops. These materials are referred 
to as "hard" ferromagnetic materials. The coercive field intensity of hard ferro
magnetic materials (such as Alnico alloys) can be 105 (A/m) or more, whereas that 
for soft materials is usually 50 (A/m) or less. 

As indicated before, ferromagnetism is the result of strong coupling effects be
tween the magnetic dipole moments of the atoms in a domain. Figure 6-18(a) depicts 
the atomic spin structure of a ferromagnetic material. When the temperature of a 
ferromagnetic material is raised to such an extent that the thermal energy exceeds 
the coupling energy, the magnetized domains become disorganized. Above this critical 
temperature, known as the curie temperature, a ferromagnetic material behaves like 
a paramagnetic substance. Hence, when a permanent magnet is heated above its curie 
temperature it loses its magnetization, The curie temperature of most ferromagnetic 
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materials lies between a few hundred to a thousand degrees Celsius, that of iron being 
770°C. 

Some elements, such as chromium and manganese, which are close to ferro
magnetic elements in atomic number and are neighbors of iron in the periodic table, 
also have strong coupling forces between the atomic magnetic dipole moments; but 
their coupling forces produce antiparallel alignments of electron spins, as illustrated 
in Fig. 6-18(b). The spins alternate in direction from atom to atom and result in no 
net magnetic moment. A material possessing this property is said to be antiferro-
magnetic. Antiferromagnetism is also temperature dependent. When an antiferro-
magnetic material is heated above its curie temperature, the spin directions suddenly 
become random, and the material becomes paramagnetic. 

There is another class of magnetic materials that exhibit a behavior between 
ferromagnetism and antiferromagnetism. Here quantum mechanical effects make the 
directions of the magnetic moment's in the ordered spin structure alternate and the 
magnitudes unequal, resulting in a net nonzero magnetic moment, as depicted in 
Fig. 6-18(c). These materials are said to be ferrimagnetic. Because of the partial 
cancellation, the maximum magnetic flux density attained in a ferrimagnetic sub
stance is substantially lower than that in a ferromagnetic specimen. Typically, it is 
about 0.3 Wb/m2, approximately one-tenth that for ferromagnetic substances. 

Ferrites are a subgroup of ferrimagnetic material. One type of ferrites, called 
magnetic spinels, crystallize in a complicated spinel structure and have the formula 
XOFe203 , where X denotes a divalent metallic ion such as Fe, Co, Ni, Mn, Mg, 
Zn, Cd, etc. These are ceramiclike compounds with very low conductivities (for in
stance, 10 ~4 to 1 (S/m) compared with 107 (S/m) for iron). Low conductivity limits 
eddy-current losses at high frequencies. Hence ferrites find extensive uses in such 
high-frequency and microwave applications as cores for FM antennas, high-frequency 
transformers, and phase shifters. Ferrite material also has broad applications in 
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FIGURE 6-18 
Schematic atomic spin structures for (a) ferromagnetic, 
(b) antiferromagnetic, and (c) ferrimagnetic materials. 
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computer magnetic-core and magnetic-disk memory devices. Other ferrites include 
magnetic-oxide garnets, of which yttrium-iron-garnet ("YIG," Y3Fe501 2) is typical. 
Garnets are used in microwave multiport junctions. 

Ferrites are anisotropic in the presence of a magnetic field. This means that H 
and B vectors in ferrites generally have different directions, and permeability is a 
tensor. The relation between the components of H and B can be represented in a 
matrix form similar to that between the components of D and E in an anisotropic 
dielectric medium, as given in Eq. (3-104) or Eq. (3-105). Analysis of problems 
containing anisotropic and/or nonlinear media is beyond the scope of this book. 

Boundary Conditions for Magnetostatic Fields 

In order to solve problems concerning magnetic fields in regions having media with 
different physical properties, it is necessary to study the conditions (boundary condi
tions) that B and H vectors must satisfy at the interfaces of different media. Using 
techniques similar to those employed in Section 3-9 to obtain the boundary condi
tions for electrostatic fields, we derive magnetostatic boundary conditions by apply
ing the two fundamental governing equations, Eqs. (6-82) and (6-83), to a small 
pillbox and a small closed path, respectively, which include the interface. From the 
divergenceless nature of the B field in Eq. (6-82) we may conclude directly, in light 
of past experience, that the normal component of B is continuous across an interface; 
that is, 

BlH = B2n (T). (6-107) 

For linear media, B1 = fi1H1 and B2 = / J 2 H 2 , Eq. (6-107) becomes 

(6-108) HiHln = \i2B.ln. 

The boundary condition for the tangential components of magnetostatic field is 
obtained from the integral form of the curl equation for H, Eq. (6-78), which is 
repeated here for convenience: 

U-d€ = I. (6-109) 

We now choose the closed path abcda in Fig. 6-19 as the contour C. Applying Eq. 
(6-109) and letting be = da = Ah approach zero, we haveT 

H • d€ = Hi • Aw + H2 • (-Aw) = JsnAw 
abcda 

or 
Hu - H2t = Jsn (A/m), (6-110) 

r Equation (6-109) is assumed to be valid for regions containing discontinuous media. 
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FIGURE 6-19 
Closed path about the interface of two media for 
determining the boundary condition of Ht. 

where Jsn is the surface current density on the interface normal to the contour C. 
The direction of Jsn is that of the thumb when the fingers of the right hand follow 
the direction of the path. In Fig. 6-19 the positive direction of Jsn for the chosen 
path is out of the paper. The following is a more concise expression of the boundary 
condition for the tangential components of H, which includes both magnitude and 
direction relations (Problem P.6-30). 

a„2 x (H, - H2) = J s (A/m), (6-111) 

where a„2 is the outward unit normal from medium 2 at the interface. Thus, the tan
gential component of the H field is discontinuous across an interface where a free 
surface current exists, the amount of discontinuity being determined by Eq. (6-111). 

When the conductivities of both media are finite, currents are defined by volume 
current densities and free surface currents do not exist on the interface. Hence J s 
equals zero, and the tangential component of H is continuous across the boundary of 
almost all physical media; it is discontinuous only when an interface with an ideal 
perfect conductor or a superconductor is assumed. 

EXAMPLE 6-12 Two magnetic media with permeabilities /ix and \i2 have a common 
boundary, as shown in Fig. 6-20. The magnetic field intensity in medium 1 at the 

FIGURE 6-20 
Boundary conditions for magnetostatic field at an 
interface (Example 6-12). 
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point P1 has a magnitude Hl and makes an angle a1 with the normal. Determine the 
magnitude and the direction of the magnetic field intensity at point P2 in medium 2. 

Solution The desired unknown quantities are H2 and a2. Continuity of the normal 
component of B field requires, from Eq. (6-108), 

fi2H2 cos a2 = ji1H1 cos av (6-112) 

Since neither of the media is a perfect conductor, the tangential component of H field 
is continuous. We have 

H2sma2 = H1sina1. (6-113) 
Division of Eq. (6-113) by Eq. (6-112) gives 

tan a2 n2 

tan cnl iix 

or 
a2 = tan 1 ( — tana! ), 

(6-114) 

(6-115) 

which describes the refraction property of the magnetic field. The magnitude of H2 is 

H2 = y/Hl + M, = V(tf 2 sin a2)2 + (H2 cos arf. 
From Eqs. (6-112) and (6-113) we obtain 

(6-116) 

We make three remarks here. First, Eqs. (6-114) and (6-116) are entirely similar 
to Eqs. (3-129) and (3-130), respectively, for the electric fields in dielectric media— 
except for the use of permeabilities (instead of permittivities) in the case of magnetic 
fields. Second, if medium 1 is nonmagnetic (like air) and medium 2 is ferromagnetic 
(like iron), then ji2 » /j l 9 and, from Eq. (6-114), a2 will be nearly 90°. This means that 
for any arbitrary angle a1 that is not close to zero, the magnetic field in a ferromagnetic 
medium runs almost parallel to the interface. Third, if medium 1 is ferromagnetic 
and medium 2 is air (Ju1 » pi2), then a2 will be nearly zero; that is, if a magnetic field 
originates in a ferromagnetic medium, the flux lines will emerge into air in a direction 
almost normal to the interface. 

EXAMPLE 6-13 Sketch the magnetic flux lines both inside and outside a cylindrical 
bar magnet having a uniform axial magnetization M = azM0. 

Solution In Example 6-8 we noted that the problem of a cylindrical bar magnet 
could be replaced by that of a magnetization current sheet having a surface current 
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density Jms = a^,M0 (the equivalent volume current density being zero). The deter
mination of B at an arbitrary point inside and outside the magnet involves integrals 
that are difficult to evaluate. We shall use the result in Example 6-8 for a point on 
the magnet axis to obtain a rough sketch of the B lines. 

A cross section of a cylindrical bar magnet having a radius b and length L is 
shown in Fig. 6-21. From Eq. (6-65) we get 

BP0 = a: 

BP = a 

H0M0 L 

2 LV(W + fo2J 
fi0M0 L 

.V^TPJ 
= B P , 

(6-H7) 

(6-118) 

It is obvious from Eqs. (6-117) and (6-118) that BPl = BP i < BPo; that is, the magnetic 
flux density along the axis at the end faces of the magnet is less than that at the 
center. This is because the flux lines tend to flare out at the end faces. We know that, 
at points off the axis, B has a radial component. We also know that B lines are not 
refracted at the end faces and that they close upon themselves. 

On the side of the magnet there is a surface current given by Eq. (6-64): 

JmS = a, Mo. (6-119) 

Hence according to Eq. (6-111), the axial component of B changes by an amount 
equal to n0M0. From Eqs. (6-117) and (6-118) we see that Bz inside the magnet is less 

FIGURE 6-21 
Magnetic flux lines around a cylindrical 
bar magnet (Example 6-13). 
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than n0M0. Consequently, there is a change in both the magnitude and the direction 
for Bz as it crosses the side wall. The magnetic flux lines will then assume the form 
sketched in Fig. 6-21. 

It must be remarked here that while H = B//i0 outside the magnet, H and B 
inside the magnet are far from being proportional vectors in the same direction. From 
Eq. (6-75), 

B 
H = M, (6-120) 

Mo 
and the fact that B//i0 along the axis inside is less than M0, we observe that H and 
B are in opposite directions along the axis inside. For a long, thin magnet, L » b, 
Eq. (6-117) gives approximately BPo = n0M0. From Eq. (6-120) we obtain HPo ^ 0. 
Hence H nearly vanishes at the center of a long, thin magnet, where B is maximum. 
By hypothesis the magnetization vector M is zero outside and is a constant vector 
everywhere inside the magnet. « 

In current-free regions the magnetic flux density B is irrotational and can be ex
pressed as the gradient of a scalar magnetic potential Vm, as indicated in Section 6-5.1. 

B=-^\Vm. (6-121) 

Assuming a constant ji, substitution of Eq. (6-121) in V • B = 0 (Eq. 6-6) yields a 
Laplace's equation in Vm: 

\2Vm = 0. (6-122) 

Equation (6-122) is entirely similar to the Laplace's equation, Eq. (4-10), for the 
scalar electric potential V in a charge-free region. That the solution for Eq. (6-122) 
satisfying given boundary conditions is unique can be proved in the same way as for 
Eq. (4-10)—see Section 4-3 . Thus the techniques (method of images and method of 
separation of variables) discussed in Chapter 4 for solving electrostatic boundary-
value problems can be adapted to solving analogous magnetostatic boundary-value 
problems. However, although electrostatic problems with conducting boundaries 
maintained at fixed potentials occur quite often in practice, analogous magnetostatic 
problems with constant magnetic-potential boundaries are of little practical impor
tance. (We recall that isolated magnetic charges do not exist and that magnetic flux 
lines always form closed paths.) The nonlinearity in the relationship between B and 
H in ferromagnetic materials also complicates the analytical solution of boundary-
value problems in magnetostatics. 

6—11 Inductances and Inductors 

Consider two neighboring closed loops, C1 and C2 bounding surfaces S1 and S2, 
respectively, as shown in Fig. 6-22. If a current Ix flows in C l9 a magnetic field B1 
will be created. Some of the magnetic flux due to B1 will link with C2—that is, will 
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pass through the surface S2 bounded by C2. Let us designate this mutual flux 0 1 2 . 
We have 

O »-J*B« ds, (Wb). (6-123) 

From physics we know that a time-varying 7\ (and therefore a time-varying 01 2) will 
produce an induced electromotive force or voltage in C2 as a result of Faraday's law 
of electromagnetic induction. (We defer the discussion of Faraday's law until the next 
chapter.) However, 0 1 2 exists even if 7\ is a steady d-c current. 

From the Biot-Savart law, Eq. (6-32), we see that Bt is directly proportional to 
J\; hence 0 1 2 is also proportional to Iv We write 

$ 1 2 = W l > (6-124) 

where the proportionality constant L12 is called the mutual inductance between loops 
Ci and C2, with SI unit henry (H). In case C2 has N2 turns, the flux linkage A12 

due to 0 1 2 is 

and Eq. (6-124) generalizes to 

or 

(6-125) 

(6-126) 

(6-127) 

The mutual inductance between two circuits is then the magnetic flux linkage with one 
circuit per unit current in the other. In Eq. (6-124) it is implied that the permeability 
of the medium does not change with J\. In other words, Eq. (6-124) and hence Eq. 

A 1 2 = 

A 1 2 = 

-^12 

iV2<D12 

= L12It 

Al2 

h 

(Wb), 

(Wb) 

(H). 

FIGURE 6-22 
Two magnetically coupled loops. 
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(6-127) apply only to linear media. A more general definition for L12 is 

(6-128) 

Some of the magnetic flux produced by Ix links only with C1 itself, and not with C2. 
The total flux linkage with Cx caused by Ix is 

Au = N 1 0 1 1 > N 1 0 1 2 . (6-129) 

The self-inductance of loop Cx is defined as the magnetic flux linkage per unit current 
in the loop itself; that is, 

for a linear medium. In general, 

I L -Al1 
(H), 

I 

(H). 

(6-130) 

(6-131) 

The self-inductance of a loop or circuit depends on the geometrical shape and the 
physical arrangement of the conductor constituting the loop or circuit, as well as on 
the permeability of the medium. With a linear medium, self-inductance does not de
pend on the current in the loop or circuit. As a matter of fact, it exists regardless of 
whether the loop or circuit is open or closed, or whether it is near another loop or 
circuit. 

A conductor arranged in an appropriate shape (such as a conducting wire wound 
as a coil) to supply a certain amount of self-inductance is called an inductor. Just as 
a capacitor can store electric energy, an inductor can storage magnetic energy, as we 
shall see in Section 6-12. When we deal with only one loop or coil, there is no need 
to carry the subscripts in Eq. (6-130) or Eq. (6-131), and inductance without an 
adjective will be taken to mean self-inductance. The procedure for determining the 
self-inductance of an inductor is as follows: 

1. Choose an appropriate coordinate system for the given geometry. 
2. Assume a current / in the conducting wire. 
3. Find B from / by Ampere's circuital law, Eq. (6-10), if symmetry exists; if not, 

Biot-Savart law, Eq. (6-32), must be used. 
4. Find the flux linking with each turn, $, from B by integration: 

where S is the area over which B exists and links with the assumed current. 
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5. Find the flux linkage A by multiplying <D by the number of turns. 
6. Find L by taking the ratio L = A/I. 

Only a slight modification of this procedure is needed to determine the mutual 
inductance L1 2 between two circuits. After choosing an appropriate coordinate system, 
proceed as follows: Assume Ix -> Find 1^ -> Find <D12 by integrating B1 over surface 
S2 -> Find flux linkage A12 = N2^12 ~* Find ^12 = h-nlh-

EXAMPLE 6-14 Assume that N turns of wire are tightly wound on a toroidal frame 
of a rectangular cross section with dimensions as shown in Fig. 6-23. Then, assuming 
the permeability of the medium to be /i0, find the self-inductance of the toroidal coil. 

Solution It is clear that the cylindrical coordinate system is appropriate for this 
problem because the toroid is symmetrical about its axis. Assuming a current / in 
the conducting wire, we find, by applying Eq. (6-10) to a circular path with radius 
r (a < r < b): 

B = a ^ , 
d£ = â , rdcf), 

j>cB'de = f**B4rd<l> = 2m>B+. 

This result is obtained because both B^ and r are constant around the circular path 
C. Since the path encircles a total current NI, we have 

InrB^ = ii0NI 

and 

B^ = 2nr 

FIGURE 6-23 
A closely wound toroidal coil (Example 6-14). 
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Next we find 

rb dr _ fi0NIh 
Ja r 

fi0NIh p dr n0NIh t_ b 
In Jo r In 

The flux linkage A is N<& or 

271 fl 
Finally, we obtain 

T A jU0JV2ft t 

We note that the self-inductance is not a function of I (for a constant medium 
permeability). The qualification that the coil be closely wound on the toroid is to 
minimize the linkage flux around the individual turns of the wire. ®ms 

EXAMPLE 6-15 Find the inductance per unit length of a very long solenoid with 
air core having n turns per unit length. 

Solution The magnetic flux density inside an infinitely long solenoid has been found 
in Example 6-3. For current / we have, from Eq. (6-14), 

B = nQnI, 

which is constant inside the solenoid. Hence, 

$ = BS = n0nSI, (6-133) 

where S is the cross-sectional area of the solenoid. The flux linkage per unit length 
is 

A' = n0> = ji0n2SI. (6-134) 

Therefore the inductance per unit length is 

I! = ii0n2S (H/m). (6-135) 
Equation (6-135) is an approximate formula, based on the assumption that the length 
of the solenoid is very much greater than the linear dimensions of its cross section. 
A more accurate derivation for the magnetic flux density and flux linkage per unit 
length near the ends of a finite solenoid will show that they are less than the values 
given, respectively, by Eqs. (6-14) and (6-134). Hence the total inductance of a finite 
solenoid is somewhat less than the values of L', as given in Eq. (6-135), multiplied 
by the length. ™ 
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The following is a significant observation about the results of the previous two 
examples: The self-inductance of wire-wound inductors is proportional to the square 
of the number of turns. 

EXAMPLE 6-16 An air coaxial transmission line has a solid inner conductor of 
radius a and a very thin outer conductor of inner radius b. Determine the inductance 
per unit length of the line. 

Solution Refer to Fig. 6-24. Assume that a current / flows in the inner conductor 
and returns via the outer conductor in the other direction. Because of the cylindrical 
symmetry, B has only a ^-component with different expressions in the two regions: 
(a) inside the inner conductor, and (b) between the inner and outer conductors. Also 
assume that the current / is uniformly distributed over the cross section of the inner 
conductor. 

a) Inside the inner conductor, 
0 < r < a. 

From Eq. (6-1 la), 
Mr} 
2na 

b) Between the inner and outer conductors, 
a<r<b. 

From Eq. (6-1 lb), 

Inr 

B i = ^ i = » * 0 - (6"136) 

B2 = a ^ 2 = a ^ ^ _ . (6-137) 

Now consider an annular ring in the inner conductor between radii r and r + dr. 
The current in a unit length of this annular ring is linked by the flux that can be 
obtained by integrating Eqs. (6-136) and (6-137). We have 

d<V = ^B+1dr + j'B^dr 

\ardr + ^ \ b a L Vo1 Ca A , Vo1 Cbdr 

4na In a 

FIGURE 6-24 
Two views of a coaxial transmission line 
(Example 6-16). 
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But the current in the annular ring is only a fraction (2nr dr/na2 = 2r dr/a2) of the 
total current I.* Hence the flux linkage for this annular ring is 

dA' = *tdV. (6-139) 

The total flux linkage per unit length is 

A ' = f * d A ' 

^J>»-,W to5)j> fi0I 

na 2a' 

2n\4 + lnbal 2n \4 

The inductance of a unit length of the coaxial transmission line is therefore 

(6-140) 

The first term fj.0/Sn arises from the flux linkage internal to the solid inner conductor; 
it is known as the internal inductance per unit length of the inner conductor. The 
second term comes from the linkage of the flux that exists between the inner and the 
outer conductors; this term is known as the external inductance per unit length of the 
coaxial line. ism 

In high-frequency applications the current in a good conductor tends to shift to 
the surface of the conductor (due to skin effect, as we shall see in Chapter 8), resulting 
in an uneven current distribution in the inner conductor and thereby changing the 
value of the internal inductances. In the extreme case the current may essentially 
concentrate in the "skin" of the inner conductor as a surface current, and the internal 
self-inductance is reduced to zero. 

EXAMPLE 6-17 Calculate the internal and external inductances per unit length of 
a transmission line consisting of two long parallel conducting wires of radius a that 
carry currents in opposite directions. The axes of the wires are separated by a dis
tance d, which is much larger than a. 

Solution The internal self-inductance per unit length of each wire is, from Eq. (6-140), 
H0/$n. So for two wires we have 

* - 2 * £ - £ <H*> (6-141) 

1 It is assumed that the current is distributed uniformly in the inner conductor. This assumption does not 
hold for high-frequency a-c currents. 
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FIGURE 6-25 
A two-wire transmission line (Example 6-17). 

To find the external self-inductance per unit length, we first calculate the magnetic 
flux linking with a unit length of the transmission line for an assumed current / in the 
wires. In the xz-plane where the two wires lie, as in Fig. 6-25, the contributing B vec
tors due to the equal and opposite currents in the two wires have only a y-component: 

" ° J (6-142) ByX ~ 2nx 

By2 = 
Hoi 

2n(d — x) (6-143) 

The flux linkage per unit length is then 

& = j!~tt(Byl+By2)dx 

-L d-a jl0I 

2T7 

1 1 
- + , 
x a — x 

dx 

/V In 

Therefore, 

d — a 
n a 

(Wb/m). 

I 7i a (H/m), 

and the total self-inductance per unit length of the two-wire line is 

(H/m). L> = Li + L>=HUlnd 
7i\4 a 

(6-144) 

(6-145) 

Before we present some examples showing how to determine the mutual induc
tance between two circuits, we pose the following question about Fig. 6-22 and Eq. 
(6-127): Is the flux linkage with loop C2 caused by a unit current in loop C1 equal 
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to the flux linkage with C1 caused by a unit current in C2? That is, is it true that 

L12 = L211 (6-146) 

We may vaguely and intuitively expect that the answer is in the affirmative "because 
of reciprocity." But how do we prove it? We may proceed as follows. Combining 
Eqs. (6-123), (6-125) and (6-127), we obtain 

L12 = — }S2^i ' ds2. (6-147) 

But in view of Eq. (6-15), B1 can be written as the curl of a vector magnetic potential 
Al5 B1 = V x Av We have 

L»-7fJ>xA'>-
(6-148) 

Now, from Eq. (6-27), 

In Eqs. (6-148) and (6-149) the contour integrals are evaluated only once over the 
periphery of the loops C2 and Cl9 respectively—the effects of multiple turns having 
been taken care of separately by the factors N2 and Nx. Substitution of Eq. (6-149) 
in Eq. (6-148) yields 

L i 2 = — ^ r 1 1 —R—> ^~150^ 
where R is the distance between the differential lengths d€± and d€2. It is customary 
to write Eq. (6-150a) as 

(6-150b) 

where N1 and iV2 have been absorbed in the contour integrals over the circuits C1 
and C2 from one end to the other. Equation (6-150b) is the Neumann formula for 
mutual inductance. It is a general formula requiring the evaluation of a double line 
integral. For any given problem we always first look for symmetry conditions that 
may simplify the determination of flux linkage and mutual inductance without resort
ing to Eq. (6-150b) directly. 

It is clear from Eq. (6-150b) that mutual inductance is a property of the geo
metrical shape and the physical arrangement of coupled circuits. For a linear medium, 
mutual inductance is proportional to the medium's permeability and is independent 
of the currents in the circuits. It is obvious that interchanging the subscripts 1 and 
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FIGURE 6-26 
A solenoid with two windings (Example 6-18). 

2 does not change the value of the double integral; hence an affirmative answer to 
the question posed in Eq. (6-146) follows. This is an important conclusion because 
it allows us to use the simpler of the two ways (finding L12 or L21) to determine the 
mutual inductance.* 

EXAMPLE 6-18 Two coils of A/"x and N2 turns are wound concentrically on a 
straight cylindrical core of radius a and permeability jU. The windings have lengths 
^ and /2, respectively. Find the mutual inductance between the coils. 

Solution Figure 6-26 shows such a solenoid with two concentric windings. Assume 
that current Ix flows in the inner coil. From Eq. (6-133) we find that the flux <X>12 
in the solenoid core that links with the outer coil is 

# 1 2 = / * 

Since the outer coil has N2 turns, we have 

(na2)Iv 

A12 = N2<S>12 = ^N1N2na2I1. 

Hence the mutual inductance is 

L12=^ = yN1N2na2 (H). (6-151) 

Leakage flux has been neglected. 

EXAMPLE 6-19 Determine the mutual inductance between a conducting triangular 
loop and a very long straight wire as shown in Fig. 6-27. 

Solution Let us designate the triangular loop as circuit 1 and the long wire as circuit 
2. If we assume a current Ix in the triangular loop, it is difficult to find the magnetic 
flux density Bi everywhere. Consequently, it is difficult to determine the mutual 

In circuit theory books the symbol M is frequently used to denote mutual inductance. 
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4 
-dr 

-d+ b 

FIGURE 6-27 
A conducting triangular loop and a long straight wire (Example 6-19). 

inductance L12 from A12/I1 in Eq. (6-127). We can, however, apply Ampere's circuital 
law and readily write the expression for B2 that is caused by a current I2 in the long 
straight wire: 

The flux linkage A21 = $ 2 1 is 

where 

B ^ a * 2 O T 

A2i = j S i B2 • dslt 

ds1 = a^zdr. 

(6-152) 

(6-153) 

(6-154) 

The relation between z and r is given by the equation of the hypotenuse of the 
triangle: 

z= - [ r - ( d + &)]tan60° 

= -V3[r- (* + »]. (6"155) 

Substituting Eqs. (6-152), (6-154), and (6-155) in Eq. (6-153), we have 

73^2 
2n 

Therefore, the mutual inductance is 

A2i \ / 3 ^ 0 

(d + b)\n[l+-)-

L2i = 2% 
(d + b) In ( 1 + - ] - b (H). (6-156) 
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6-12 Magnetic Energy 

So far we have discussed self- and mutual inductances in static terms. Because induc
tances depend on the geometrical shape and the physical arrangement of the con
ductors constituting the circuits, and, for a linear medium, are independent of the 
currents, we were not concerned with nonsteady currents in the defining of induc
tances. However, we know that resistanceless inductors appear as short-circuits to 
steady (d-c) currents; it is obviously necessary that we consider alternating currents 
when the effects of inductances on circuits and magnetic fields are of interest. A 
general consideration of time-varying electromagnetic fields (electrodynamics) will be 
deferred until the next chapter. For now we assume quasi-static conditions, which 
imply that the currents vary very slowly in time (are low of frequency) and that the 
dimensions of the circuits are very small in comparison to the wavelength. These 
conditions are tantamount to ignoring retardation and radiation effects, as we shall 
see when electromagnetic waves are discussed in Chapter 8. 

In Section 3-11 we discussed the fact that work is required to assemble a group 
of charges and that the work is stored as electric energy. We certainly expect that 
work also needs to be expended in sending currents into conducting loops and that 
it will be stored as magnetic energy. Consider a single closed loop with a self-
inductance L1 in which the current is initially zero. A current generator is connected 
to the loop, which increases the current it from zero to Iv From physics we know 
that an electromotive force (emf) will be induced in the loop that opposes the current 
change.1" An amount of work must be done to overcome this induced emf. Let v1 = 
Lt dijdt be the voltage across the inductance. The work required is 

Wy = J i ^ ! dt = Lt JJ1 I'i dit = iLJl (6-157) 

Since Lt = QJI^ for linear media, Eq. (6-157) can be written alternatively in terms 
of flux linkage as 

Wt = i/i<Dl9 (6-158) 
which is stored as magnetic energy. 

Now consider two closed loops Ct and C2 carrying currents i1 and i2, respec
tively. The currents are initially zero and are to be increased to It and I2, respectively. 
To find the amount of work required, we first keep i2 = 0 and increase ii from zero 
to Iv This requires a work Wt in loop Cl5 as given in Eq. (6-157) or (6-158); no 
work is done in loop C2, since i2 = 0. Next we keep i\ at It and increase i2 from 
zero to I2. Because of mutual coupling, some of the magnetic flux due to i2 will link 
with loop C1? giving rise to an induced emf that must be overcome by a voltage 
vn = L21 di2/dt in order to keep i1 constant at its value Iv The work involved is 

W21 = J» 2 1 / ! dt = L21/! JJ2 di2 = L2lIJ2. (6-159) 

The subject of electromagnetic induction will be discussed in Chapter 7. 
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At the same time a work W22 must be done in loop C2 in order to counteract the 
induced emf and increase i2 to I2. 

v*22 — 2L212. (6-160) 

The total amount of work done in raising the currents in loops C1 and C2 from zero 
to Ix and I2, respectively, is then the sum of Wu W21, and W22: 

*V2 — 2 ^ 1 M ~^~ ^ l l ' l ' l ~l~ 2 ^ 2 ^ 2 
2 2 

\ I I v,4 (6-161) 

j=i fe=i 

Generalizing this result to a system of N loops carrying currents Iu I2,..., I„, we 
obtain 

N N 

w 4IE Ljkljhc (J)J 
i = i f e = i 

(6-162) 

which is the energy stored in the magnetic field. For a current / flowing in a single 
inductor with inductance L, the stored magnetic energy is 

Wm = ̂ 2LI2 (J). (6-163) 

It is instructive to derive Eq. (6-162) in an alternative way. Consider a typical 
kth loop of N magnetically coupled loops. Let vk and ik be the voltage across and 
the current in the loop, respectively. The work done to the kth loop in time dt is 

dWk = vkikdt = ikd(j)k, (6-164) 

where we have used the relation vk = dfyjdt. Note that the change, d(f)k, in the flux 
4>k linking with the kth loop is the result of the changes of the currents in all the 
coupled loops. The differential work done to, or the differential magnetic energy 
stored in, the system is then 

dWm=YudWk=Y^i*d($>*- (6-165) 
fe=i fe=i 

The total stored energy is the integration of dWm and is independent of the manner 
in which the final values of the currents and fluxes are reached. Let us assume that 
all the currents and fluxes are brought to their final values in concert by an equal 
fraction a that increases from 0 to 1; that is, ik = alk, and <$)k = aOfe at any instant 
of time. We obtain the total magnetic energy: 

Wm = jdWm=Yjh®kj**dct 
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(6-166) 

which simplifies to Eq. (6-158) for iV = 1, as expected. Noting that, for linear media, 

O, - £ Vi-
i = i 

we obtain Eq. (6-162) immediately. 

6-12.1 MAGNETIC ENERGY IN TERMS OF FIELD QUANTITIES 

Equation (6-166) can be generalized to determine the magnetic energy of a continuous 
distribution of current within a volume. A single current-carrying loop can be con
sidered as consisting of a large number, N, of contiguous filamentary current elements 
of closed paths Ck, each with a current A/k flowing in an infinitesimal cross-sectional 
area Aa'k and linking with magnetic flux Ok. 

®k = jSkB-ands'k = j)CkA'd€'k, (6-167) 

where Sk is the surface bounded by Ck. Substituting Eq. (6-167) in Eq. (6-166), we 
have 

Wn -\t Ah 

Now, 
t = i ck 

A • dei (6-168) 

Mkde'k = J(Aa'k)d€'k = JAv'k. 

As N -> oo, Av'k becomes dv', and the summation in Eq. (6-168) can be written as an 
integral. We have 

Wm = ±jv,A-Jdv' (J), (6-169) 

where V is the volume of the loop or the linear medium in which J exists. This volume 
can be extended to include all space, since the inclusion of a region where J = 0 
does not change Wm. Equation (6-169) should be compared with the expression for 
the electric energy We in Eq. (3-170). 

It is often desirable to express the magnetic energy in terms of field quantities 
B and H instead of current density J and vector potential A. Making use of the vector 
identity, 

V • (A x H) = H • (V x A) - A • (V x H), 

(see Problem P.2-33 or the list at the end of book), we have 

A • (V x H) = H • (V x A) - V • (A x H) 
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or 
A • J = H • B - V • (A x H). 

Substituting Eq. (6-170) in Eq. (6-169), we obtain 

w: = ifyH'Bdi/-ij)si{AxH)-*Hte. 

(6-170) 

(6-171) 

In Eq. (6-171) we have applied the divergence theorem, and S' is the surface bounding 
V. If V is taken to be sufficiently large, the points on its surface S" will be very far 
from the currents. At those far-away points the contribution of the surface integral 
in Eq. (6-171) tends to zero because |A| falls off as l/R and |H| falls off as 1/R2, as 
can be seen from Eqs. (6-23) and (6-32), respectively. Thus, the magnitude of (A x H) 
decreases as 1/R3, whereas at the same time the surface S" increases only as R2. When 
R approaches infinity, the surface integral in Eq. (6-171) vanishes. We have then 

W. = ijvH-Bdi/ (J). (6-172a) 

Noting that H = B///, we can write Eq. (6-172a) in two alternative forms: 

Wn 2 Jv u 

and 

Wn = ifyiliH2di/ (J). 

(6-172b) 

(6-172c) 

The expressions in Eqs. (6-172a), (6-172b), and (6-172c) for the magnetic energy 
Wm in a linear medium are analogous to those of electrostatic energy We in Eqs. 
(3-176a), (3-176b), and (3-176c), respectively. 

If we define a magnetic energy density, wm, such that its volume integral equals 
the total magnetic energy 

Wm = j y , wmdv', 

we can write wm in three different forms: 

wm = i H - B (J/m3) 

B2 
or 

or 

wm = y - (J/m3) 

wm = yH2 (J/m3). 

(6-173) 

(6-174a) 

(6-174b) 

(6-174c) 

By using Eq. (6-163) we can often determine self-inductance more easily from 
stored magnetic energy calculated in terms of B and/or H, than from flux linkage. 
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We have 

L = 
2Wm 

~ I2 (H). 
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(6-175) 

EXAMPLE 6-20 By using stored magnetic energy, determine the inductance per unit 
length of an air coaxial transmission line that has a solid inner conductor of radius 
a and a very thin outer conductor of inner radius b. 

Solution This is the same problem as that in Example 6-16, in which the self-
inductance was determined through a consideration of flux linkages. Refer again to 
Fig. 6-24. Assume that a uniform current / flows in the inner conductor and returns 
in the outer conductor. The magnetic energy per unit length stored in the inner con
ductor is, from Eqs. (6-136) and (6-172b), 

(6-176a) 

The magnetic energy per unit length stored in the region between the inner and outer 
conductors is, from Eq. (6-137) and (6-172b), 

Wm2=-*-(bBl22nrdr 
ZUn *>a 

li0I2 n 1 , fi0I2 , b 
(6-176b) 

4n 

Therefore, from Eq. (6-175) we have 

2 
7 

p i d r ^ l n ? (J/m). J" r An a 

L'=-2(W'mi + Wm2) 

= 8^ + 2 ^ l n a ( H / m ) ' 

which is the same as Eq. (6-140). The procedure used in this solution is compara
tively simpler than that used in Example 6-16, especially the part leading to the in
ternal inductance [i0/8-Ji. ira 

6—13 Magnetic Forces and Torques 

In Section 6-1 we noted that a charge q moving with a velocity u in a magnetic 
field with flux density B experiences a magnetic force Fm given by Eq. (6-4), which 
is repeated below. 

Fm = qu x B (N). (6-177) 
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In this section we will discuss various aspects of forces and torques in static magnetic 
fields. 

6-13.1 HALL EFFECT 

Consider a conducting material of a d x b rectangular cross section in a uniform 
magnetic field B = azB0, as shown in Fig. 6-28. A uniform direct current flows in 
the y-direction: 

J = ayJ0 = Nqu, (6-178) 

where N is the number of charge carriers per unit volume, moving with a velocity 
u, and q is the charge on each charge carrier. Because of Eq. (6-177), the charge 
carriers experience a force perpendicular to both B and u. If the material is a con
ductor or an rc-type semiconductor, the charge carriers are electrons, and q is negative. 
The magnetic force tends to move the electrons in the positive x-direction, creating 
a transverse electric field. This will continue until the transverse field is sufficient to 
stop the drift of the charge carriers. In the steady state the net force on the charge 
carriers is zero: 

or 
E* + u x B = 0 

E f t = - u x B. 

(6-179a) 

(6-179b) 

This is known as the Hall effect, and Eh is called the Hall field. For conductors and 
n-type semiconductors and a positive J0, u = —ayu0, and 

= axu050 . 
(6-180) 

B = azB0 
J = Vo 

J = Vo FIGURE 6-28 
Illustrating the Hall effect. 
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A transverse potential appears across the sides of the material. Thus, we have 

Vh=-jd
QEhdx = u0B0d, (6-181) 

for electron carriers. In Eq. (6-181), Vh is called the Hall voltage. The ratio EJJyBz = 
1/Nq is a characteristic of the material and is known as the Hall coefficient. 

If the charge carriers are holes, such as in a p-type semiconductor, the Hall field 
will be reversed, and the Hall voltage in Eq. (6-181) will be negative with the reference 
polarities shown in Fig. 6-28. 

The Hall effect can be used for measuring the magnetic field and determining 
the sign of the predominant charge carriers (distinguishing an n-type from a p-type 
semiconductor). We have given here a simplified version of the Hall effect. In actuality 
it is a complex affair involving quantum theory concepts. 

6-13.2 FORCES AND TORQUES ON CURRENT-CARRYING CONDUCTORS 
Let us consider an element of conductor d€ with a cross-sectional area S. If there 
are N charge carriers (electrons) per unit volume moving with a velocity u in the 
direction of d€, then the magnetic force on the differential element is 

dFm= -NeS\d€\uxB 
= -NeS\u\d€ xB, 

where e is the electronic charge. The two expressions in Eq. (6-182) are equivalent, 
since u and d€ have the same direction. Now, since -NeS\u\ equals the current in 
the conductor, we can write Eq. (6-182) as 

(6-182) 

d¥m = Id€xB (N). (6-183) 

The magnetic force on a complete (closed) circuit of contour C that carries a current 
/ in a magnetic field B is then 

F = / | ^ x B (N). (6-184) 

When we have two circuits carrying currents Ix and I2, respectively, the situation 
is that of one current-carrying circuit in the magnetic field of the other. In the presence 
of the magnetic field B21, which was caused by the current I2 in C2, the force F21 
on circuit Cx can be written as 

(6-185a) F 2 1 = I, (J)ci d€, x B 2 1 , 

where B21 is, from the Biot-Savart law in Eq. (6-32), 

B21 = ^ 2 & d€l * a*21 

4TU JC2 R\X 
(6-185b) 
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Combining Eqs. (6-185a) and (6-185b), we obtain 

(6-186a) 

which is Ampere's law of force between two current-carrying circuits. It is an inverse-
square relationship and should be compared with Coulomb's law of force in Eq. 
(3-17) between two stationary charges, the latter being much the simpler. 

The force F 1 2 on circuit C2, in the presence of the magnetic field set up by the 
current 1^ in circuit Cl5 can be written from Eq. (6-186a) by interchanging the sub
scripts 1 and 2: 

J"O , , X X d£2
 x ( ^ i x a*12) F 1 2 = ^ I2Ii CD, CD „ 2 ^ - (6-186b) 

4TI z l Jc2 Jc, R2 

However, since d€2 x (d€1 x aRl2) ^ — d€t x (d€2 x aR21), we inquire whether this 
means F 2 1 ^ — F12—that is, whether Newton's third law governing the forces of 
action and reaction fails here. Let us expand the vector triple product in the integrand 
of Eq. (6-186a) by the back-cab rule, Eq. (2-20): 

d€, x (d€2 x aRJ d€2(d€1 • *RJ aRJd^ • d€2) (6-187) 
j?2 a2 i?2 

^ 2 1 i<21 ^ 2 1 

Now the double closed line integral of the first term on the right side of Eq. (6-187) is 

d Jc2 R2
21 Jc2 Jc i R2

21 

-£^£"''-(-v'it) ,6-m) 

In Eq. (6-188) we have made use of Eq. (2-88) and the relation V^l/f l^) = -*RJR21. 
The closed line integral (with identical upper and lower limits) of d(l/R21) around 
circuit C1 vanishes. Substituting Eq. (6-187) in Eq. (6-186a) and using Eq. (6-188), 
we get 

which obviously equals — F 1 2 , inasmuch as aRl2 = -aRll. It follows that Newton's 
third law holds here, as expected. 

EXAMPLE 6-21 Determine the force per unit length between two infinitely long 
parallel conducting wires carrying currents lx and I2 in the same direction. The wires 
are separated by a distance d. 
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K 
F21 F|2 

+0— 
J > y 

FIGURE 6-29 
Force between two parallel current-carrying wires (Example 6-21). 

Solution Let the wires lie in the yz-plane and be parallel to the z-axis, as shown in 
Fig. 6-29. This problem is a straightforward application of Eq. (6-185a). Using F'12 

to denote the force per unit length on wire 2, we have 

F'12 = /2(a, x B12), (6-190) 

where B1 2 , the magnetic flux density at wire 2, set up by the current Ix in wire 1, is 
constant over wire 2. Because the wires are assumed to be infinitely long and cylin
drical symmetry exists, it is not necessary to use Eq. (6-185b) for the determination 
of B1 2 . We apply Ampere's circuital law and write, from Eq. (6-1 lb), 

B i 2 = - a , M i 
2nd 

Substitution of Eq. (6-191) in Eq. (6-190) yields 

F'12 = - a , 2nd 
(N/m). 

(6-191) 

(6-192) 

We see that the force on wire 2 pulls it toward wire 1. Hence the force between two 
wires carrying currents in the same direction is one of attraction (unlike the force 
between two charges of the same polarity, which is one of repulsion). It is trivial 
to prove that F 2 1 = — F'12 = ay(^0/1/2/27rd) and that the force between two wires 
carrying currents in opposite directions is one of repulsion. sra 

Let us now consider a small circular loop of radius b and carrying a current / 
in a uniform magnetic field of flux density B. It is convenient to resolve B into two 
components, B = B± + B||, where B1 and B(| are perpendicular and parallel, respec
tively, to the plane of the loop. As illustrated in Fig. 6-30(a), the perpendicular com
ponent B± tends to expand the loop (or contract it if the direction of / is reversed), 
but B± exerts no net force to move the loop. The parallel component B|| produces 
an upward force dFx (out from the paper) on element d€^ and a downward force 
(into the paper) d¥2 = — d¥x on the symmetrically located element d€2, as shown in 
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X X B± 

X X T X X 

(a) 

- I ► * 

T 

(b) 

FIGURE 6-30 
A circular loop in a uniform magnetic field B = B± + B,,. 

Fig. 6-30(b). Although the net force on the entire loop caused by B|| is also zero, a 
torque exists that tends to rotate the loop about the x-axis in such a way as to align 
the magnetic field (due to /) with the external B|| field. The differential torque pro
duced by d¥1 and d¥2 is 

dT = ax(dF)2b sin 0 
= *JJMB\\ sin 4>)2b sin 0 
= ax2Ib2Bn sin2 0d0 , 

(6-193) 

where dF — \d¥^\ = \dF2\ and dt = \d^±\ = \d£2\ = bd(/>. The total torque acting on 
the loop is then 

T = j>T = a,2/&2fl|| Jo" sin2 0^0 
= axI(nb2)Bn. 

(6-194) 

If the definition of the magnetic dipole moment in Eq. (6-46) is used, 

m = anI(nb2) = a„/S, 

where a„ is a unit vector in the direction of the right thumb (normal to the plane of 
the loop) as the fingers of the right hand follow the direction of the current, we can 
write Eq. (6-194) as 

T = m x B (N-m). (6-195) 

The vector B (instead of B,,) is used in Eq. (6-195) because m x (B± + BN) = m x BN. 
This is the torque that aligns the microscopic magnetic dipoles in magnetic materials 
and causes the materials to be magnetized by an applied magnetic field. It should be 
remembered that Eq. (6-195) does not hold if B is not uniform over the current-
carrying loop. 
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EXAMPLE 6-22 A rectangular loop in the xy-plane with sides bx and b2 carrying a 
current / lies in a uniform magnetic field B = a ^ + a ^ + azBz. Determine the force 
and torque on the loop. 

Solution Resolving B into perpendicular and parallel components B± and B||, we 
have 

B± = a A 
B|| = axBx + ayBy. 

(6-196a) 
(6-196b) 

Assuming that the current flows in a clockwise direction, as shown in Fig. 6-31, we 
find that the perpendicular component SLZBZ results in forces IbxBz on sides (1) and (3) 
and forces Ib2Bz on sides (2) and (4), all directed toward the center of the loop. The 
vector sum of these four contracting forces is zero, and no torque is produced. 

The parallel component of the magnetic flux density, B||, produces the following 
forces on the four sides: 

¥, = Ib^x x (axBx + ayBy) 
= azIb1By=-¥3; 

F2 = Ib2(-ay)x(axBx + ayBy) 
= *Jb2Bx=-FA. 

(6-197a) 

(6-197b) 

Again, the net force on the loop, FA + F 2 + F 3 + F4 , is zero. However, these forces 
result in a net torque that can be computed as follows. The torque T13, due to forces 
¥1 and F 3 on sides (1) and (3), is 

T13 = *xIbxb2By; 

the torque T24, due to forces F 2 and F 4 on sides (2) and (4), is 

T2 4 = -ayIb1b2Bx. 

(6-198a) 

(6-198b) 

FIGURE 6-31 
A rectangular loop in a uniform magnetic field 
(Example 6-22). 
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The total torque on the rectangular loop is then 

T = T13 + T24 = /M 2 (a*^ - * A ) (N>m)- I6"1") 

Since the magnetic moment of the loop is m = — azIb1b2, the result in Eq. (6-199) 
is exactly T = m x (ax5x + a ^ ) = m x B. Hence in spite of the fact that Eq. (6-195) 
was derived for a circular loop, the torque formula holds also for a rectangular loop. 
As a matter of fact, it can be proved that Eq. (6-195) holds for a planar loop of any 
shape as long as it is located in a uniform magnetic field. Can you suggest a proof for 
the last statement? 

The principle of operation of direct-current (d-c) motor is based on Eq. (6-195). 
Figure 6-32(a) shows a schematic diagram of such a motor. The magnetic field B is 
produced by a field current If in a winding around the pole pieces. When a current / 
is sent through the rectangular loop, a torque results that makes the loop rotate in 
a clockwise direction as viewed from the + x-direction. This is illustrated in Fig. 
6-32(b). A split ring with brushes is necessary so that the currents in the two legs of 
the coil reverse their directions every half of a turn in order to maintain the torque 
T always in the same direction; the magnetic moment m of the loop must have a 
positive z-component. 

To obtain a smooth operation, an actual d-c motor has many such rectangular 
loops wound and distributed around an armature. The ends of each loop are attached 
to a pair of conducting bars arranged on a small cylindrical drum called a commutator. 

(a) Perspective view. (b) Schematic view from +x direction. 

FIGURE 6-32 
Illustrating the principle of operation of d-c motor. 
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The commutator has twice as many parallel conducting bars insulated from one an
other as there are loops. 

6-13.3 FORCES AND TORQUES IN TERMS OF STORED MAGNETIC ENERGY 

All current-carrying conductors and circuits experience magnetic forces when situated 
in a magnetic field. They are held in place only if mechanical forces, equal and op
posite to the magnetic forces, exist. Except for special symmetrical cases (such as the 
case of the two infinitely long, current-carrying, parallel conducting wires in Example 
6-21), determining the magnetic forces between current-carrying circuits by Ampere's 
law of force is a tedious task. We now examine an alternative method of finding mag
netic forces and torques based on the principle of virtual displacement. This prin
ciple was used in Section 3-11.2 to determine electrostatic forces between charged 
conductors. We consider two cases: first, a system of circuits with constant magnetic 
flux linkages, and second, a system of circuits with constant currents. 

System of Circuits with Constant Flux Linkages If we assume that no changes in 
flux linkages result from a virtual differential displacement d€ of one of the current-
carrying circuits, there will be no induced emf's, and the sources will supply no energy 
to the system. The mechanical work, F 0 • d€, done by the system is at the expense of 
a decrease in the stored magnetic energy, where F0 denotes the force under the con
stant-flux condition. Thus, 

F9-d€=-dWm=-<yWm)'d€, 

from which we obtain 

F 0 = - V W M (N). 

In Cartesian coordinates the component forces are 

(F ) - dWm 

(F ) - 3Wm 

dW 
dz 

(6-200) 

(6-201) 

(6-202a) 

(6-202b) 

(6-202c) 

If the circuit is constrained to rotate about an axis, say the z-axis, the mechanical 
work done by the system will be (To)zd0, and 

(T*), = - d(j) 
(N-m), (6-203) 



290 6 Static Magnetic Fields 
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An electromagnet (Example 6-23). 

which is the z-component of the torque acting on the circuit under the condition 
of constant flux linkages. 

EXAMPLE 6-23 Consider the electromagnet in Fig. 6-33, in which a current / in 
an iV-turn coil produces a flux G> in the magnetic circuit. The cross-sectional area of 
the core is S. Determine the lifting force on the armature. 

Solution Let the armature take a virtual displacement dy (a differential increase in 
y) and the source be adjusted to keep the flux d> constant. A displacement of the 
armature changes only the length of the air gaps; consequently, the displacement 
changes only the magnetic energy stored in the two air gaps. We have, from Eq. 
(6-172b), 

dWm = d(Wm)ail =2(~Sdy 
gap \ZMo 

= — d 
(6-204) 

An increase in the air-gap length (a positive dy) increases the stored magnetic energy 
if G> is constant. Using Eq. (6-202b), we obtain 

0)2 
F 0 - a (F0) - H0S (N). (6-205) 

Here the negative sign indicates that the force tends to reduce the air-gap length; 
that is, it is a force of attraction. « » 

System of Circuits with Constant Currents In this case the circuits are connected 
to current sources that counteract the induced emf's resulting from changes in flux 
linkages that are caused by a virtual displacement d€. The work done or energy 
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supplied by the sources is (see Eq. 6-165) 

(6-206) 

This energy must be equal to the sum of the mechanical work done by the system 
dW (dW = Fj • d£, where F7 denotes the force on the displaced circuit under the con
stant-current condition) and the increase in the stored magnetic energy, dWm. That is, 

dW, = dW + dWm. 
From Eq. (6-166) we have 

dW„ 1 V^ 1 
= -2Lhd% hd$, = -dWs. 

(6-207) 

(6-208) 

Equations (6-207) and (6-208) combine to give 

dW = ¥j-d€ = dWm 

= FWJ • d€ 
or 

F, = \Wm (N), (6-209) 

which differs from the expression for F 0 in Eq. (6-201) only by a sign change. If the 
circuit is constrained to rotate about the z-axis, the z-component of the torque acting 
on the circuit is 

(6-210) 

The difference between the expression above and (T0)z in Eq. (6-203) is, again, only 
in the sign. It must be understood that, despite the difference in the sign, Eqs. (6-201) 
and (6-203) should yield the same answers to a given problem as do Eqs. (6-209) 
and (6-210), respectively. The formulations using the method of virtual displacement 
under constant-flux-linkage and constant-current conditions are simply two means 
of solving the same problem. 

Let us solve the electromagnet problem in Example 6-23 assuming a virtual dis
placement under the constant-current condition. For this purpose we express Wm in 
terms of the current /: 

Wm = \LI\ (6-211) 

where L is the self-inductance of the coil. The flux, O, in the electromagnet is obtained 
by dividing the applied magnetomotive force (NI) by the sum of the reluctance of 
the core (&c) and that of the two air gaps (2y/fi0S). Thus, 

0 = 
NI 

ie + 2y/fji0S' 
(6-212) 
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Inductance L is equal to flux linkage per unit current: 

_ iV<£ _ N2 

~ ~T ~ mc + 2y/fi0S' 

Combining Eqs. (6-209) and (6-211) and using Eq. (6-213), we obtain 

lJ_dL___ 1 / NI 

0)2 

= - a y — (N), 

which is exactly the same as the F 0 in Eq. (6-205). 

(6-213) 

(6-214) 

6-13.4 FORCES AND TORQUES IN TERMS OF MUTUAL INDUCTANCE 

The method of virtual displacement for constant currents provides a powerful tech
nique for determining the forces and torques between rigid current-carrying circuits. 
For two circuits with currents /x and I2, self-inductances Lt and L2, and mutual 
inductance L12, the magnetic energy is, from Eq. (6-161), 

Wm = iL1I2
1 + L12I1I2+iL2I2

2. (6-215) 

If one of the circuits is given a virtual displacement under the condition of constant 
currents, there would be a change in Wm, and Eq. (6-209) applies. Substitution of 
Eq. (6-215) in Eq. (6-209) yields 

F , = IJ2(yL12) (N). (6-216) 

Similarly, we obtain, from Eq. (6-210), 

(6-217) 

EXAMPLE 6-24 Determine the force between two coaxial circular coils of radii b1 

and b2 separated by a distance d that is much larger than the radii (d » bu b2). 
The coils consist of N1 and N2 closely wound turns and carry currents Ix and I2, 
respectively. 

Solution This problem is rather a difficult one if we try to solve it with Ampere's 
law of force, as expressed in Eq. (6-185a). Therefore we will base our solution on 
Eq. (6-216). First, we determine the mutual inductance between the two coils. In 
Example 6-7 we found, in Eq. (6-43), the vector potential at a distant point, which 
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was caused by a single-turn circular loop carrying a current /. Referring to Fig. 6-34 
for this problem, at the point P on coil 2 we have A12 due to current l± in coil 1 
with Nx turns as follows: 

^M sin 9 
4R2 

noNJiH (K 

A12 = a„ 

= a, 

= a, 

AR2 

li0NxIxb\b2 

4(z2 + b2f'2 

(6-218) 

In Eq. (6-218), z, instead of d, is used because we anticipate a virtual displacement, 
and z is to be kept as a variable for the time being. Using Eq. (6-218) in Eq. (6-25), 
we find the mutual flux. 

®i2 = §C2^i2-d€2 = $*nA12b2d(l> 

2(z2 + b2
2f'2 ' 

The mutual inductance is then, from Eq. (6-127), 

^ 2 * 1 2 

(6-219) 

L12 = = iipN ±N 2nb\b2
2 

Ix 2(z2 + b2
2f'2 (H). (6-220) 

FIGURE 6-34 
Coaxial current-carrying circular loops (Example 6-24). 
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On coil 2 the force due to the magnetic field of coil 1 can now be obtained directly 
by substituting Eq. (6-220) in Eq. (6-216): 

F12 = *J1l2dLl2 
dz 

which can be written as 

3Ju0m1m2 
F l 2 = ~ a z 2 n ^ ( N ) ' ( 6 " 2 2 1 ) 

where (d2 + b\) has been replaced approximately by d2, and m1 and m2 are the 
magnitudes of the magnetic moments of coils 1 and 2, respectively: 

mt = NJ^izbl, m2 = N2I2nbl-

The negative sign in Eq. (6-221) indicates that F 1 2 is a force of attraction for currents 
flowing in the same direction. This force diminishes very rapidly as the inverse fourth 
power of the distance of separation. B 

Review Questions 

R.6-1 What is the expression for the force on a test charge q that moves with velocity u 
in a magnetic field of flux density B? 
R.6-2 Verify that tesla (T), the unit for magnetic flux density, is the same as volt-second 
per square meter (V-s/m2). 
R.6-3 Write Lorentz's force equation. 
R.6-4 Which postulate of magnetostatics denies the existence of isolated magnetic charges? 
R.6-5 State the law of conservation of magnetic flux. 
R.6-6 State Ampere's circuital law. 
R.6-7 In applying Ampere's circuital law, must the path of integration be circular? Explain. 
R.6-8 Why cannot the B-field of an infinitely long, straight, current-carrying conductor 
have a component in the direction of the current? 
R.6-9 Do the formulas for B, as derived in Eqs. (6-11) and (6-12) for a round conductor, 
apply to a conductor having a square cross section of the same area and carrying the 
same current? Explain. 
R.6-10 In what manner does the B-field of an infinitely long straight filament carrying 
a direct current / vary with distance? 
R.6-11 Can a static magnetic field exist in a good conductor? Explain. 
R.6-12 Define in words vector magnetic potential A. What is its SI unit? 
R.6-13 What is the relation between magnetic flux density B and vector magnetic potential 
A? Give an example of a situation in which B is zero and A is not. 
R.6-14 What is the relation between vector magnetic potential A and the magnetic flux 
through a given area? 
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R.6-15 State Biot-Savart law. 
R.6-16 Compare the usefulness of Ampere's circuital law and Biot-Savart law in determining 
B of a current-carrying circuit. 
R.6-17 What is a magnetic dipole? Define magnetic dipole moment. What is its SI unit? 
R.6-18 Define scalar magnetic potential Vm. What is its SI unit? 
R.6-19 Discuss the relative merits of using the vector and scalar magnetic potentials in 
magnetostatics. 
R.6-20 Define magnetization vector. What is its SI unit? 
R.6-21 What is meant by "equivalent magnetization current densities"? What are the SI 
units for V x M and M x a„? 
R.6-22 Define magnetic field intensity vector. What is its SI unit? 
R.6-23 What are magnetization charge densities! What are the SI units for M • a„ and — V • M? 
R.6-24 Describe a procedure for finding the external magnetic field of a bar magnet having 
a known volume density of dipole moment. 
R.6-25 Define magnetic susceptibility and relative permeability. What are their SI units? 
R.6-26 Does the magnetic field intensity due to a current distribution depend on the 
properties of the medium? Does the magnetic flux density? 
R.6-27 Define magnetomotive force. What is its SI unit? 
R.6-28 What is the reluctance of a piece of magnetic material of permeability \i, length /, 
and a constant cross section S! What is its SI unit? 
R.6-29 An air gap is cut in a ferromagnetic toroidal core. The core is excited with an 
mmf of NI ampere-turns. Is the magnetic field intensity in the air gap higher or lower than 
that in the core? 
R.6-30 Define diamagnetic, paramagnetic, and ferromagnetic materials. 
R.6-31 What is a magnetic domain? 
R.6-32 Define remanent flux density and coercive field intensity. 
R.6-33 Discuss the difference between soft and hard ferromagnetic materials. 
R.6-34 What is curie temperature! 
R.6-35 What are the characteristics of ferrites? 
R.6-36 What are the boundary conditions for magnetostatic fields at an interface between 
two different magnetic media? 
R.6-37 Explain why magnetic flux lines leave the surface of a ferromagnetic medium 
perpendicularly. 
R.6-38 Explain qualitatively the statement that H and B along the axis of a cylindrical 
bar magnet are in opposite directions. 
R.6-39 Define (a) the mutual inductance between two circuits, and (b) the self-inductance 
of a single coil. 
R.6-40 Explain how the self-inductance of a wire-wound inductor depends on its number 
of turns. 
R.6-41 In Example 6-16, would the answer be the same if the outer conductor were 
not "very thin"? Explain. 
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R.6-42 What is implied by "quasi-static conditions" in electromagnetics? 
R.6-43 Give an expression of magnetic energy in terms of B and/or H. 
R.6-44 Explain the Hall effect. 
R.6-45 Give the integral expression for the force on a closed circuit that carries a current 
/ in a magnetic field B. 
R.6-46 Discuss first the net force and then the net torque acting on a current-carrying 
circuit situated in a uniform magnetic field. 
R.6-47 Explain the principle of operation of d-c motors. 
R.6-48 What is the relation between the force and the stored magnetic energy in a system 
of current-carrying circuits under the condition of constant flux linkages? Under the 
condition of constant currents? 

Problems 

P.6-1 A positive point charge q of mass m is injected with a velocity u0 = ayu0 into the 
y > 0 region where a uniform magnetic field B = SLXB0 exists. Obtain the equation of motion 
of the charge, and describe the path that the charge follows. 
P.6-2 An electron is injected with a velocity u0 = ayu0 into a region where both an electric 
field E and a magnetic field B exist. Describe the motion of the electron if 

a) E = a2£0 and B = ax50, 
b) E = - a z £ 0 and B = - a z 5 0 . 

Discuss the effect of the relative magnitudes of E0 and B0 on the electron paths in parts 
(a) and (b). 
P.6-3 A current / flows in the inner conductor of an infinitely long coaxial line and returns 
via the outer conductor. The radius of the inner conductor is a, and the inner and outer 
radii of the outer conductor are b and c, respectively. Find the magnetic flux density B 
for all regions and plot |B| versus r. 
P.6-4 A current / flows lengthwise in a very long, thin conducting sheet of width w, as 
shown in Fig. 6-35. 

a) Assuming that the current flows into the paper, determine the magnetic flux density 
Bl at point P^O, d). 

b) Use the result in part (a) to find the magnetic flux density B2 at point P2(2w/3, d). 

\PX •P2(h*>,d) 
3 
— Current / 
into the paper 

* x FIGURE 6-35 
A thin conducting sheet carrying a current / 
(Problem P.6-4). 

P.6-5 A current / flows in a w x w square loop as in Fig. 6-36. Find the magnetic flux 
density at the off-center point P(w/4, w/2). 
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>x FIGURE 6-36 
A square loop carrying a current / (Problem P.6-5). 

P.6-6 Figure 6-37 shows an infinitely long solenoid with air core having a radius b and n 
closely wound turns per unit length. The windings are slanted at an angle a and carry a 
current I. Determine the magnetic flux density both inside and outside the solenoid. 

FIGURE 6-37 
| A long solenoid with closely wound windings carrying a current / 

(Problem P.6-6). 

P.6-7 Determine the magnetic flux density at a point on the axis of a solenoid with radius 
b and length L, and with a current I in its N turns of closely wound coil. Show that the 
result reduces to that given in Eq. (6-14) when L approaches infinity. 
P.6-8 Starting from the expression for vector magnetic potential A in Eq. (6-23), prove that 

J x aR B = ^ r ^ 
4TT > ' R< 

■dv'. (6-222) 

Furthermore, prove that B in Eq. (6-222) satisfies the fundamental postulates of magnetostatics 
in free space, Eqs. (6-6) and (6-7). 
P.6-9 Combine Eqs. (6-4) and (6-33) to obtain a formula for the magnetic force F 1 2 

exerted by a charge q1 moving with a velocity ux on a charge q2 moving with a velocity u2. 
P.6-10 A very long, thin conducting strip of width w lies in the xz-plane between x = + w/2. 
A surface current Js = azJs0 flows in the strip. Find the magnetic flux density at an arbitrary 
point outside the strip. 
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P.6-11 A long wire carrying a current / folds back with a semicircular bend of radius b as 
in Fig. 6-38. Determine the magnetic flux density at the center point P of the bend. 

?vp FIGURE 6-38 
A very long wire with a semicircular 
bend (Problem P.6-11). 

P.6-12 Two identical coaxial coils, each of N turns and radius b, are separated by a 
distance d, as depicted in Fig. 6-39. A current / flows in each coil in the same direction. 

a) Find the magnetic flux density B = 2LXBX at a point midway between the coils. 
b) Show that dBJdx vanishes at the midpoint. 
c) Find the relation between b and d such that d2Bx/dx2 also vanishes at the midpoint. 

Such a pair of coils are used to obtain an approximately uniform magnetic field in the 
midpoint region. They are known as Helmholtz coils. 

FIGURE 6-39 
Helmholtz coils (Problems P.6-12). 

P.6-13 A thin conducting wire is bent into the shape of a regular polygon of N sides. A 
current / flows in the wire. Show that the magnetic flux density at the center is 

V0NI 
i = a. 2nb - ,anF 

where b is the radius of the circle circumscribing the polygon and a„ is a unit vector normal 
to the plane of the polygon. Show also that, as N becomes very large, this result reduces to 
that given in Eq. (6-38) with z = 0. 
P.6-14 Find the total magnetic flux through a circular toroid with a rectangular cross 
section of height h. The inner and outer radii of the toroid are a and b, respectively. A 
current / flows in N turns of closely wound wire around the toroid. Determine the 
percentage of error if the flux is found by multiplying the cross-sectional area by the flux 
density at the mean radius. 
P.6-15 In certain experiments it is desirable to have a region of constant magnetic flux 
density. This can be created in an off-center cylindrical cavity that is cut in a very long 
cylindrical conductor carrying a uniform current density. Refer to the cross section in 
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FIGURE 6-40 
Cross section of a long cylindrical conductor with cavity 
(Problem P.6-15). 

Fig. 6-40. The uniform axial current density is J = azJ. Find the magnitude and direction 
of B in the cylindrical cavity whose axis is displaced from that of the conducting part by 
a distance d. (Hint: Use principle of superposition and consider B in the cavity as that due 
to two long cylindrical conductors with radii b and a and current densities J and - J, 
respectively.) 
P.6-16 Prove the following: 

a) If Cartesian coordinates are used, Eq. (6-18) for the Laplacian of a vector field 
holds. 

b) If cylindrical coordinates are used, V2A ^ arW2Ar + SL<J)\2A<I) + az\2Az. 
P.6-17 The magnetic flux density B for an infinitely long cylindrical conductor has been 
found in Example 6-1. Determine the vector magnetic potential A both inside and outside 
the conductor from the relation B = V x A. 
P.6-18 Starting from the expression of A in Eq. (6-34) for the vector magnetic potential 
at a point in the bisecting plane of a straight wire of length 2L that carries a current J: 

a) Find A at point P(x, y, 0) in the bisecting plane of two parallel wires each of length 
2L, located at y = + d/2 and carrying equal and opposite currents, as shown in 
Fig. 6-41. 

b) Find A due to equal and opposite currents in a very long two-wire transmission 
line. 

c) Find B from A in part (b), and check your answer against the result obtained by 
applying Ampere's circuital law. 

d) Find the equation for the magnetic flux lines in the xy-plane. 

+ L 

O 

-L 

M 

■>y 

p(x,y,0) 
FIGURE 6-41 
Parallel wires carrying equal and opposite currents 
(Problem P.6-18). 
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P(x,y,z) 

FIGURE 6-42 
A small rectangular loop carrying a current / 
(Problem P.6-19). 

P.6-19 For the small rectangular loop with sides a and b that carries a current /, shown 
in Fig. 6-42: 

a) Find the vector magnetic potential A at a distant point, P{x, y, z). Show that it can 
be put in the form of Eq. (6-45). 

b) Determine the magnetic flux density B from A, and show that it is the same as that 
given in Eq. (6-48). 

P.6-20 For a vector field F with continuous first derivatives, prove that 

I )v{\ x F)dv= - A F x ds, 
where S is the surface enclosing the volume V. (Hint: Apply the divergence theorem to 
(F x C), where C is a constant vector.) 
P.6-21 A very large slab of material of thickness d lies perpendicularly to a uniform 
magnetic field of intensity H0 = azf/0. Ignoring edge effect, determine the magnetic field 
intensity in the slab: 

a) if the slab material has a permeability n, 
b) if the slab is a permanent magnet having a magnetization vector M( = azM;. 

P.6-22 A circular rod of magnetic material with permeability n is inserted coaxially in the 
long solenoid of Fig. 6-4. The radius of the rod, a, is less than the inner radius, b, of the 
solenoid. The solenoid's winding has n turns per unit length and carries a current I. 

a) Find the values of B, H, and M inside the solenoid for r < a and for a < r < b. 
b) What are the equivalent magnetization current densities Jm and Jms for the 

magnetized rod? 
P.6-23 The scalar magnetic potential, Vm, due to a current loop can be obtained by first 
dividing the loop area into many small loops and then summing up the contribution of 
these small loops (magnetic dipoles); that is, 

where 
dm = a„Ids. (6-223b) 

Prove that 
F"=-S"' (6-224) 

where Q is the solid angle subtended by the loop surface at the field point P (see Fig. 6-43). 
P.6-24 Do the following by using Eq. (6-224): 

a) Determine the scalar magnetic potential at a point on the axis of a circular loop 
having a radius b and carrying a current I 
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FIGURE 6-43 
Subdivided current loop for determination of 
scalar magnetic potential (Problem P.6-23). 

b) Obtain the magnetic flux density B from —fi0VVm, and compare the result with 
Eq. (6-38). 

P.6-25 Solve the cylindrical bar magnet problem in Example 6-9, using the equivalent 
magnetization current density concept. 
P.6-26 A ferromagnetic sphere of radius b is magnetized uniformly with a magnetization 
M = azM0. 

a) Determine the equivalent magnetization current densities Jm and Jms. 
b) Determine the magnetic flux density at the center of the sphere. 

P.6-27 A toroidal iron core of relative permeability 3000 has a mean radius R — 80 (mm) 
and a circular cross section with radius b = 25 (mm). An air gap {g = 3 (mm) exists, and a 
current / flows in a 500-turn winding to produce a magnetic flux of 10"5 (Wb). (See 
Fig. 6-44.) Neglecting flux leakage and using mean path length, find 

a) the reluctances of the air gap and of the iron core, 
b) Bg and H9 in the air gap, and Bc and Hc in the iron core, 
c) the required current I. 

3 (mm) 

25 (mm) 

FIGURE 6-44 
A toroidal iron core with air gap (Problem P.6-27). 
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0.24 (m) 

FIGURE 6-45 
A magnetic circuit with air gap (Problem P.6-28). 

P.6-28 Consider the magnetic circuit in Fig. 6-45. A current of 3 (A) flows through 200 
turns of wire on the center leg. Assuming the core to have a constant cross-sectional area 
of 10"3 (m2) and a relative permeability of 5000: 

a) Determine the magnetic flux in each leg. 
b) Determine the magnetic field intensity in each leg of the core and in the air gap. 

P.6-29 Consider an infinitely long solenoid with n turns per unit length around a 
ferromagnetic core of cross-sectional area S. When a current is sent through the coil to 
create a magnetic field, a voltage v1 = -ndO/dt is induced per unit length, which opposes 
the current change. Power P : = —vj per unit length must be supplied to overcome this 
induced voltage in order to increase the current to /. 

a) Prove that the work per unit volume required to produce a final magnetic flux 
density Bf is 

W1=\0
/HdB. (6-225) 

b) Assuming that the current is changed in a periodic manner such that B is reduced 
from Bf to - Bf and then is increased again to Bf, prove that the work done per 
unit volume for such a cycle of change in the ferromagnetic core is represented by 
the area of the hysteresis loop of the core material. 

P.6-30 Prove that the relation V x H = J leads to Eq. (6-111) at an interface between two 
media. 
P.6-31 What boundary conditions must the scalar magnetic potential Vm satisfy at an 
interface between two different magnetic media? 
P.6-32 Consider a plane boundary (y = 0) between air (region 1, /i r l = 1) and iron (region 
2, fir2 = 5000). 

a) Assuming Br = ax0.5 - a,10 (mT), find B2 and the angle that B2 makes with the 
interface. 

b) Assuming B2 = ax10 + a/). 5 (mT), find B : and the angle that B : makes with the 
normal to the interface. 

P.6-33 The method of images can also be applied to certain magnetostatic problems. 
Consider a straight, thin conductor in air parallel to and at a distance d above the plane 
interface of a magnetic material of relative permeability fir. A-current / flows in the 
conductor. 

a) Show that all boundary conditions are satisfied if 
i) the magnetic field in the air is calculated from / and an image current It, 

/ , = ur + l /, 

and these currents are equidistant from the interface and situated in air; 
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ii) the magnetic field below the boundary plane is calculated from I and -It, both 
at the same location. These currents are situated in an infinite magnetic material 
of relative permeability fir. 

b) For a long conductor carrying a current I and for fir» 1, determine the magnetic 
flux density B at the point P in Fig. 6-46. 

• P(x,y) 

m o — 
M herromagnciic medium ■ 

ifr » J) ■ 
FIGURE 6-46 
A current-carrying conductor near a ferromagnetic medium (Problem P.6-33). 

P.6-34 A very long conductor in free space carrying a current I is parallel to, and at a 
distance d from, an infinite plane interface with a medium. 

a) Discuss the behavior of the normal and tangential components of B and H at the 
interface: 
i) if the medium is infinitely conducting; 

ii) if the medium is infinitely permeable. 
b) Find and compare the magnetic field intensities H at an arbitrary point in the free 

space for the two cases in part (a). 
c) Determine the surface current densities at the interface, if any, for the two cases. 

P.6-35 Determine the self-inductance of a toroidal coil of N turns of wire wound on an air 
frame with mean radius r0 and a circular cross section of radius b. Obtain an approximate 
expression assuming b «r0. 
P.6-36 Refer to Example 6-16. Determine the inductance per unit length of the air coaxial 
transmission line assuming that its outer conductor is not very thin but is of a thickness d. 
P.6-37 Calculate the mutual inductance per unit length between two parallel two-wire 
transmission lines A-A' and B-B' separated by a distance D, as shown in Fig. 6-47. 
Assume the wire radius to be much smaller than D and the wire spacing d. 

-L 
V 
D 

Ae lA' 

FIGURE 6-47 
Coupled two-wire transmission lines (Problem P.6-37). 

P.6-38 Determine the mutual inductance between a very long, straight wire and a 
conducting equilateral triangular loop, as shown in Fig. 6-48. 
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FIGURE 6-48 
A long, straight wire and a conducting equilateral triangular loop 
(Problem P.6-38). 

P.6-39 Determine the mutual inductance between a very long, straight wire and a 
conducting circular loop, as shown in Fig. 6-49. 

© 
FIGURE 6-49 
A long, straight wire and a conducting circular loop (Problem P.6-39). 

P.6-40 Find the mutual inductance between two coplanar rectangular loops with parallel 
sides, as shown in Fig. 6-50. Assume that hx » h2 (h2 > w2 > d). 

-W\ 

t 
h2 

d w2 FIGURE 6-50 
Two coplanar rectangular loops, hx » h2 (Problem P.6-40). 
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P.6-41 Consider two coupled circuits, having self-inductances Lx and L2, that carry 
currents 1^ and I2, respectively. The mutual inductance between the circuits is M. 

a) Using Eq. (6-161), find the ratio IJI2 that makes the stored magnetic energy W2 
a minimum. 

b) Show that M < ^LVL2. 
P.6-42 Calculate the force per unit length on each of three equidistant, infinitely long, 
parallel wires 0.15 (m) apart, each carrying a current of 25 (A) in the same direction. Specify 
the direction of the force. 
P.6-43 The cross section of a long thin metal strip and a parallel wire is shown in Fig. 
6-51. Equal and opposite currents / flow in the conductors. Find the force per unit length 
on the conductors. 

0 / 

V 

D-
FIGURE 6-51 
Cross section of parallel strip and wire conductor (Problem P.6-43). 

P.6-44 Determine the force per unit length between two parallel, long, thin conducting 
strips of equal width w. The strips are at a distance d apart and carry currents I± and I2 in 
opposite directions as in Fig. 6-52. 

Current /, 
into paper 

Current Ij 
out of paper 

FIGURE 6-52 
Cross section of two parallel strips carrying opposite currents 
(Problem P.6-44). 

P.6-45 Refer to Problem 6-39 and Fig. 6-49. Find the force on the circular loop that is 
exerted by the magnetic field due to an upward current lx in the long straight wire. The 
circular loop carries a current I2 in the counterclockwise direction. 
P.6-46 The bar AA' in Fig. 6-53 serves as a conducting path (such as the blade of a circuit 
breaker) for the current / in two very long parallel lines. The lines have a radius b and 
are spaced at a distance d apart. Find the direction and the magnitude of the magnetic force 
on the bar. 

A 

A' 

FIGURE 6-53 
Force on end conducting bar 
(Problem P.6-46). 
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FIGURE 6-54 
A triangular loop in a uniform 
magnetic field (Problem P. 6-47). 

P.6-47 A d-c current / = 10 (A) flows in a triangular loop in the xy-plane as in Fig. 6-54. 
Assuming a uniform magnetic flux density B = â O.5 (T) in the region, find the forces and 
torque on the loop. The dimensions are in (cm). 
P.6-48 One end of a long air-core coaxial transmission line having an inner conductor of 
radius a and an outer conductor of inner radius b is short-circuited by a thin, tight-fitting 
conducting washer. Find the magnitude and the direction of the magnetic force on the 
washer when a current / flows in the line. 

P.6-49 Assuming that the circular loop in Problem P.6-45 is rotated about its horizontal 
axis by an angle a, find the torque exerted on the circular loop. 
P.6-50 A small circular turn of wire of radius rx that carries a steady current Ix is placed at 
the center of a much larger turn of wire of radius r2 (r2 » rx) that carries a steady current I2 
in the same direction. The angle between the normals of the two circuits is 9 and the small 
circular wire is free to turn about its diameter. Determine the magnitude and the direction 
of the torque on the small circular wire. 
P.6-51 A magnetized compass needle will line up with the earth's magnetic field. A small 
bar magnet (a magnetic dipole) with a magnetic moment 2 (A-m2) is placed at a distance 
0.15 (m) from the center of a compass needle. Assuming the earth's magnetic flux density at 
the needle to be 0.1 (mT), find the maximum angle at which the bar magnet can cause the 
needle to deviate from the north-south direction. How should the bar magnet be oriented? 
P.6-52 The total mean length of the flux path in iron for the electromagnet in Fig. 6-33 
is 3 (m), and the yoke-bar contact areas measure 0.01 (m2). Assuming the permeability of 
iron to be 4000^0 and each of air gaps to be 2 (mm), calculate the mmf needed to lift a total 
mass of 100 (kg). 
P.6-53 A current / flows in a long solenoid with n closely wound coil-turns per unit length. 
The cross-sectional area of its iron core, which has permeability fi, is S. Determine the force 
acting on the core if it is withdrawn to the position shown in Fig. 6-55. 

/ 

FIGURE 6-55 
A long solenoid with iron core partially 
withdrawn (Problem P.6-53). 



7 
Time-Varying Fields and 
Maxwell's Equations 

7—1 Introduction 

In constructing the electrostatic model we defined an electric field intensity vector, 
E, and an electric flux density (electric displacement) vector, D. The fundamental 
governing differential equations are 

V x E = 0, (3-5) 
V • D = p. (3-98) 

For linear and isotropic (not necessarily homogeneous) media, E and D are related 
by the constitutive relation 

D = €E. (3-102) 

For the magnetostatic model we defined a magnetic flux density vector, B, and 
a magnetic field intensity vector, H. The fundamental governing differential equations 
are 

V • B = 0, (6-6) 
V x H = J. (6-76) 

The constitutive relation for B and H in linear and isotropic media is 

H = - B. (6-80b) 
A4 

These fundamental relations are summarized in Table 7-1 . 
We observe that, in the static (non-time-varying) case, electric field vectors E and 

D and magnetic field vectors B and H form separate and independent pairs. In other 
words, E and D in the electrostatic model are not related to B and H in the magneto-
static model. In a conducting medium, static electric and magnetic fields may both 
exist and form an electromagnetostatic field (see the statement following Example 
5-4 on p. 215). A static electric field in a conducting medium causes a steady current 

307 
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TABLE 7-1 
Fundamental Relations for Electrostatic and Magnetostatic Models 

Fundamental 
Relations 

Governing equations 

Constitutive relations 
(linear and isotropic media) 

Electrostatic 
Model 

V x E = 0 
V D = p 

D = eE 

Magnetostatic 
Model 

V B - 0 
Vx H = J 

to flow that, in turn, gives rise to a static magnetic field. However, the electric field 
can be completely determined from the static electric charges or potential distribu
tions. The magnetic field is a consequence; it does not enter into the calculation of 
the electric field. 

In this chapter we will see that a changing magnetic field gives rise to an electric 
field, and vice versa. To explain electromagnetic phenomena under time-varying con
ditions, it is necessary to construct an electromagnetic model in which the electric 
field vectors E and D are properly related to the magnetic field vectors B and H. 
The two pairs of the governing equations in Table 7-1 must therefore be modified 
to show a mutual dependence between the electric and magnetic field vectors in the 
time-varying case. 

We will begin with a fundamental postulate that modifies the V x E equation in 
Table 7-1 and leads to Faraday's law of electromagnetic induction. The concepts of 
transformer emf and motional emf will be discussed. With the new postulate we will 
also need to modify the V x H equation in order to make the governing equations 
consistent with the equation of continuity (law of conservation of charge). The two 
modified curl equations together with the two divergence equations in Table 7-1 are 
known as Maxwell's equations and form the foundation of electromagnetic theory. 
The governing equations for electrostatics and magnetostatics are special forms of 
Maxwell's equations when all quantities are independent of time. Maxwell's equa
tions can be combined to yield wave equations that predict the existence of elec
tromagnetic waves propagating with the velocity of light. The solutions of the wave 
equations, especially for time-harmonic fields, will be discussed in this chapter. 

7™ 2 Faraday's Law of Electromagnetic Induction 

A major advance in electromagnetic theory was made by Michael Faraday, who, in 
1831, discovered experimentally that a current was induced in a conducting loop 
when the magnetic flux linking the loop changed. The quantitative relationship be
tween the induced emf and the rate of change of flux linkage, based on experimental 
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observation, is known as Faraday's law. It is an experimental law and can be con
sidered as a postulate. However, we do not take the experimental relation concerning 
a finite loop as the starting point for developing the theory of electromagnetic induc
tion. Instead, we follow our approach in Chapter 3 for electrostatics and in Chapter 
6 for magnetostatics by putting forth the following fundamental postulate and devel
oping from it the integral forms of Faraday's law. 

Fundamental Postulate for Electromagnetic Induction 

(7-1) 

Equation (7-1) expresses a point-function relationship; that is, it applies to every 
point in space, whether it be in free space or in a material medium. The electric field 
intensity in a region of time-varying magnetic flux density is therefore nonconservative 
and cannot be expressed as the gradient of a scalar potential. 

Taking the surface integral of both sides of Eq. (7-1) over an open surface and 
applying Stokes's theorem, we obtain 

, E • d€ = - f — • ds. (7-2) 
c Js dt 

Equation (7-2) is valid for any surface S with a bounding contour C, whether or 
not a physical circuit exists around C. Of course, in a field with no time variation, 
dB/dt = 0, Eqs. (7-1) and (7-2) reduce to Eqs. (3-5) and (3-8), respectively, for 
electrostatics. 

In the following subsections we discuss separately the cases of a stationary circuit 
in a time-varying magnetic field, a moving conductor in a static magnetic field, and 
a moving circuit in a time-varying magnetic field. 

7-2.1 A STATIONARY CIRCUIT IN A TIME-VARYING MAGNETIC FIELD 

For a stationary circuit with a contour C and surface S, Eq. (7-2) can be written as 

iE-de=-j,LB-ds- <7-3 ) 

If we define 

V = w E • d€ = emf induced in circuit with contour C (V) (7-4) 

and 
<D = ( B • ds = magnetic flux crossing surface S (Wb), (7-5) 



7 Time-Varying Fields and Maxwell's Equations 

then Eq. (7-3) becomes 

(7-6) 

Equation (7-6) states that the electromotive force induced in a stationary closed cir
cuit is equal to the negative rate of increase of the magnetic flux linking the cir
cuit. This is a statement of Faraday's law of electromagnetic induction. A time-rate 
of change of magnetic flux induces an electric field according to Eq. (7-3), even in the 
absence of a physical closed circuit. The negative sign in Eq. (7-6) is an assertion 
that the induced emf will cause a current to flow in the closed loop in such a direc
tion as to oppose the change in the linking magnetic flux. This assertion is known 
as Lenz's law. The emf induced in a stationary loop caused by a time-varying magne
tic field is a transformer emf. 

EXAMPLE 7-1 A circular loop of AT turns of conducting wire lies in the xy-plane with 
its center at the origin of a magnetic field specified by B = azB0 cos {nr/2b) sin cot, 
where b is the radius of the loop and co is the angular frequency. Find the emf induced 
in the loop. 

Solution The problem specifies a stationary loop in a time-varying magnetic field; 
hence Eq. (7-6) can be used directly to find the induced emf, TT. The magnetic flux 
linking each turn of the circular loop is 

* = J> ds 

J: nr azB0 cos — sin cot 
2b 

(az2nr dr) 

Sb: 

= 1 ^ - 1 )B0 sin cot. 

Since there are N turns, the total flux linkage is N<S), and we obtain 

r = -N — 

dt 

= _ 5 ^ b2(- - UB0co cos cot (V). 
The induced emf is seen to be 90° out of time phase with the magnetic flux. 

7-2.2 TRANSFORMERS 

A transformer is an alternating-current (a-c) device that transforms voltages, currents, 
and impedances. It usually consists of two or more coils coupled magnetically through 
a common ferromagnetic core, such as that sketched in Fig. 7-1 . Faraday's law of 
electromagnetic induction is the principle of operation of transformers. 
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For the closed path in the magnetic circuit in Fig. 7-1(a) traced by magnetic 
flux $, we have, from Eq. (6-101), 

Nih - N2i2 = M$>, (7-7) 

where Nu N2 and iu i2 are the numbers of turns and the currents in the primary 
and secondary circuits, respectively, and 0t denotes the reluctance of the magnetic 
circuit. In Eq. (7-7) we have noted, in accordance with Lenz's law, that the induced 
mmf in the secondary circuit, N2i2, opposes the flow of the magnetic flux 0 created 
by the mmf in the primary circuit, NJV From Section 6-8 we know that the reluctance 
of the ferromagnetic core of length *f, cross-sectional area S, and permeability n is 

(7-8) 

(a) Schematic diagram of a transformer. 

o* 

HV," N^ *2 _ * 2 i2 '1 "2 prAAAr^TTF^n 

r___tj 
Ideal transformer 

(b) An equivalent circuit. 

FIGURE 7-1 
Schematic diagram and equivalent circuit of a transformer. 

* L < v2 
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Substituting Eq. (7-8) in Eq. (7-7), we obtain 

N1i1-N2i2=~®. 
US (7-9) 

a) Ideal transformer. For an ideal transformer we assume that n -> oo, and Eq. (7-9) 
becomes 

(7-10) 

Equation (7-10) states that the ratio of the currents in the primary and secondary 
windings of an ideal transformer is equal to the inverse ratio of the numbers of 
turns. Faraday's law tells us that 

and 

V2 = N2W 

(7-11) 

(7-12) 

the proper signs for v1 and v2 having been taken care of by the designated polari
ties in Fig. 7-1(a). From Eqs. (7-11) and (7-12) we have 

(7-13) 

Thus, the ratio of the voltages across the primary and secondary windings of an 
an ideal transformer is equal to the turns ratio. 

When the secondary winding is terminated in a load resistance RL, as shown 
in Fig. 7-1(a), the effective load seen by the source connected to primary winding 
is 

, „ , _»i_ (NJN2)v2 

or 

(7-14a) 

which is the load resistance multiplied by the square of the turns ratio. For a 
sinusoidal source v^t) and a load impedance ZL, it is obvious that the effective 
load seen by the source is (N1/N2)2ZL, an impedance transformation. We have 

(7-14b) 
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b) Real transformer. Referring back to Eq. (7-9), we can write the magnetic flux 
linkages of the primary and secondary windings as 

Ai = N& = If (NJH - N.N^l (7-15) 

A2 = N2Q = ̂  (N.N.i, - N\i2). (7-16) 

Using Eqs. (7-15) and (7-16) in Eqs. (7-11) and (7-12), we obtain 

Vl=Ll--L12-, (7-17) 

where 

di1 

L1 = 

L2-

L 1 2 : 

us 
= ~7 

~7~ 

-L2 

Nl 

Nh 

N±N 

di2 

dt 
(7-18) 

(7-19) 

(7-20) 

(7-21) 

are the self-inductance of the primary winding, the self-inductance of the secondary 
winding, and the mutual inductance between the primary and secondary windings, 
respectively. For an ideal transformer there is no leakage flux, and L12 = y/L1L2. 
For real transformers, 

L12 = ky/L^, k<l, (7-22) 

where k is called the coefficient of coupling. We see that the expressions in Eqs. 
(7-19), (7-20), and (7-21) are consistent with the inductance per unit length 
formula, Eq. (6-135), for a long solenoid. In both cases we assume no leakage 
flux. Note that the assumption of an infinite ix for an ideal transformer also 
implies infinite inductances. 

For real transformers we have the following real-life conditions: the existence 
of leakage flux (k < 1), noninfinite inductances, nonzero winding resistances, and 
the presence of hysteresis and eddy-current losses. (Eddy-current losses will be 
discussed presently.) The nonlinear nature of the ferromagnetic core (the depen
dence of permeability on magnetic field intensity) further compounds the difficulty 
of an exact analysis of real transformers. Figure 7-1(b) is an approximate equiv
alent circuit for the transformer in Fig. 7-1(a). In Fig. 7-1(b). R1 and R2 are 
winding resistances, X1 and X2 are leakage inductive reactances, Rc represents 
the power loss due to hysteresis and eddy-current effects, and Xc is a nonlinear 
inductive reactance representing the nonlinear magnetization behavior of the 
ferromagnetic core. Analytical determination of these quantities is an exceedingly 
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® ® 0 0 

© 0 0 0 

FIGURE 7-2 
® ® ® B ® A conducting bar moving in a magnetic field. 

difficult task. The two dots appearing on the winding terminals of the ideal trans
former indicate that the potentials of these terminals rise and fall together due to 
electromagnetic induction. This dot convention is a simple way of showing the 
relative sense of the windings on the transformer core.1, 

When time-varying magnetic flux flows in the ferromagnetic core, an induced 
emf will result in accordance with Faraday's law. This induced emf will produce 
local currents in the conducting core normal to the magnetic flux. These cur
rents are called eddy currents. Eddy currents produce ohmic power loss and 
cause local heating. As a matter of fact, this is the principle of induction heating. 
Induction furnaces have been built to produce high enough temperatures to melt 
metals. In transformers this eddy-current power loss is undesirable and can be 
reduced by using core materials that have high permeability but low conductivity 
(high /a and low <r). Ferrites are such materials. For low-frequency, high-power 
applications an economical way for reducing eddy-current power loss is to use 
laminated cores; that is, to make transformer cores out of stacked ferromagnetic 
(iron) sheets, each electrically insulated from its neighbors by thin varnish or 
oxide coatings. The insulating coatings are parallel to the direction of the magnetic 
flux so that eddy currents normal to the flux are restricted to the laminated 
sheets. It can be proved that the total eddy-current power loss decreases as the 
number of laminations increases. (See Problem P.7-6.) The amount of power-loss 
reduction depends on the shape and size of the cross section as well as on the 
method of lamination. For instance, the circular core in Fig. 7-12(a) could also 
be laminated into stacked insulated sheets, instead of the filamentary parts shown 
in Fig. 7-12(b). 

When a conductor moves with a velocity u in a static (non-time-varying) magnetic 
field B as shown in Fig. 7-2, a force Fm = qu x B will cause the freely movable 

* See, for instance, D. K. Cheng, Analysis of Linear Systems, Addison-Wesley, Reading, Mass. 1959, p. 50. 
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electrons in the conductor to drift toward one end of the conductor and leave the 
other end positively charged. This separation of the positive and negative charges 
creates a Coulombian force of attraction. The charge-separation process continues 
until the electric and magnetic forces balance each other and a state of equilibrium 
is reached. At equilibrium, which is reached very rapidly, the net force on the free 
charges in the moving conductor is zero. 

To an observer moving with the conductor there is no apparent motion, and the 
magnetic force per unit charge ¥Jq = u x B can be interpreted as an induced elec
tric field acting along the conductor and producing a voltage 

V21 = H (u x B) • d€. (7-23) 

If the moving conductor is a part of a closed circuit C, then the emf generated around 
the circuit is 

•V = <p (u x B) d€ (V). (7-24) 

This is referred to as a flux cutting emf or a motional emf. Obviously, only the part 
of the circuit that moves in a direction not parallel to (and hence, figuratively, "cut
ting") the magnetic flux will contribute to "V' in Eq. (7-24). 

EXAMPLE 7-2 A metal bar slides over a pair of conducting rails in a uniform 
magnetic field B = azB0 with a constant velocity u, as shown in Fig. 7-3. 

a) Determine the open-circuit voltage V0 that appears across terminals 1 and 2. 
b) Assuming that a resistance R is connected between the terminals, find the electric 

power dissipated in R. 
c) Show that this electric power is equal to the mechanical power required to move 

the sliding bar with a velocity u. Neglect the electric resistance of the metal bar 
and of the conducting rails. Neglect also the mechanical friction at the contact 
points. 

FIGURE 7-3 
^x A metal bar sliding over conducting rails 

(Example 7-2). 
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Solution 

a) The moving bar generates a flux-cutting emf. We use Eq. (7-24) to find the 
open-circuit voltage V0: 

(7-25) 

V0=V1-V2 = yc(uxB)-d€ 

= £(*JiXtLjB0)-(*,df) 
= -uB0h (V). 

b) When a resistance R is connected between terminals 1 and 2, a current / = uB0h/R 
will flow from terminal 2 to terminal 1, so the electric power, Pe, dissipated 
in R is 

R 
(7-26) 

c) The mechanical power, Pm, required to move the sliding bar is 
Pm = F • u (W), (7-27) 

where F is the mechanical force required to counteract the magnetic force, Fm, 
which the magnetic field exerts on the current-carrying metal bar. From Eq. 
(6-184) we have 

Fm = / J2
r d€ x B = -*JB0h (N). (7-28) 

The negative sign in Eq. (7-28) arises because current / flows in a direction 
opposite to that of d€. Hence, 

F = - Fm = axIB0h = axiiB2
0h2/R (N). (7-29) 

Substitution of Eq. (7-29) in Eq. (7-27) proves that Pm = Pe, which upholds the 
principle of conservation of energy. nun 

EXAMPLE 7-3 The Faraday disk generator consists of a circular metal disk rotat
ing with a constant angular velocity oo in a uniform and constant magnetic field of 

1 

+1 
© 

i' 

2 2' 

FIGURE 7-4 
Faraday disk generator (Example 7-3). 
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flux density B = azB0 that is parallel to the axis of rotation. Brush contacts are 
provided at the axis and on the rim of the disk, as depicted in Fig. 7-4. Determine 
the open-circuit voltage of the generator if the radius of the disk is b. 

Solution Let us consider the circuit 122'341'1. Of the part 2'34 that moves with the 
disk, only the straight portion 34 "cuts" the magnetic flux. We have, from Eq. (7-24), 

V0 = (J) (u x B) • d€ 

= £ [(a/o;) x az2?0] • ( a > ) (7-30) 

= » B 0 j > r = - ^ (V), 

which is the emf of the Faraday disk generator. To measure V0, we must use a 
voltmeter of a very high resistance so that no appreciable current flows in the circuit 
to modify the externally applied magnetic field. n i 

7-2.4 A MOVING CIRCUIT IN A TIME-VARYING MAGNETIC FIELD 

When a charge q moves with a velocity u in a region where both an electric field E 
and a magnetic field B exist, the electromagnetic force F on q, as measured by a 
laboratory observer, is given by Lorentz's force equation, Eq. (6-5), which is repeated 
below: 

F = q(E + u x B). (7-31) 

To an observer moving with q , there is no apparent motion, and the force on q can 
be interpreted as caused by an electric field E', where 

E' = E + u x B (7-32) 
or 

E = E' - u x B. (7-33) 
Hence, when a conducting circuit with contour C and surface S moves with a velocity 
u in a field (E, B), we use Eq. (7-33) in Eq. (7-2) to obtain 

iE''d'--LdI'ds+i{uxB)'d' (v)- (7-34) 

Equation (7-34) is the general form of Faraday's law for a moving circuit in a time-
varying magnetic field. The line integral on the left side is the emf induced in the 
moving frame of reference. The first term on the right side represents the transformer 
emf due to the time variation of B; and the second term represents the motional 
emf due to the motion of the circuit in B. The division of the induced emf between 
the transformer and the motional parts depends on the chosen frame of reference. 
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FIGURE 7-5 
A moving circuit in a time-varying magnetic field. 

Let us consider a circuit with contour C that moves from C1 at time t to C2 at 
time t + At in a changing magnetic field B. The motion may include translation, 
rotation, and distortion in an arbitrary manner. Figure 7-5 illustrates the situation. 
The time-rate of change of magnetic flux through the contour is 

dt Js dt dt 

= lim — 
A/-0 At 

js2 B(t + At) • ds2 - j s i B(t) • ds1 

(7-35) 

B(t + At) in Eq. (7-35) can be expanded as a Taylor's series: 

B{t + At) = B{t) + ^ At + H.O.T, dt (7-36) 

where the higher-order terms (H.O.T.) contain the second and higher powers of (At). 
Substitution of Eq. (7-36) in Eq. (7-35) yields 

4- f B • ds = f ^ • ds + lim - U f B • ds2 - f B • ds, + H.O.T. 
dt Js Js dt A/-O At Js2

 2 JSi
 1 

(7-37) 

where B has been written for B{t) for simplicity. In going from Ct to C2 the circuit 
covers a region that is bounded by Sl9 S2, and S3. Side surface S3 is the area swept 
out by the contour in time At. An element of the side surface is 

ds, = dt x u At. (7-38) 

We now apply the divergence theorem for B at time t to the region sketched in 
Fig. 7-5: 

f \-Bdv= f B - d s 2 - f B - d S i + f B • ds3, (7-39) 
JV JS2 JSi *JSi 

where a negative sign is included in the term involving dst because outward normals 
must be used in the divergence theorem. Using Eq. (7-38) in Eq. (7-39) and noting 
that V • B = 0, we have 

JS2 B • ds2 - ^ B • ds1 = -At j)c (u x B) • d€. (7-40) 
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Combining Eqs. (7-37) and (7-40), we obtain 

d r _ , r dB f B • ds = f 
Js Js dtJs- - Jsdt * - & < » > < B ) - « . 

which can be identified as the negative of the right side of Eq. (7-34). 
If we designate 

(7-41) 

r' = (pc E' • d€ 
= emf induced in circuit C measured in the moving frame, 

Eq. (7-34) can be written simply as 

(7-42) 

f ' = -is.-* 
-f « 

(7-43) 

which is of the same form as Eq. (7-6). Of course, if a circuit is not in motion, y 
reduces to y, and Eqs. (7-43) and (7-6) are exactly the same. Hence, Faraday's 
law that the emf induced in a closed circuit equals the negative time-rate of increase 
of the magnetic flux linking a circuit applies to a stationary circuit as well as a 
moving one. Either Eq. (7-34) or Eq. (7-43) can be used to evaluate the induced 
emf in the general case. If a high-impedance voltmeter is inserted in a conducting 
circuit, it will read the open-circuit voltage due to electromagnetic induction whether 
the circuit is stationary or moving. We have mentioned that the division of the 
induced emf in Eq. (7-34) into transformer and motional emf's is not unique, but 
their sum is always equal to that computed by using Eq. (7-43). 

In Example 7-2 (Fig. 7-3) we determined the open-circuit voltage V0 by using 
Eq. (7-24). If we use Eq. (7-43), we have 

and 
O = f B • ds = B0{hut) 

V0=-—=-uB0h (V), 

which is the same as Eq. (7-25). 
Similarly, for the Faraday disk generator in Example 7-3 the magnetic flux 

linking the circuit 122'341'1 is that which passes through the wedge-shaped area 
2'342': 

O = $,*'* = »<>&£''+* 
= B0{cot) — 
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(a) Perspective view. 
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(b) View from +x direction. 

FIGURE 7-6 
A rectangular conducting loop rotating in a changing magnetic field (Example 7-4). 

and 

dt 
coB0b: 

which is the same as Eq. (7-30). 

EXAMPLE 7-4 An h by w rectangular conducting loop is situated in a changing mag
netic field B = ayB0 sin cot. The normal of the loop initially makes an angle a with 
ay, as shown in Fig. 7-6. Find the induced emf in the loop: (a) when the loop is at 
rest, and (b) when the loop rotates with an angular velocity co about the x-axis. 

a) When the loop is at rest, we use Eq. (7-6): 

0> = J B • ds 
= (a^o sin cot) • (a„hw) 
= B0hw sin cot cos a. 

Therefore, 
d$ 

V = — — = —BQSCO COS cot cos a, 
dt 

(7-44) 
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where S = hw is the area of the loop. The relative polarities of the terminals are 
as indicated. If the circuit is completed through an external load, "Va will produce 
a current that will oppose the change in O. 

b) When the loop rotates about the x-axis, both terms in Eq. (7-34) contribute: 
the first term contributes the transformer emf "Va in Eq. (7-44), and the second 
term contributes a motional emf V' where 

r' = ; = | c ( u x B ) - d€ -i 
+ i: 

a„ — co ] x {nyB0 sin cot) 

w - a „ - c o ) x (ayB0 sin cot) (nxdx) 

= 2l — coB0 sin cot sin a \h. 

Note that the sides 23 and 41 do not contribute to y'a and that the contribu
tions of sides 12 and 34 are of equal magnitude and in the same direction. If 
a = 0 at t = 0, then a = cot, and we can write 

y'a = B0S<D sin (at sin cot. (7-45) 

The total emf induced or generated in the rotating loop is the sum of ir
a in 

Eq. (7-44) and r'a in Eq. (7-45): 

yt = -B0So)(cos2 cot - sin2 cot) = -B0Sco cos 2cot, (7-46) 

which has an angular frequency 2co. 
We can determine the total induced emf Y't by applying Eq. (7-43) directly. 

At any time t, the magnetic flux linking the loop is 

d>(t) = B(t) • [a„(t)S] = B0S sin cot cos a 
= B0S sin cot cos cot = ^B0S sin 2cot. 

Hence, 

as before. 

r\ = ~ = -~ (\ B0S sin 2cot 1 dt dt\2 
= —B0Sco cos 2cot 

■3 Maxwell's Equations 

The fundamental postulate for electromagnetic induction assures us that a time-
varying magnetic field gives rise to an electric field. This assurance has been amply 
verified by numerous experiments. The V x E = 0 equation in Table 7-1 must there
fore be replaced by Eq. (7-1) in the time-varying case. Following are the revised 
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set of two curl and two divergence equations from Table 7-1: 

^ ^ SB 
V x E = - _ , (7.47a) 

V x H - J, (7-47b) 
V • D = p, (7-47c) 
V • B = 0. (7-47d) 

In addition, we know that the principle of conservation of charge must be satisfied 
at all times. The mathematical expression of charge conservation is the equation of 
continuity, Eq. (5-44), which is repeated below: 

V - J = 
dp_ 
dt 

(7-48) 

The crucial question here is whether the set of four equations in (7-47a, b, c, and d) 
are now consistent with the requirement specified by Eq. (7-48) in a time-varying 
situation. That the answer is in the negative is immediately obvious by simply taking 
the divergence of Eq. (7-47b), 

V • (V x H) = 0 = V • J, (7-49) 

which follows from the null identity, Eq. (2-149). We are reminded that the diver
gence of the curl of any well-behaved vector field is zero. Since Eq. (7-48) asserts 
that V • J does not vanish in a time-varying situation, Eq. (7-49) is, in general, not 
true. 

How should Eqs. (7-47a, b, c, and d) be modified so that they are consistent 
with Eq. (7-48)? First of all, a term dp/dt must be added to the right side of Eq. (7-49): 

( V x H ) = 0 = V - J + | . 

Using Eq. (7-47c) in Eq. (7-50), we have 

V • (V x H) = V 

which implies that 
'*¥} 

(7-50) 

(7-51) 

(7-52)* 

Equation (7-52) indicates that a time-varying electric field will give rise to a magnetic 
field, even in the absence of a current flow. The additional term dD/dt is necessary 
to make Eq. (7-52) consistent with the principle of conservation of charge. 

t An integration constant could be added to Eq. (7-52) without violating Eq. (7-51), but this constant 
must be zero in order that Eq. (7-52) reduces to Eq. (7-47b) in the static case. 
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It is easy to verify that dD/dt has the dimension of a current density (SI unit: 
A/m2). The term dB/dt is called displacement current density, and its introduction in 
the V x H equation was one of the major contributions of James Clerk Maxwell 
(1831-1879). In order to be consistent with the equation of continuity in a time-
varying situation, both of the curl equations in Table 7-1 must be generalized. The 
set of four consistent equations to replace the inconsistent equations, Eqs. (7-47a, 
b, c, and d), are 

(7-53a) 

(7-53b) 

(7-53c) 
(7-53d) 

They are known as Maxwell's equations. Note that p in Eq. (7-53c) is the volume 
density of free charges, and J in Eq. (7-53b) is the density of free currents, which 
may comprise both convection current (pu) and conduction current (cE). These four 
equations, together with the equation of continuity in Eq. (7-48) and Lorentz's force 
equation in Eq. (6-5), form the foundation of electromagnetic theory. These equa
tions can be used to explain and predict all macroscopic electromagnetic phenomena. 

Although the four Maxwell's equations in Eqs. (7-53a, b, c, and d) are consis
tent, they are not all independent. As a matter of fact, the two divergence equations, 
Eqs. (5-53c and d), can be derived from the two curl equations, Eqs. (7-53a and b), 
by making use of the equation of continuity, Eq. (7-48) (see Problem P.7-11). The 
four fundamental field vectors E, D, B, H (each having three components) represent 
twelve unknowns. Twelve scalar equations are required for the determination of these 
twelve unknowns. The required equations are supplied by the two vector curl equa
tions and the two vector constitutive relations D = eE and H = B//i, each vector 
equation being equivalent to three scalar equations. 

7-3.1 INTEGRAL FORM OF MAXWELL'S EQUATIONS 

The four Maxwell's equations in (7-53a, b, c, and d) are differential equations that 
are valid at every point in space. In explaining electromagnetic phenomena in a 
physical environment we must deal with finite objects of specified shapes and bound
aries. It is convenient to convert the differential forms into their integral-form 
equivalents. We take the surface integral of both sides of the curl equations in Eqs. 
(7-53a) and (7-53b) over an open surface S with a contour C and apply Stokes's 
theorem to obtain 

Vx 

Vx 

V-
V 

E = 

H = 

D = 
•B = 

dB 
"~ aT 

T 5D 

= p, 
= 0. 

(£ E ■ <tf = - f — • ds Jc Js dt (7-54a) 
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and 

(7-54b) 

Taking the volume integral of both sides of the divergence equations in Eqs. (7-53c) 
and (7-53d) over a volume V with a closed surface S and using divergence theorem, 
we have 

&D-ds = j pdv 

and 

(7-54c) 

(7-54d) 

The set of four equations in (7-54a, b, c, and d) are the integral form of Max
well's equations. We see that Eq. (7-54a) is the same as Eq. (7-2), which is an ex
pression of Faraday's law of electromagnetic induction. Equation (7-54b) is a gener
alization of Ampere's circuital law given in Eq. (6-78), the latter applying only to static 
magnetic fields. Note that the current density J may consist of a convection current 
density pu due to the motion of a free-charge distribution, as well as a conduction 
current density CTE caused by the presence of an electric field in a conducting medium. 
The surface integral of J is the current / flowing through the open surface S. 

Equation (7-54c) can be recognized as Gauss's law, which we used extensively 
in electrostatics and which remains the same in the time-varying case. The volume 
integral of p equals the total charge Q that is enclosed in surface S. No particular 
law is associated with Eq. (7-54d); but, in comparing it with Eq. (7-54c) we conclude 
that there are no isolated magnetic charges and that the total outward magnetic 
flux through any closed surface is zero. Both the differential and the integral forms 

TABLE 7-2 
Maxwell's Equations 

Differential Form 

SB 
V x E = - — 

dt 
5D 

V x H = J + — 
dt 

V - D = p 

V - B = 0 

§c* 

iH 

& D 

& B 

Integral Form 

d® 
dt 

d€ = I + — 
J* dt 

■ds = Q 

■ds = 0 

ds 

Significance 

Faraday's law 

Ampere's circuital law 

Gauss's law 

No isolated magnetic charge 
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of Maxwell's equations are collected in Table 7-2 for easy reference. It is obvious 
that in non-time-varying cases these equations simplify to the fundamental relations 
in Table 7-1 for electrostatic and magnetostatic models. 

EXAMPLE 7-5 An a-c voltage source of amplitude V0 and angular frequency co, vc = 
V0 sin cot, is connected across a parallel-plate capacitor C l5 as shown in Fig. 7-7. 
(a) Verify that the displacement current in the capacitor is the same as the conduc
tion current in the wires, (b) Determine the magnetic field intensity at a distance r 
from the wire. 

a) The conduction current in the connecting wire is 
dvc 

ic = C1 — = C1 V0co cos cot (A). 

For a parallel-plate capacitor with an area A, plate separation d, and a dielectric 
medium of permittivity e the capacitance is 

With a voltage vc appearing between the plates, the uniform electric field intensity 
E in the dielectric is equal to (neglecting fringing effects) E = vc/d, whence 

D = eE = e -j- sin cot. 
d 

The displacement current is then 

dD , (A 
)A dt ^-l ds = I e '-^ ) V0co cos cot 

= Cx V0co cos cot = ic. Q.E.D. 

b) The magnetic field intensity at a distance r from the conducting wire can be 
found by applying the generalized Ampere's circuital law, Eq. (7-54b), to contour 

+ <st FIGURE 7-7 
A parallel-plate capacitor connected to an a-c voltage source 
(Example 7-5). 
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C in Fig. 7-7. Two typical open surfaces with rim C may be chosen: (1) a planar 
disk surface S ls or (2) a curved surface S2 passing through the dielectric medium. 
Symmetry around the wire ensures a constant H^ along the contour C. The line 
integral on the left side of Eq. (7-54b) is 

c Q 

For the surface Sl5 only the first term on the right side of Eq. (7-54b) is nonzero 
because no charges are deposited along the wire and, consequently, D = 0. 

L , J • ds = ic = C-^VQO) COS cot. 

Since the surface S2 passes through the dielectric medium, no conduction current 
flows through S2. If the second surface integral were not there, the right side of 
Eq. (7-54b) would be zero. This would result in a contradiction. The inclusion 
of the displacement-current term by Maxwell eliminates this contradiction. As 
we have shown in part (a), iD = ic. Hence we obtain the same result whether 
surface St or surface S2 is chosen. Equating the two previous integrals, we find 
that 

C V 
H^ = —̂—̂  a) cos cot (A/m). 

2nr tags] 

7 - 4 Potential Functions 

In Section 6-3 the concept of the vector magnetic potential A was introduced 
because of the solenoidal nature of B (V • B = 0): 

B - V x A (T). (7-55) 

If Eq. (7-55) is substituted in the differential form of Faraday's law, Eq. (7-1), we 
get 

V x E = - — (V x A) 
dt 

or 

V x ( E + | ) = a (7-56) 

Since the sum of the two vector quantities in the parentheses of Eq. (7-56) is curl-
free, it can be expressed as the gradient of a scalar. To be consistent with the defini
tion of the scalar electric potential V in Eq. (3-43) for electrostatics, we write 

E + ^ = - W , 
dt 
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from which we obtain 

I d A I 
(7-57) 

In the static case, dA/dt = 0, and Eq. (7-57) reduces to E = -\V. Hence E can 
be determined from V alone, and B from A by Eq. (7-55). For time-varying fields, 
E depends on both V and A; that is, an electric field intensity can result both from 
accumulations of charge through the —\V term and from time-varying magnetic 
fields through the —dA/dt term. Inasmuch as B also depends on A, E and B are 
coupled. 

The electric field in Eq. (7-57) can be viewed as composed of two parts: the first 
part, — \V, is due to charge distribution p; and the second part, —dA/dt, is due to 
time-varying current J. We are tempted to find V from p by Eq. (3-61): 

and to find A by Eq. (6-23): 

V = -J— f £ dvf, (7-58) 
4ne0 Jv R 

A = ̂ f Uv'. (7-59) 
4n Jv R 

However, the preceding two equations were obtained under static conditions, and V 
and A as given were, in fact, solutions of Poisson's equations, Eqs. (4-6) and (6-21), 
respectively. These solutions may themselves be time-dependent because p and J may 
be functions of time, but they neglect the time-retardation effects associated with 
the finite velocity of propagation of time-varying electromagnetic fields. When p and 
J vary slowly with time (at a very low frequency) and the range of interest R is small 
in comparison with the wavelength, it is allowable to use Eqs. (7-58) and (7-59) in 
Eqs. (7-55) and (7-57) to find quasi-static fields. We will discuss this again in 
Subsection 7-7.2. 

Quasi-static fields are approximations. Their consideration leads from field 
theory to circuit theory. However, when the source frequency is high and the range 
of interest is no longer small in comparison to the wavelength, quasi-static solutions 
will not suffice. Time-retardation effects must then be included, as in the case of 
electromagnetic radiation from antennas. These points will be discussed more fully 
when we study solutions to wave equations. 

Let us substitute Eqs. (7-55) and (7-57) into Eq. (7-53b) and make use of the 
constitutive relations H = B//j, and D = eE. We have 

V x V x A = ^J + ^ - ( - V K - ^ l (7-60) 
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where a homogeneous medium has been assumed. Recalling the vector identity for 
V x V x A in Eq. (6-17a), we can write Eq. (7-60) as 

d2A 

or 

v 2 A - / ^ ^ 2 - = - / i J + v ( v - A + / i e ^ ) . (7-61) 

V(V • A) - V2A = /jJ- Vhi€ d-~\ - lie 

dt dt 

Now, the definition of a vector requires the specification of both its curl and its 
divergence. Although the curl of A is designated B in Eq. (7-55), we are still at 
liberty to choose the divergence of A. We let 

V • A + pie — = 0, 
dt 

(7-62) 

which makes the second term on the right side of Eq. (7-61) vanish, so we obtain 

(7-63) 

Equation (7-63) is the nonhomogeneous wave equation for vector potential A. It is 
called a wave equation because its solutions represent waves traveling with a velocity 
equal to 1/V^ui. This will become clear in Section 7-6 when the solution of wave 
equations is discussed. The relation between A and V in Eq. (7-62) is called the 
Lorentz condition (or Lorentz gauge) for potentials. It reduces to the condition 
V • A = 0 in Eq. (6-20) for static fields. The Lorentz condition can be shown to be 
consistent with the equation of continuity (Problem P.7-12). 

A corresponding wave equation for the scalar potential V can be obtained by 
substituting Eq. (7-57) in Eq. (7-53c). We have 

- V < ( V K + £ | = , . 

which, for a constant e, leads to 

\2V + -(\-A)= -l-
dt i 

Using Eq. (7-62), we get 

(7-64) 

(7-65) 

which is the nonhomogeneous wave equation for scalar potential V. Hence the Lorentz 
condition in Eq. (7-62) uncouples the wave equations for A and for V. The non-
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homogeneous wave equations in (7-63) and (7-65) reduce to Poisson's equations in 
static cases. Since the potential functions given in Eqs. (7-58) and (7-59) are solutions 
of Poisson's equations, they cannot be expected to be the solutions of nonhomoge-
neous wave equations in time-varying situations without modification. 

7—5 Electromagnetic Boundary Conditions 

In order to solve electromagnetic problems involving contiguous regions of different 
constitutive parameters, it is necessary to know the boundary conditions that the 
field vectors E, D, B, and H must satisfy at the interfaces. Boundary conditions are 
derived by applying the integral form of Maxwell's equations (7-54a, b, c, and d) to 
a small region at an interface of two media in manners similar to those used in obtain
ing the boundary conditions for static electric and magnetic fields. The integral 
equations are assumed to hold for regions containing discontinuous media. The 
reader should review the procedures followed in Sections 3-9 and 6-10. In gen
eral, the application of the integral form of a curl equation to a flat closed path at 
a boundary with top and bottom sides in the two touching media yields the boundary 
condition for the tangential components; and the application of the integral form 
of a divergence equation to a shallow pillbox at an interface with top and bottom 
faces in the two contiguous media gives the boundary condition for the normal 
components. 

The boundary conditions for the tangential components of E and H are obtained 
from Eqs. (7-54a) and (7-54b), respectively: 

EU = E it (V/m); (7-66a) 

a„2 x (Hi - H2) = J s (A/m). (7-66b) 

We note that Eqs. (7-66a) and (7-66b) for the time-varying case are exactly the same 
as Eq. (3-118) for static electric fields and Eq. (6-111) for static magnetic fields, re
spectively, in spite of the existence of the time-varying terms in Eqs. (7-54a) and 
(7-54b). The reason is that, in letting the height of the flat closed path (abcda in 
Figs. 3-23 and 6-19) approach zero, the area bounded by the path approaches zero, 
causing the surface integrals of dB/dt and dD/dt to vanish. 

Similarly, the boundary conditions for the normal components of D and B are 
obtained from Eqs. (7-54c) and (7-54d): 

a„2 • (Dx - D2) = ps (C/m2); (7-66c) 

Bln = B2n (T). (7-66d) 
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These are the same as, respectively, Eq. (3-12la) for static electric fields and Eq. 
(6-107) for static magnetic fields because we start from the same divergence equations. 

We can make the following general statements about electromagnetic boundary 
conditions: 

1. The tangential component of an E field is continuous across an interface. 
2. The tangential component of an H field is discontinuous across an interface where a 

surface current exists, the amount of discontinuity being determined by Eq. (7-66b). 
3. The normal component of a D field is discontinuous across an interface where 

a surface charge exists, the amount of discontinuity being determined by Eq. 
(7-66c). 

4. The normal component ofaB field is continuous across an interface. 

As we have noted previously, the two divergence equations can be derived from the 
two curl equations and the equation of continuity; hence, the boundary conditions in 
Eqs. (7-66c) and (7-66d), which are obtained from the divergence equations, cannot 
be independent from those in Eqs. (7-66a) and (7-66b), which are obtained from the 
curl equations. As a matter of fact, in the time-varying case the boundary condition 
for the tangential component of E in Eq. (7-66a) is equivalent to that for the normal 
component of B in Eq. (7-66d), and the boundary condition for the tangential com
ponent of H in Eq. (7-66b) is equivalent to that for the normal component of D in 
Eq. (7-66c). The simultaneous specification of the tangential component of E and 
the normal component of B at a boundary surface in a time-varying situation, for 
example, would be redundant and, if we are not careful, could result in contradictions. 

We now examine the important special cases of (1) a boundary between two loss
less linear media, and (2) a boundary between a good dielectric and a good conductor. 

7-5.1 INTERFACE BETWEEN TWO LOSSLESS LINEAR MEDIA 

A lossless linear medium can be specified by a permittivity e and a permeability fi, 
with (7 = 0. There are usually no free charges and no surface currents at the interface 
between two lossless media. We set ps = 0 and J s = 0 in Eqs. (7-66a, b, c, and d) and 
obtain the boundary conditions listed in Table 7-3. 

TABLE 7-3 
Boundary Conditions between 
Two Lossless Media 

F -F ^!hl-h 
U2t 6 2 

Dln - D2n -> e l ^ l « - e 2 £ 2 « 
Bln = B2n -> M l # l n = <"2#2n 

(7-67a) 

(7-67b) 

(7-67c) 
(7-67d) 
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TABLE 7-4 
Boundary Conditions between a Dielectric (Medium 1) and 
a Perfect Conductor (Medium 2) (Time-Varying Case) 

On the Side of Medium 1 On the Side of Medium 2 

Eu = 0 E2t = 0 
a„2 x H t = Js H2t = 0 

aM2 • Di = Ps D2n = 0 
Bu = 0 B2n = 0 

(7-68a) 
(7-68b) 
(7-68c) 
(7-68d) 

7-5.2 INTERFACE BETWEEN A DIELECTRIC AND A PERFECT CONDUCTOR 

A perfect conductor is one with an infinite conductivity. In the physical world we 
have an abundance of "good conductors" such as silver, copper, gold, and aluminum, 
whose conductivities are of the order of 107 (S/m). (See the table in Appendix B-4). 
There are superconducting materials whose conductivities are essentially infinite (in 
excess of 1020 S/m) at cryogenic temperatures. They are called superconductors. Be
cause of the requirement of extremely low temperatures, they have not found much 
practical use. (The apparent upper limit for transition temperature in 1973 was 23 K. 
Cooling by expensive liquid helium was required.) However, this situation is expected 
to change in the near future, since scientists have recently found ceramic materials 
that show superconducting properties at much higher transition temperatures (20-30 
degrees above the 77 K boiling point of nitrogen, raising the possibility of using in
expensive liquid nitrogen as a coolant). At the present time the brittleness of the 
ceramic materials and limitations on usable current density and magnetic field in
tensity remain obstacles to industrial applications.f Room-temperature superconduc
tivity is still a dream. 

In order to simplify the analytical solution of field problems, good conductors 
are often considered perfect conductors in regard to boundary conditions. In the 
interior of a perfect conductor the electric field is zero (otherwise, it would produce 
an infinite current density), and any charges the conductor will have will reside on 
the surface only. The interrelationship between (E, D) and (B, H) through Maxwell's 
equations ensures that B and H are also zero in the interior of a conductor in a time-
varying situation} Consider an interface between a lossless dielectric (medium 1) and 
a perfect conductor (medium 2). In medium 2, E2 = 0, H2 = 0, D 2 = 0, and B2 = 0. 
The general boundary conditions in Eqs. (7-66a, b, c, and d) reduce to those listed in 
Table 7-4. When we apply Eqs. (7-68b) and (7-68c), it is important to note that the 
reference unit normal is an outward normal from medium 2 in order to avoid an error 
in sign. As mentioned in Section 6-10, currents in media with finite conductivities 
are expressed in terms of volume current densities, and surface current densities de
fined for currents flowing through an infinitesimal thickness is zero. In this case, Eq. 

+ R. K. Jurgen, "Technology '88—The main event," IEEE Spectrum, vol. 25, pp. 27-28, January 1988. 
t In the static case a steady current in a conductor produces a static magnetic field that does not affect 
the electric field. Hence, E and D within a good conductor may be zero, but B and H may not be zero. 
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%1* Medium 1 
{dielectric) 

Medium 2 
{perfect conductor) 

(a) 

Medium 2 
(perfect conductor) 

. 

(b) 

Medium 2 
(perfect conductor) 

(c) 

FIGURE 7-8 
Boundary conditions at an interface between a dielectric (medium 1) and a perfect 
conductor (medium 2). 

(7-68b) leads to the condition that the tangential component of H is continuous 
across an interface with a conductor having a finite conductivity. 

At an interface between a dielectric and a perfect conductor, it is possible to 
conclude from Eqs. (7-68a) and (7-68c) that the electric field intensity E is normal 
to and points away from (into) the conductor surface when the surface charges are 
positive (negative), as illustrated in Figs. 7-8(a) and 7-8(b). The magnitude Eu of Ex 
at the interface is related to ps by the equation 

E l — F Hs 
, l| = t\n = 

€1 
(7-69) 

Similarly, Eqs. (7-68b) and (7-68d) show that the magnetic field intensity H1 is tan
gential to the interface with a magnitude equal to that of the surface current density: 

|Hi| = |Hlt| = |JS (7-70) 

The direction of H l t is determined from Eq. (7-68b). This is illustrated in Fig. 7-8(c). 
Equations (7-69) and (7-70) are analytically quite simple relations. 

In this section we have discussed the relations that field vectors must satisfy at 
an interface between different media. Boundary conditions are of basic importance 
in the solution of electromagnetic problems because general solutions of Maxwell's 
equations carry little meaning until they are adapted to physical problems each with 
a given region and associated boundary conditions. Maxwell's equations are partial 
differential equations. Their solutions will contain integration constants that are de
termined from the additional information supplied by boundary conditions so that 
each solution will be unique for each given problem. 

7™ 6 Wave Equations and Their Solutions 

At this point we are in possession of the essentials of the fundamental structure of 
electromagnetic theory. Maxwell's equations give a complete description of the rela
tion between electromagnetic fields and charge and current distributions. Their solu-
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tions provide the answers to all electromagnetic problems, albeit in some cases the 
solutions are difficult to obtain. Special analytical and numerical techniques may be 
devised to aid in the solution procedure; but they do not add to or refine the funda
mental structure. Such is the importance of Maxwell's equations. 

For given charge and current distributions, p and J, we first solve the nonhomo-
geneous wave equations, Eqs. (7-63) and (7-65), for potentials A and V. With A and 
V determined, E and B can be found from Eqs. (7-57) and (7-55), respectively, by 
differentiation. 

7-6.1 SOLUTION OF WAVE EQUATIONS FOR POTENTIALS 

We now consider the solution of the nonhomogeneous wave equation, Eq. (7-65), 
for scalar electric potential V. We can do this by first finding the solution for an 
elemental point charge at time t, p(t) Av', located at the origin of the coordinates and 
then by summing the effects of all the charge elements in a given region. For a point 
charge at the origin it is most convenient to use spherical coordinates. Because of 
spherical symmetry, V depends only on R and t (not on 6 or (f)). Except at the origin, 
V satisfies the following homogeneous equation: 

1 d f_,dV\ d2V 

We introduce a new variable 

R^RK^lRJ-^W'0- (7"71) 

which converts Eq. (7-71) to 

V(R, 0 = 4 U(R, *)> (7~72) 
K 

d2U d2U „ 

Equation (7-73) is a one-dimensional homogeneous wave equation. It can be verified 
by direct substitution (see Problem P.7-20) that any twice-differentiable function of 
(t — RyJJiz) or of (t + Ry/Jie) is a solution of Eq. (7-73). Later in this section we will 
see that a function of (t + Ry/Jie) does not correspond to a physically useful solution. 
Hence we have 

U(R,t)=f(t-R^€). (7-74) 

Equation (7-74) represents a wave traveling in the positive R direction with a velocity 
1/Vjue. As we see, the function at R + AR at a later time t + At is. 

U(R + AR,t + At) = f[t + At-{R + AR)yfc~] = f(t - R^ie). 

Thus the function retains its form if At = ARyJ^ie = AR/u, where u = 1/yJne is the 
velocity of propagation, a characteristic of the medium. From Eq. (7-72) we get 

V{R,t) = jf{t-R/u). (7-75) 



334 7 Time-Varying Fields and Maxwell's Equations 

To determine what the specific function f{t — R/u) must be, we note from Eq. 
(3-47) that for a static point charge p(t)Av' at the origin, 

AV(R) = P(t)M 
4neR (7-76) 

Comparison of Eqs. (7-75) and (7-76) enables us to identify 

p(t- R/u)Av' 
Af(t - R/u) = 

4ne 

The potential due to a charge distribution over a volume V is then 

(7-77) 

Equation (7-77) indicates that the scalar potential at a distance R from the source 
at time t depends on the value of the charge density at an earlier time (t — R/u). It 
takes time R/u for the effect of p to be felt at distance R. For this reason, V(R, t) in 
Eq. (7-77) is called the retarded scalar potential. It is now clear that a function of 
(t + R/u) cannot be a physically useful solution, since it would lead to the impossible 
situation that the effect of p would be felt at a distant point before it occurs at the 
source. 

The solution of the nonhomogeneous wave equation, Eq. (7-63), for vector mag
netic potential A can proceed in exactly the same way as that for V. The vector 
equation, Eq. (7-63), can be decomposed into three scalar equations, each similar 
to Eq. (7-65) for V. The retarded vector potential is thus given by 

J(t - R/u) 
w-hl*^" (Wb/ra)- (7-78) 

The electric and magnetic fields derived from A and V by differentiation will 
obviously also be functions of (t — R/u) and therefore retarded in time. It takes time 
for electromagnetic waves to travel and for the effects of time-varying charges and 
currents to be felt at distant points. In the quasi-static approximation we ignore this 
time-retardation effect and assume instant response. This assumption is implicit in 
dealing with circuit problems. 

7-6.2 SOURCE-FREE WAVE EQUATIONS 

In problems of wave propagation we are concerned with the behavior of an electro
magnetic wave in a source-free region where p and J are both zero. In other words, 
we are often interested not so much in how an electromagnetic wave is originated, 
but in how it propagates. If the wave is in a simple (linear, isotropic, and homo-
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geneous) nonconducting medium characterized by e and n{a = 0), Maxwell's equa
tions (7-53a, b, c, and d) reduce to 

V x E = - , - , 

V x H = e 
5E 
dt' 

V • E = 0, 
V • H = 0. 

(7-79a) 

(7-7%) 

(7-79c) 
(7-79d) 

Equations (7-79a, b, c, and d) are first-order differential equations in the two variables 
E and H. They can be combined to give a second-order equation in E or H alone. 
To do this, we take the curl of Eq. (7-79a) and use Eq. (7-79b): 

Now V x V x E = V(V • E) - V2E = - V2E because of Eq. (7-79c). Hence we have 

V x V x E = - / i - ( V x H ) = -ii£ df2 

**-*£-* 
or, since u = 1/y/^e, 

(7-80) 

(7-81) 

In an entirely similar way we can also obtain an equation in H: 

(7-82) 

Equations (7-81) and (7-82) are homogeneous vector wave equations. 
We can see that in Cartesian coordinates Eqs. (7-81) and (7-82) can each be 

decomposed into three one-dimensional, homogeneous, scalar wave equations. Each 
component of E and of H will satisfy an equation exactly like Eq. (7-73), whose solu
tions represent waves. We will extensively discuss wave behavior in various environ
ments in the next two chapters. 

P_7 Time-Harmonic Fields 

Maxwell's equations and all the equations derived from them so far in this chapter 
hold for electromagnetic quantities with an arbitrary time-dependence. The actual 
type of time functions that the field quantities assume depends on the source functions 
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p and J. In engineering, sinusoidal time functions occupy a unique position. They are 
easy to generate; arbitrary periodic time functions can be expanded into Fourier series 
of harmonic sinusoidal components; and transient nonperiodic functions can be ex
pressed as Fourier integrals.1. Since Maxwell's equations are linear differential equa
tions, sinusoidal time variations of source functions of a given frequency will produce 
sinusoidal variations of E and H with the same frequency in the steady state. For 
source functions with an arbitrary time dependence, electrodynamic fields can be 
determined in terms of those caused by the various frequency components of the 
source functions. The application of the principle of superposition will give us the 
total fields. In this section we examine time-harmonic (steady-state sinusoidal) field 
relationships. 

7-7.1 THE USE OF PHASQRS-A REVIEW 

For time-harmonic fields it is convenient to use a phasor notation. At this time we 
digress briefly to review the use of phasors. Conceptually, it is simpler to discuss a 
scalar phasor. The instantaneous (time-dependent) expression of a sinusoidal scalar 
quantity, such as a current i, can be written as either a cosine or a sine function. If 
we choose a cosine function as the reference (which is usually dictated by the func
tional form of the excitation), then all derived results will refer to the cosine function. 
The specification of a sinusoidal quantity requires the knowledge of three parameters: 
amplitude, frequency, and phase. For example, 

i{t) = I cos (cot + 0), (7-83) 

where / is the amplitude; co is the angular frequency (rad/s)—co is always equal to 
2nf, f being the frequency in hertz; and cj) is the phase referred to the cosine function. 
We could write i(t) in Eq. (7-83) as a sine function if we wish: i(t) = I sin (cot + $'), 
with 0' = (j) + n/2. Thus it is important to decide at the outset whether our reference 
is a cosine or a sine function, then to stick to that decision throughout a problem. 

To work directly with an instantaneous expression such as the cosine function is 
inconvenient when differentiations or integrations of i(t) are involved because they 
lead to both sine (first-order differentiation or integration) and cosine (second-order 
differentiation or integration) functions and because it is tedious to combine sine and 
cosine functions. For instance, the loop equation for a series RLC circuit with an 
applied voltage e(t) = E cos cot is 

L^ + Ri + -jidt = e(t). (7-84) 
di 
di ' "' ' C 

If we write i(t) as in Eq. (7-83), Eq. (7-84) yields 

/ -coL sin (cot + <f)) + R cos (cot + 4>) H—— sin (cot + 4>) 
coC 

= E cos cot. (7-85) 

f D. K. Cheng, op. cit., Chapter 5. 
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Complicated mathematical manipulations are required in order to determine the un
known / and 0 from Eq. (7-85). 

It is much simpler to use exponential functions by writing the applied voltage as 

e{t) = E cos cot = 0te\_{EejO)eim~\ 
= @e{Esej(at) 

(7-86) 

(7-87) 

and i{t) in Eq. (7-83) as 
i(t) = ^ [ ( / ^ ' V w 1 

= ***(/yn 
where 3te means "the real part of." In Eqs. (7-86) and (7-87), 

Es = Eej0 = E (7-88a) 
Is = Iej4> (7-88b) 

are (scalar) phasors that contain amplitude and phase information but are indepen
dent of t. The phasor Es in Eq. (7-88a) with zero phase angle is the reference phasor. 
Now, 

~ = MJcoIsej(a\ (7-89) 

jidt = @J — ej<ot\ (7-90) 

Substitution of Eqs. (7-86) through (7-90) in Eq. (7-84) yields 

' 7 , = E„ (7-91) 

from which the current phasor Is can be solved easily. Note that the time-dependent 
factor ejcot disappears from Eq. (7-91) because it is present in every term in Eq. (7-84) 
after the substitution and is therefore canceled. This is the essence of the usefulness 
of phasors in the analysis of linear systems with time-harmonic excitations. After Is 
has been determined, the instantaneous current response i(t) can be found from 
Eq. (7-87) by (1) multiplying Is by ej<at, and (2) taking the real part of the product. 

If the applied voltage had been given as a sine function such as e(t) = E sin cot, 
the series RLC-circuit problem would be solved in terms of phasors in exactly the 
same way; only the instantaneous expressions would be obtained by taking the imagi
nary part of the product of the phasors with ej03t. The complex phasors represent the 
magnitudes and the phase shifts of the quantities in the solution of time-harmonic 
problems. 

7-6 Express 3 cos cot — 4 sin cot as first (a) A1 cos {cot + OJ, and then (b) 
A2 sin (cot + 62). Determine Alt 0l5 A2, and 62. 
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Solution We can conveniently use phasors to solve this problem. 

a) To express 3 cos cot - 4 sin cot as A1 cos (cot + 0t), we use cos cot as the reference 
and consider the sum of the two phasors 3 and — 4e~jn/2 (=/4), since sin cot = 
cos (cot — 7i/2) lags behind cos cot by n/2 rad: 

3 + ; 4 = 5eJ ' tan"1(4/3) = 5eJ'53-r. 
Taking the real part of the product of this phasor and ej(0t, we have 

3 cos cot - 4 sin cot = @£[(5ej53A°)ejM~\ 
= 5 cos (art+ 53.1°). ( ? " 9 2 a ) 

So, At = 5, and 9, = 53.1° = 0.927 (rad). 

b) To express 3 cos cot — 4 sin cot as 4 2 sin (cot + 02)> w e Mse s m ^ flS ^ e reference 
and consider the sum of the two phasors 3eJn/2 (=/3) and —4: 

/3 — 4 = 5gJta"_ 1 3/("4) _ ^eJ143.1°_ 

(The reader should note that the angle above is 143.1°, not -36.9°.) Now we take 
the imaginary part of the product of the phasor above and ej<ot to obtain the 
desired answer: 

3 cos cot - 4 sin cot = Jm{(5en*?,A°)ejM~] 
= 5 sin (cot+ 143.1°). ( ?~9 2 b ) 

Hence, A2 = 5 and d2 = 143.1° = 2.50 (rad). 

The reader should recognize that the results in Eqs. (7-92a) and (7-92b) are 
identical. « 

7-7.2 TIME-HARMONIC ELECTROMAGNETICS 

Field vectors that vary with space coordinates and are sinusoidal functions of time 
can similarly be represented by vector phasors that depend on space coordinates but 
not on time. As an example, we can write a time-harmonic E field referring to cos corf 
as 

E(x, y, z, t) = £*[E(x, y, z)ei(at\ (7-93) 

where E(x, y, z) is a vector phasor that contains information on direction, magnitude, 
and phase. Phasors are, in general, complex quantities. From Eqs. (7-93), (7-87), 
(7-89), and (7-90) we see that, if E(x, y, z, t) is to be represented by the vector phasor 
E(x, y, z\ then dE(x, y, z, t)/dt and j E(x, y, z, t) dt would be represented by vector 
phasors ;coE(x, y, z) and E(x, y, z)/]co, respectively. Higher-order differentiations and 
integrations with respect to t would be represented by multiplications and divisions, 
respectively, of the phasor E(x, y, z) by higher powers of jco. 

We now write time-harmonic Maxwell's equations (7-53a, b, c, and d) in terms 
of vector field phasors (E, H) and source phasors (p, J) in a simple (linear, isotropic, 
and homogeneous) medium as follows. 

f If the time reference is not explicitly specified, it is customarily taken as cos cot. 
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v> 
Vx 

V 
V 

E = 
H = 
•E = 
H = 

= —jcofM, 
= J + jcoeE, 

= P/e, 
= 0. 

(7-94a) 
(7-94b) 
(7-94c) 
(7-94d) 

The space-coordinate arguments have been omitted for simplicity. The fact that the 
same notations are used for the phasors as are used for their corresponding time-
dependent quantities should create little confusion because we will deal almost ex
clusively with time-harmonic fields (and therefore with phasors) in the rest of this 
book. When there is a need to distinguish an instantaneous quantity from a phasor, 
the time dependence of the instantaneous quantity will be indicated explicitly by the 
inclusion of a £ in its argument. Phasor quantities are not functions of t. It is useful 
to note that any quantity containing j must necessarily be a phasor. 

The time-harmonic wave equations for scalar potential V and vector potential 
A—Eqs. (7-65) and (7-63)—become, respectively, 

and 

where 

\2V+k2V = - -

V2A + fe2A= -/xJ, 

CO 
k = Wy/fie = 

(7-95) 

(7-96) 

(7-97) 

is called the wavenumber. Equations (7-95) and (7-96) are referred to as nonhomo-
geneous Helmholtz's equations. The Lorentz condition for potentials, Eq. (7-62), is 
now 

\ - A + jcofieV = 0. (7-98) 

The phasor solutions of Eqs. (7-95) and (7-96) are obtained from Eqs. (7-77) 
and (7-78), respectively: 

(7-99) 

(7-100) 

These are the expressions for the retarded scalar and vector potentials due to time-
harmonic sources. Now the Taylor-series expansion for the exponential factor e~jkR 

is 
k2R2 

(7-101) e-JkR=l-jkR + -— + 
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where k, defined in Eq. (7-97), can be expressed in terms of the wavelength X = u/f 
in the medium. We have 

2nf In 
k = 

Thus, if 
u X 

R 
hR = 2n- « 1, 

X 

(7-102) 

(7-103) 

or if the distance R is very small in comparison to the wavelength X, e~jkR can be 
approximated by 1. Equations (7-99) and (7-100) then simplify to the static expres
sions in Eqs. (7-58) and (7-59), which are used in Eqs. (7-55) and (7-57) to find 
quasi-static fields. 

The formal procedure for determining the electric and magnetic fields due to 
time-harmonic charge and current distributions is as follows^ 

1. Find phasors V(R) and A{R) from Eqs. (7-99) and (7-100). 
2. Find phasors E{R) = -W-jcoA and B{R) = VxA. 
3. Find instantaneous E{R, t) = @s[E(R)ej(at] and B{R, t) = Me\B{R)e}(at~] for a co

sine reference. 

The degree of difficulty of a problem depends on how difficult it is to perform the 
integrations in Step 1. 

7-7.3 

In a simple, nonconducting source-free medium characterized by p = 0, J = 0, a = 0, 
the time-harmonic Maxwell's equations (7-94a, b, c, and d) become 

V x E = -jcofiH, 
\ x H=;coeE, 

V • E = 0, 
V • H = 0. 

(7-104a) 

(7-104b) 

(7-104c) 

(7-104d) 

Equations (7-104a, b, c, and d) can be combined to yield second-order partial dif
ferential equations in E and H. From Eqs. (7-81) and (7-82) we obtain 

V2E + k2E = 0 

and 

V2H + k2U = 0, 

(7-105) 

(7-106) 

1 Alternatively, Steps 1 and 2 can be replaced by the following: (1') Find phasor A(R) from Eq. (7-100). 

(2') Find H(i?) = - V x A, and E(R) = (V x H - J) from Eq. (7-94b). 
H jcoe 
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which are homogeneous vector Helmholtz's equations. Solutions of homogeneous 
Helmholtz's equations with various boundary conditions is the main concern of 
Chapters 8 and 10. 

EXAMPLE 7-7 Show that if (E, H) are solutions of source-free Maxwell's equations 
in a simple medium characterized by e and pi, then so also are (E', H'), where 

E' = Y\\\ (7-107a) 

H' = - - . (7-107b) 
n 

In the above equations, r\ — v/V^ is called the intrinsic impedance of the medium. 

Solution We prove the statement by taking the curl and the divergence of E' and 
H' and using Eqs. (7-104a, b, c, and d): 

V x E ' = »|(VxH) = rjiJcoeE) 

2/ E \ • ™ (7-108a) 

(7-108b) 

= -jcoetfi I = -./co^H' 

V x H' = - - (V x E) = - - (-jco/dl) 
n n 

= ja>n^{riH)=ja)eE' 

V • E' - rj(\ • H) = 0 (7-108c) 

V • H' = — (V • E) = 0. (7-108d) 
n 

Equations (7-108a, b, c, and d) are source-free Maxwell's equations in E' and H'. 
(Q.E.D.) « 

This example shows that source-free Maxwell's equations in a simple medium 
are invariant under the linear transformation specified by Eqs. (7-107a) and (7-107b). 
This is a statment of the principle of duality. This principle is a consequence of the 
symmetry of source-free Maxwell's equations. An illustration of the principle of 
duality and dual devices can be found in Subsection 11 -2.2. 

If the simple medium is conducting (a # 0), a current J = crE will flow, and Eq. 
(7-104b) should be changed to 

= J0)€cE 
with 

€< = €~j~ (F/m)- (7-HO) 
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The other three equations, Eqs. (7-104a, c, and d), are unchanged. Hence, all the 
previous equations for nonconducting media will apply to conducting media if e is 
replaced by the complex permittivity ec. 

As we discussed in Section 3-7, when an external time-varying electric field is 
applied to material bodies, small displacements of bound charges result, giving rise 
to a volume density of polarization. This polarization vector will vary with the same 
frequency as that of the applied field. As the frequency increases, the inertia of the 
charged particles tends to prevent the particle displacements from keeping in phase 
with the field changes, leading to a frictional damping mechanism that causes power 
loss because work must be done to overcome the damping forces. This phenomenon 
of out-of-phase polarization can be characterized by a complex electric susceptibility 
and hence a complex permittivity. If, in addition, the material body or medium has 
an appreciable amount of free charge carriers such as the electrons in a conductor, 
the electrons and holes in a semiconductor, or the ions in an electrolyte, there will 
also be ohmic losses. In treating such media it is customary to include the effects 
of both the damping and the ohmic losses in the imaginary part of a complex 
permittvity ec: 

ec = e ' - ; e " (F/m), (7-111) 

where both e' and e" may be functions of frequency. Alternatively, we may define an 
equivalent conductivity representing all losses and write 

a = coe" (S/m). (7-112) 

Combination of Eqs. (7-111) and (7-112) gives Eq. (7-110). In low-loss media, 
damping losses are very small, and the real part of ec in Eq. (7-110) is usually written 
as e without a prime. 

Similar loss arguments apply to the existence of an out-of-phase component of 
magnetization under the influence of an external time-varying magnetic field. We 
expect the permeability also to be complex at high frequencies: 

li = li' -jli". (7-113) 

For ferromagnetic materials the real part, //, is many orders of magnitude larger 
than the imaginary part, //', and the effect of the latter is normally neglected. In view 
of the above, the real wavenumber k in the Helmholtz's equations, Eqs. (7-105) and 
(7-106), should be changed to a complex wavenumber: 

vrc (7-114) 
= a>V/X€'-je") 

in a lossy dielectric medium. 
The ratio e"/e' is called a loss tangent because it is a measure of the power loss 

in the medium: 

tan(5c = ^ - ^ — • (7-115) 

The quantity Sc in Eq. (7-115) may be called the loss angle. 
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On the basis of Eq. (7-110) a medium is said to be a good conductor if a » coe, 
and a good insulator if coe » a. Thus, a material may be a good conductor at low 
frequencies but may have the properties of a lossy dielectric at very high frequencies. 
For example, a moist ground has a dielectric constant er and a conductivity o that 
are in the neighborhood of 10 and 10~2 (S/m), respectively. The loss tangent cr/coe 
of the moist ground then equals 1.8 x 104 at 1 (kHz), making it a relatively good 
conductor. At 10 (GHz), a/coe becomes 1.8 x 10"3, and the moist ground behaves 
more like an insulator.1" 

EXAMPLE 7-8 A sinusoidal electric intensity of amplitude 250 (V/m) and frequency 
1 (GHz) exists in a lossy dielectric medium that has a relative permittivity of 2.5 and 
a loss tangent of 0.001. Find the average power dissipated in the medium per cubic 
meter. 

Solution First we must find the effective conductivity of the lossy medium: 

tan Sc = 0.001 = —°—, 
coe0er 

/ 1 0 " 9 \ 
a = 0.001(2TT109)( -3^-1(2.5) 

= 1.39 x 10-4(S/m). 

The average power dissipated per unit volume is 

p = \JE = \oE2 

= i x (1.39 x 10~ 4 )x250 2 = 4.34 (W/m3). „ 

A microwave oven cooks food by irradiating the food with microwave power 
generated by a magnetron. The operating frequency is usually set at 2.45 GHz 
(2.45 x 109 Hz). For a beef steak that has approximately a dielectric constant of 40 
and a loss tangent of 0.35 at 2.45 (GHz), calculations following those in Example 
7-8 will yield o = 1.91 (S/m) and p = 59.6 (kW/m3). However, since high-frequency 
currents in a conducting body tend to concentrate near the surface layer (due to skin 
effect—see Subsection 8-3.2), the value of p obtained here is only a rough estimate. 

7-7.4 THE ELECTROMAGNETIC SPECTRUM 

We have seen that E and H in source-free regions satisfy homogeneous wave equa
tions (7-81) and (7-82), respectively. If the sources of the fields are time-harmonic, 
these equations reduce to homogeneous Helmholtz's equations (7-105) and (7-106). 
That the solutions of Eqs. (7-105) and (7-106) represent propagating waves will 
become clear in the beginning of the next chapter. For the moment we note two 

f Actually, the loss mechanism of a dielectric material is a very complicated process, and the assumption 
of a constant conductivity is only a rough approximation. 
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impor tan t points . First, Maxwell 's equat ions , and therefore the wave and Helmhol tz ' s 
equat ions , impose no limit on the frequency of the waves. The electromagnet ic spec
t rum that has been investigated experimental ly extends from very low power fre
quencies th rough radio, television, microwave, infrared, visible light, ultraviolet, X-
ray, and g a m m a (y)-ray frequencies exceeding 10 2 4 (Hz). Second, all e lectromagnet ic 

Wavelength 
A(m) 

KT'M 

10 -12 J 

(A) Kr10-< 
(nm) 10 - 9 

(^m) 10 - 6 J 
f-1015 (PHz) 

(mm) 10 ~3 -
(cm) 10 ~2 -

HT1-
(m) l -

10-
102-

(km) 103-

104-

105-

(Mm) 106-

107-
108-

Frequency 
/(Hz) 

ho2 4 

1021 

h 1018 (EHz) 

Application 
and Classification 

Photon Energy 
¥(eV) 

(GeV)-f- 109 

y-rays 

(MeV)-

X-rays 

Ultraviolet 

\-1012 (THz) 

Infrared 

1 
mm wave 

(keV) 

(eV) 

E H F ( 3 0 - 3 0 0 GHz) Radar 
(meV)-

SHF (3-30 GHz) Radar, satellite 
communication 

4-1Q3 

10e 

10 -3 

109 (GHz) UHF (300-3000 MHz) Radar, TV, navigation 

VHF (30-300 MHz) TV, FM, police, mobile 
radio, air traffic control 

HF (3-30 MHz) Facsimile, SW radio, 
citizen's band 

106 (MHz) M F (300-3000 kHz) AM, maritime radio, 
direction finding 

LF (30-300 kHz) Navigation, 
radio beacon 

VLF (3-30 kHz) Navigation, sonar 

hm3 10J (kHz) ULF (300-3000 Hz) 

P 6 0 (Hz) SLF (30-300 Hz) 
ELF (3-30 Hz) 

1 (Hz) 

7-9 
Spectrum of electromagnetic waves. 
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TABLE 7-5 
Band Designations for Microwave Frequency 
Ranges 

Old* 

Ka 
i K 

K 
Ku 
X 
X 
c 
c 
s 
s 
L 
UHF 

New 

K 
K 
J 
J 
J 
I 
H 
G 
F 
E 
D 
C 

Frequency Ranges (GHz) 

26.5-40 
20-26.5 
18-20 

12.4-18 
10-12.4 
8-10 
6-8 
4-6 
3-4 
2-3 
1-2 

0.5-1 
f Because the old band designations have been in wide 
use since the early days of radar, they are still in 
common use because of habit. 

waves in whatever frequency range propagate in a medium with the same velocity, 
u = 1/yfjx (c ̂  3 x 108 m/s in air). 

Figure 7-9 shows the electromagnetic spectrum divided into frequency and wave
length ranges on logarithmic scales according to application and natural occurrence. 
The term "microwave" is somewhat nebulous and imprecise; it could mean electro
magnetic waves above a frequency of 1 (GHz) and all the way up to the lower limit 
of the infrared band, encompassing UHF, SHF, EHF, and mm-wave regions. Beyond 
the frequency range of visible light it is also customary to show the energy level of 
a photon (quantum of radiation), hf in electron-volts (eV), where h = Planck's con
stant = 6.63 x 10~34(J-s). This is included in Fig. 1-9.* The wavelength range of 
visible light is from deep red at 720 (nm) to violet at 380 (nm), or from 0.72 (/im) 
to 0.38 (/mi), corresponding to a frequency range of from 4.2 x 1014 (Hz) to 7.9 x 1014 

(Hz). The bands used for radar, satellite communication, navigation aids, television 
(TV), FM and AM radio, citizen's band radio (CB), sonar, and others are also noted. 
Frequencies below the VLF range are seldom used for wireless transmission because 
huge antennas would be needed for efficient radiation of electromagnetic waves and 
because of the very low data rate at these low frequencies. There have been proposals 
to use these frequencies for strategic global communication with submarines sub
merged in conducting seawater. In radar work it has been found convenient to assign 
alphabet names to the different microwave frequency bands. They are listed in Table 
7-5. 

In the next chapter we shall discuss the characteristics of plane electromagnetic 
waves and examine their behavior as they propagate across discontinuous boundaries. 

t The conversion relations are: 1 (Hz) «-> 4.14 x 10"1 5 (eV) < ->3x l0 8 (m), or 2.42 x 1014 (Hz) «-> 1 (eV) *-* 
1.24 x l(T6(m). 
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Review Questions 

R.7-1 What constitutes an electrvmagnetostatic field! In what ways are E and B related 
in a conducting medium under static conditions? 
R.7-2 Write the fundamental postulate for electromagnetic induction, and explain how it 
leads to Faraday's law. 
R.7-3 State Lenz's law. 
R.7-4 Write the expression for transformer emf. 
R.7-5 What are the characteristics of an ideal transformer? 
R.7-6 What is the definition of coefficient of coupling in inductive circuits? 
R.7-7 What are eddy currents! 
R.7-8 What are superconductors? 
R.7-9 Why are materials having high permeability and low conductivity preferred as 
transformer cores? 
R.7-10 Why are the cores of power transformers laminated? 
R.7-11 Write the expression for flux-cutting emf. 
R.7-12 Write the expression for the induced emf in a closed circuit that moves in a 
changing magnetic field. 
R.7-13 What is a Faraday disk generator? 
R.7-14 Write the differential form of Maxwell's equations. 
R.7-15 Are all four Maxwell's equations independent? Explain. 
R.7-16 Write the integral form of Maxwell's equations, andidentify each equation with 
the proper experimental law. 
R.7-17 Explain the significance of displacement current. 
R.7-18 Why are potential functions used in electromagnetics? 
R.7-19 Express E and B in terms of potential functions V and A. 
R.7-20 What do we mean by quasi-static fields'! Are they exact solutions of Maxwell's 
equations? Explain. 
R.7-21 What is the Lorentz condition for potentials? What is its physical significance? 
R.7-22 Write the nonhomogeneous wave equation for scalar potential V and for vector 
potential A. 
R.7-23 State the boundary conditions for the tangential component of E and for the 
normal component of B. 
R.7-24 Write the boundary conditions for the tangential component of H and for the 
normal component of D. 
R.7-25 Why is the E field immediately outside of a perfect conductor perpendicular to 
the conductor surface? 
R.7-26 Why is the H field immediately outside of a perfect conductor tangential to the 
conductor surface? 
R.7-27 Can a static magnetic field exist in the interior of a perfect conductor? Explain. 
Can a time-varying magnetic field? Explain. 
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R.7-28 What do we mean by a retarded potential"? 
R.7-29 In what ways do the retardation time and the velocity of wave propagation 
depend on the constitutive parameters of the medium? 
R.7-30 Write the source-free wave equations for E and H in free space. 
R.7-31 What is a phasor! Is a phasor a function of t! A function of of. 
R.7-32 What is the difference between a phasor and a vector? 
R.7-33 Discuss the advantages of using phasors in electromagnetics. 
R.7-34 Are conduction and displacement currents in phase for time-harmonic fields? 
Explain. 
R.7-35 Write in terms of phasors the time-harmonic Maxwell's equations for a simple 
medium. 
R.7-36 Define wavenumber. 
R.7-37 Write the expressions for time-harmonic retarded scalar and vector potentials in 
terms of charge and current distributions. 
R.7-38 Write the homogeneous vector Helmholtz's equation for E in a simple, non
conducting, source-free medium. 
R.7-39 Write the expression for the wavenumber of a lossy medium in terms of its 
permittivity and permeability. 
R.7-40 What is meant by the loss tangent of a medium? 
R.7-41 In a time-varying situation how do we define a good conductor! A lossy dielectric! 
R.7-42 What is the velocity of propagation of electromagnetic waves? Is it the same in 
air as in vacuum? Explain. 
R.7-43 What is the wavelength range of visible light? 
R.7-44 Why are frequencies below the VLF range rarely used for wireless transmission? 

Problems 

P.7-1 Express the transformer emf induced in a stationary loop in terms of time-varying 
vector potential A. 
P.7-2 The circuit in Fig. 7-10 is situated in a magnetic field 

B = az3 cos {5%m1t - fnx) (/xT). 
Assuming R = 15 (Q), find the current i. 

u x 
FIGURE 7-10 
A circuit in a time-varying magnetic field 
(Problem P.7-2). 
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T'2 

T 
h ± 

i+j^—w—^ 

(a) 

FIGURE 7-11 
A rectangular loop near a long current-carrying 
wire (Problem P.7-3). 

P.7-3 A rectangular loop of width w and height h is situated near a very long wire 
carrying a current ^ as in Fig. 7-11(a). Assume ^ to be a rectangular pulse as shown 
in Fig. 7-11(b). 

a) Find the induced current i2 in the rectangular loop whose self-inductance is L. 
b) Find the energy dissipated in the resistance R if T » L/R. 

P.7-4 A conducting equilateral triangular loop is placed near a very long straight wire, 
shown in Fig. 6-48, with d = b/2. A current i(t) = I sin cot flows in the straight wire. 

a) Determine the voltage registered by a high-impedance rms voltmeter inserted in 
the loop. 

b) Determine the voltmeter reading when the triangular loop is rotated by 60° about 
a perpendicular axis through its center. 

P.7-5 A conducting circular loop of a radius 0.1 (m) is situated in the neighborhood of a 
very long power line carrying a 60-(Hz) current, as shown in Fig. 6-49, with d = 0.15 (m). 
An a-c milliammeter inserted in the loop reads 0.3 (mA). Assume the total impedance of 
the loop including the milliammeter to be 0.01 (Q). 

a) Find the magnitude of the current in the power line. 
b) To what angle about the horizontal axis should the circular loop be rotated in 

order to reduce the milliammeter reading to 0.2 (mA)? 
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B(t)A B(t) 

(a) (b) 

FIGURE 7-12 
Suggested eddy-current power-loss reduction scheme (Problem P.7-6). 

P.7-6 A suggested scheme for reducing eddy-current power loss in transformer cores with 
a circular cross section is to divide the cores into a large number of small insulated 
filamentary parts. As illustrated in Fig. 7-12, the section shown in part (a) is replaced by 
that in part (b). Assuming that B(t) = B0 sin cot and that N filamentary areas fill 95% of 
the original cross-sectional area, find 

a) the average eddy-current power loss in the section of core of height h in Fig. 7-12(a), 
b) the total average eddy-current power loss in the N filamentary sections in 

Fig. 7-12(b). -
The magnetic field due to eddy currents is assumed to be negligible. (Hint: First find the 
current and power dissipated in the differential circular ring section of height h and width 
dr at radius r.) 
P.7-7 A conducting sliding bar oscillates over two parallel conducting rails in a sinusoidally 
varying magnetic field 

B = az5 cos cot (mT), 
as shown in Fig. 7-13. The position of the sliding bar is given by x = 0.35(1 — cos cot) (m), 
and the rails are terminated in a resistance R — 0.2 (Q). Find i. 

0.2 (m) 

1 °\ 
U 

© 

© 

© 

© 

— 0.7 ( 

© 

© 

© 

© 
> x 

FIGURE 7-13 
A conducting bar sliding over parallel 
rails in a time-varying magnetic field 
(Problem P.7-7). 
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P.7-8 In the d-c motor illustrated in Fig. 6-32 we noted that a current I sent through 
the loop in a magnetic field B produces a torque that makes the loop rotate. As the loop 
rotates, the amount of the magnetic flux linking with the loop changes, giving rise to an 
induced emf. Energy must be expended by an external electric source to counter this emf 
and establish the current in the loop. Prove that this electric energy is equal to the 
mechanical work done by the rotating loop. (Hint: Consider the normal of the loop at 
an arbitary angle a with B, and let it rotate by an angle Aa.) 
P.7-9 Assuming that a resistance R is connected across the slip rings of the rectangular 
conducting loop that rotates in a constant magnetic field B = ayBQ, shown in Fig. 7-6, 
prove that the power dissipated in R is equal to the power required to rotate the loop at an 
angular frequency co. 
P.7-10 A hollow cylindrical magnet with inner radius a and outer radius b rotates about 
its axis at an angular frequency co. The magnet has a uniform axial magnetization 
M = azM0. Sliding brush contacts are provided at the inner and outer surfaces as shown 
in Fig. 7-14. Assuming that \ir = 5000 and a = 107 (S/m) for the magnet, find 

a) H and B in the magnet, 
b) open-circuit voltage V0, 
c) short-circuit current. 

FIGURE 7-14 
A rotating hollow cylindrical magnet (Problem P.7-10). 

P.7-11 Derive the two divergence equations, Eqs. (7-53c) and (7-53d), from the two curl 
equations, Eqs. (7-53a) and (7-53b), and the equation of continuity, Eq. (7-48). 
P.7-12 Prove that the Lorentz condition for potentials as expressed in Eq. (7-62) is 
consistent with the equation of continuity. 
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P.7-13 The vector magnetic potential A and scalar electric potential V defined in Section 
7-4 are not unique in that it is possible to add to A the gradient of a scalar \j/, \\j/, with 
no change in B from Eq. (7-55). 

A' = A + V^. (7-116) 

In order not to change E in using Eq. (7-57), V must be modified to V. 
a) Find the relation between V and V. 
b) Discuss the condition that \j/ must satisfy so that the new potentials A' and V 

remain governed by the uncoupled wave equations (7-63) and (7-65). 
P.7-14 Substitute Eqs. (7-55) and (7-57) in Maxwell's equations to obtain wave equations 
for scalar potential V and vector potential A for a linear, isotropic but inhomogeneous 
medium. Show that these wave equations reduce to Eqs. (7-65) and (7-63) for simple 
media. (Hint: Use the following gauge condition for potentials in an inhomogeneous 
medium: 

dV V(eA) + ^ 2 — = 0.) (7-117) 

P.7-15 Write the set of four Maxwell's equations, Eqs. (7-53a, b, c and d), as eight scalar 
equations 

a) in Cartesian coordinates, 
b) in cylindrical coordinates, 
c) in spherical coordinates. 

P.7-16 Supply the detailed steps for the derivation of the electromagnetic boundary 
conditions, Eqs. (7-66a, b, c, and d). 
P.7-17 Discuss the relations 

a) between the boundary conditions for the tangential components of E and those for 
the normal components of B, 

b) between the boundary conditions for the normal components of D and those for 
the tangential components of H. 

P.7-18 In Eqs. (3-88) and (3-89) it was shown that for field calculations a polarized 
dielectric may be replaced by an equivalent polarization surface charge density pps and 
an equivalent polarization volume charge density pp. Find the boundary conditions at the 
interface of two different media for 

a) the normal component of P, 
b) the normal components of E 

in terms of free and equivalent polarization surface charge densities ps and pps. 
P.7-19 Write the boundary conditions that exist at the interface of free space and a 
magnetic material of infinite (an approximation) permeability. 
P.7-20 Prove by direct substitution that any twice differentiable function of (t - Ry/Jie) 
or of {t + R-JJ&) is a solution of the homogeneous wave equation, Eq. (7-73). 
P.7-21 Prove that the retarded potential in Eq. (7-77) satisfies the nonhomogeneous wave 
equation, Eq. (7-65). 
P.7-22 For the assumed f{t) at R = 0 in Fig. 7-15, sketch 

a) f(t - R/u) versus t, 
b) f{t - R/u) versus R for t > T. 
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7-15 
A triangular time function (Problem P.7-22). 

P.7-23 The electric field of an electromagnetic wave 

E — aY£n cos 

is the sum of 

and 

10sn[t-- + 

E1 = aY0.03 sin 108TC[ t--

E, = av0.04 cos 10«7C( t 1 — 

Find E0 and 8. 
P.7-24 Derive the general wave equations for E and H in a nonconducting simple 
medium where a charge distribution p and a current distribution J exist. Convert the 
wave equations to Helmholtz's equations for sinusoidal time dependence. Write the general 
solutions for E(R, t) and H(R, t) in terms of p and J. 
P.7-25 Given that 

E = a,0.1 sin (IOTCX) cos (67cl09t - 0z) (V/m) 

in air, find H and /?. 
P.7-26 Given that 

H = a,2 cos (15TCX) sin (67rl09t - j8z) (A/m) 
in air, find E and /?. 

P.7-27 It is known that the electric field intensity of a spherical wave in free space is 

E = a0 —- sin d cos (cat - kR). 

Determine the magnetic field intensity H and the value of k. 
P.7-28 In Section 7-4 we indicated that E and B can be determined from the potentials 
V and A, which are related by the Lorentz condition, Eq. (7-98), in the time-harmonic 
case. The vector potential A was introduced through the relation B = V x A because of 
the solenoidal nature of B. In a source-free region, V • E = 0, we can define another type 
of vector potential Ae, such that E = V x Ae. Assuming harmonic time dependence: 

a) Express H in terms of Ae. 
b) Show that Ae is a solution of a homogeneous Helmholtz's equation. 

P.7-29 For a source-free polarized medium where p = 0, J = 0, p. = ju0, but where there 
is a volume density of polarization P, a single vector potential ne may be defined such that 

H=jooe0\ xne. (7-118 
a) Express electric field intensity E in terms of ne and P. 
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b) Show that 7ie satisfies the nonhomogeneous Helmholtz's equation 

V2ne + kin. = - - ■ (7-119) 

The quantity ne is known as the electric Hertz potential. 
P.7-30 Calculations concerning the electromagnetic effect of currents in a good conductor 
usually neglect the displacement current even at microwave frequencies. 

a) Assuming er = 1 and o = 5.70.x 107 (S/m) for copper, compare the magnitude of 
the displacement current density with that of the conduction current density at 
100 (GHz). 

b) Write the governing differential equation for magnetic field intensity H in a 
source-free good conductor. 



Plane 
Electromagnetic Waves 

8—1 Introduction 

In Chapter 7 we showed that in a source-free nonconducting simple medium, 
Maxwell's equations (Eqs. 7-79a, b, c, and d) can be combined to yield homogeneous 
vector wave equations in E and in H. These two equations, Eqs. (7-81) and (7-82), 
have exactly the same form. In free space the source-free wave equation for E is 

where 
c = -jL= ^ 3 x 108 (m/s) = 300 (Mm/s) (8-2) 

is the velocity of wave propagation (the speed of light) in free space. The solutions 
of Eq. (8-1) represent waves. The study of the behavior of waves that have a one-
dimensional spatial dependence {plane waves) is the main concern of this chapter. 

We begin the chapter with a study of the propagation of time-harmonic plane-
wave fields in an unbounded homogeneous medium. Medium parameters such as 
intrinsic impedance, attenuation constant, and phase constant will be introduced. 
The meaning of skin depth, the depth of wave penetration into a good conductor, 
will be explained. Electromagnetic waves carry with them electromagnetic power. 
The concept of Poynting vector, a power flux density, will be discussed. 

We will examine the behavior of a plane wave incident normally on a plane 
boundary. The laws governing the reflection and refraction of plane waves incident 
obliquely on a plane boundary will then be discussed, and the conditions for no 
reflection and for total reflection will be examined. 

A uniform plane wave is a particular solution of Maxwell's equations with E 
assuming the same direction, same magnitude, and same phase in infinite planes per
pendicular to the direction of propagation (similarly for H). Strictly speaking, a uni-

354 
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form plane wave does not exist in practice because a source infinite in extent would be 
required to creat it, and practical wave sources are always finite in extent. But, if we 
are far enough away from a source, the wavefront (surface of constant phase) becomes 
almost spherical; and a very small portion of the surface of a giant sphere is very 
nearly a plane. The characteristics of uniform plane waves are particularly simple, 
and their study is of fundamental theoretical, as well as practical, importance. 

8—2 Plane Waves in Lossless Media 

In this and future chapters we focus our attention on wave behavior in the sinusoidal 
steady state, using phasors to great advantage. The source-free wave equation, Eq. 
(8-1), for free space becomes a homogeneous vector Helmholtz's equation (see Eq. 
7-105): 

V2E + k2E = 0, 5-3) 

where k0 is the free-space wavenumber 

(8-4) 

In Cartesian coordinates, Eq. (8-3) is equivalent to three scalar Helmholtz's equa
tions, one each in the components Ex, Ey, and Ez. Writing it for the component Ex, 
we have 

52 ^ d2 , 2 . . A 

8^ + W + ^ + ko]Ex = °-
(8-5) 

Consider a uniform plane wave characterized by a uniform Ex (uniform magnitude 
and constant phase) over plane surfaces perpendicular to z; that is, 

d2Ex/dx2 = 0 and d2EJdy2 = 0. 

Equation (8-5) simplifies to 
d2Ex 

dz2 + k2Ex = 0, (8-6) 

which is an ordinary differential equation because Ex, a phasor, depends only on z. 
The solution of Eq. (8-6) is readily seen to be 

Ex(z) = EZ(z) + E~(z) 
= E£e-jkoz + £0VfeoZ, 

where EQ and EQ are arbitrary (and, in general, complex) constants that must be 
determined by boundary conditions. Note that since Eq. (8-6) is a second-order equa
tion, its general solution in Eq. (8-7) contains two integration constants. 
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Etiz) 

*z 

FIGURE 8-1 
Wave traveling in positive z direction 
E*(z, t) = EQ COS (cot — kQz), for several values 
off. 

Now let us examine what the first phasor term on the right side of Eq. (8-7) 
represents in real time. Using cos cot as the reference and assuming EQ to be a real 
constant (zero reference phase at z = 0), we have 

E+
X(z, t) = 0t*\_E+

x{z)e^-\ 
= Ms[E+ej((0t-koz)] 
= EQ COS (cot — k0z) 

(8-8) 
(V/m). 

Equation (8-8) has been plotted in Fig. 8-1 for several values oft. At t = 0, Ex (z, 0) = 
EQ COS k0z is a cosine curve with an amplitude EQ. At successive times the curve 
effectively travels in the positive z direction. We have, then, a traveling wave. If we 
fix our attention on a particular point (a point of a particular phase) on the wave, 
we set cos (cot — k0z) = a constant or 

cot — k0z = A constant phase, 

from which we obtain 

dz CO 
u' = Tt=^ = k« yf, 

= c. (8-9) 
A^o 

Equation (8-9) assures us that the velocity of propagation of an equiphase front (the 
phase velocity) in free space is equal to the velocity of light, which is approximately 
3 x 108 (m/s) in free space. 

Wavenumber k0 bears a definite relation to the wavelength. From Eq. (8-4), 
k0 = 2nf/c or 

2TT 
k0 = — (rad/m), 

A 0 

(8-10) 
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which measures the number of wavelengths in a complete cycle, hence its name. An 
inverse relation of Eq. (8-10) is 

(8-11) 

Equations (8-10) and (8-11) are valid without the subscript 0 if the medium is a 
lossless material such as a perfect dielectric, instead of free space. 

It is obvious without replotting that the second phasor term on the right side of 
Eq. (8-7), EQ ejkoz, represents a cosinusoidal wave traveling in the -z direction with 
the same velocity c. If we are concerned only with the wave traveling in the +z di
rection, EQ = 0. However, if there are discontinuities in the medium, reflected waves 
traveling in the opposite direction must also be considered, as we will see later in 
this chapter. 

The associated magnetic field H can be found from Eq. (7-104a) 

V x E = 

E:(Z) 

= -ja)Ho{axH+ + ayH+ + aztfz
+), 

which leads to 

az 
d_ 
dz 
0 

H:=o, 
„ + _ i ds:(z) tly ——: —-. 

-JCOHQ dz 

Ht = 0. 
Thus Hy is the only nonzero component of H; and since 

dE:(z) = - ( £ 0
+

e - ^ ) = - ; f c 0 £ ; ( z ) , 

Eq. (8-12b) yields 

H;(z) = ^ - El(z) = - Et(z) (A/m). 
O>HQ rj0 

We have introduced a new quantity, r\0, in Eq. (8-13): 

(8-12a) 

(8-12b) 

(8-12c) 

_ntf (8-13) 

(8-14) 

t If we had started with E~(z) = Eleik°z, we would obtain H~(z) = E~(z). 
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which is called the intrinsic impedance of the free space. Because rj0 is a real number, 
Hy(z) is in phase with Ex(z), and we can write the instantaneous expression for H as 

H(z, t) = ayH+(z, t) = ay@4H+(z)ejcot] 
E + 

= SLy —— cos (cot - k0z) (A/m). 
Wo 

5-15) 

Hence, for a uniform plane wave the ratio of the magnitudes of E and H is the intrinsic 
impedance of the medium. We also note that H is perpendicular to E and that both 
are normal to the direction of propagation. The fact that we specified E = axEx is 
not as restrictive as it appears, inasmuch as we are free to designate the direction of 
E as the + x-direction, which is normal to the direction of propagation az. 

EXAMPLE 8-1 A uniform plane wave with E = axEx propagates in a lossless simple 
medium (er = 4, \ir = 1, o = 0) in the + z-direction. Assume that Ex is sinusoidal with 
a frequency 100 (MHz) and has a maximum value of + 10~4 (V/m) at t = 0 and 
z = s (m). 

a) Write the instantaneous expression for E for any t and z. 
b) Write the instantaneous expression for H. 
c) Determine the locations where Ex is a positive maximum when t = 10"8 (s). 

Solution First we find k: 
CO 

k = co J lie = — Jfirer c 

= 3VW^4"Y (rad/m)-
a) Using cos cot as the reference, we find the instantaneous expression for E to be 

E(z, t) = axEx = ax10~4 cos (2nl08t - kz + if/). 
Since Ex equals +10 " 4 when the argument of the cosine function equals zero— 
that is, when 

2nl08t - kz + i> = 0, 
we have, at t = 0 and z = J, 

*-b-iWiK ** 
Thus, 

E(z, 0 = ax10_ 4cos \2n\m-
4n 

z + -

= av10 - 4 COS '2nm-^(z-l (V/m). 

This expression shows a shift of £(m) in the + z-direction and could have been 
written down directly from the statement of the problem. 

file:///2n/m
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b) The phasor expression for H is 

where 

Hence, 

H = aA = a*Y' 

rj = r = - ^ = 6(k (Q). 

H(z, t) = a, 10 - 4 

60TI cos 'MVt-±(z-l (A/m). 

c) At £ = 10 8, we equate the argument of the cosine function to +2nn in order to 
make Ex a positive maximum: 

2nlQ*(lQ-*)~(zm-^= ±2nn, 

from which we get 
13 3 

zm = y ± 2 w (m)' « = 0, 1, 2 , . . . ; zm > 0. 

Examining this result more closely, we note that the wavelength in the given 
medium is „ 

Hence the positive maximum value of Ex occurs at 
13 

The E and H fields are shown in Fig. 8-2 as functions of z for the reference time 

E(z, 0) = a x 10- 4 cosy(z-^) 
H(z, 0) = ayEAz, 0)/v 

FIGURE 8-2 
E and H fields of a uniform plane wave 
at t = 0 (Example 8-1). 
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T ro R 

(a) At t = 0. 

FIGURE 8-3 
Illustrating the Doppler effect. 

8-2.1 DOPPLER EFFECT 

When there is relative motion between a time-harmonic source and a receiver, the 
frequency of the wave detected by the receiver tends to be different from that emitted 
by the source. This phenomenon is known as the Doppler effect.f The Doppler effect 
manifests itself in acoustics as well as in electromagnetics. Perhaps you have experi
enced the changes in the pitch of a fast-moving locomotive whistle. In the following 
we give an explanation of the Doppler effect. 

Let us assume that the source (transmitter) T of a time-harmonic wave of a fre
quency / moves with a velocity u at an angle 9 relative to the direct line to a sta
tionary receiver R, as illustrated in Fig. 8-3(a). The electromagnetic wave emitted 
by T at a reference time t = 0 will reach R at 

t i = (8-16) 

At a later time t = At, T has moved to the new position T, and the wave emitted 
by T at that time will reach R at 

t2 = At + -
c 

= At + -[rl- 2r0(uAt) cos 9 + (u At)2f12. 

If (u At)2 « rl, Eq. (8-17) becomes 

Hence the time elapsed at JR, At', corresponding to At at T is 

At' = t2-t1 

= Ad 1 — c o s 

(8-17) 

(8-18) 

1-19) 

which is not equal to At. 

f C. Doppler (1803-1853). 
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If At represents a period of the time-harmonic source—that is, if At = \jf—then 
the frequency of the received wave at R is 

At' / u 
1 — cos _ , 

c ) (8-20) 

^ / ( 1 +-COS 

for the usual case of (u/c)2 « 1. Equation (8-20) is an approximate formula and does 
not hold when 9 is close to n/2. (Do you know why?) For 6 = 0, Eq. (8-20) clearly 
indicates that the frequency perceived at R is higher than the transmitted frequency 
when T moves toward R. Conversely, the perceived frequency is lower than the trans
mitted frequency when T moves away from R (9 = n). It is obvious that similar results 
are obtained if R moves and T is stationary. 

The Doppler effect is the basis of operation of the (Doppler) radar used by police 
to check the speed of a moving vehicle. The frequency shift of the received wave 
reflected by a moving vehicle is proportional to the speed of the vehicle and can be 
detected and displayed on a hand-held unit. (See Problem P.8-3). The Doppler effect 
is also the cause of the so-called red shift of the light spectrum emitted by a receding 
distant star in astronomy. As the star moves away at a high speed from an observer 
on earth, the received frequency shifts toward the lower frequency (red) end of the 
spectrum. 

8-2.2 TRANSVERSE ELECTROMAGNETIC WAVES 

We have seen that a uniform plane wave characterized by E = axEx propagating in 
the +z-direction has associated with it a magnetic field H = ayHy. Thus E and H 
are perpendicular to each other, and both are transverse to the direction of propa
gation. It is a particular case of a transverse electromagnetic (TEM) wave. The phasor 
field quantities are functions of only the distance z along a single coordinate axis. 
We now consider the propagation of a uniform plane wave along an arbitrary direc
tion that does not necessarily coincide with a coordinate axis. 

The phasor electric field intensity for a uniform plane wave propagating in the 
+ z-direction is 

E(z) = Eoe-;'kz, (8-21) 

where E0 is a constant vector. A more general form of Eq. (8-21) is 

E(JC, y, z) = E0e~jkxX-jk>y-jk*z. (8-22) 

It can be easily proved by direct substitution that this expression satisfies the homo
geneous Helmholtz's equation, provided that 

k2
x + kl + k\ = co2 lie. (8-23) 
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Plane of constant 
phase (phase front) 

z FIGURE 8-4 
Radius vector and wave normal to a phase front of a 
uniform plane wave. 

If we define a wavenumber vector as 

k = a A + *A + a A = ka„ 
and a radius vector from the origin 

R = axx + ayy + azz, 

then Eq. (8-22) can be written compactly as 

(8-24) 

1-25) 

E(R) = E0e~jk •R = E0e'jka"'R (V/m), (8-26) 

where a„ is a unit vector in the direction of propagation. From Eq. (8-24) it is clear 
that 

kx = k • ax = kK • ax, (8-27a) 
fc, = k • a, = /ca„ • a„ (8-27b) 
^ = k • az = kan • az, (8-27c) 

and that a„ • ax, a„ • ay and a„ • az are direction cosines of a„. 
The geometrical relations of a„ and R are illustrated in Fig. 8-4, from which we 

see that 
a„ • R = Length OP (a constant) 

is the equation of a plane normal to a„, the direction of propagation. Just as z = 
Constant denotes a plane of constant phase and uniform amplitude for the wave in 
Eq. (8-21), a„ • R = Constant is a plane of constant phase and uniform amplitude 
for the wave in Eq. (8-26). In a charge-free region, \ • E = 0. As a result, 

Eo-V(e_- /ka"-R) = 0. (8-28a)t 

! This is a consequence of the fact that V • E0 = 0, where E0 is a constant vector (see Problem P.2-28). 
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But 

( e ) \ x dx + y dy + z azy/ 

= -j(*xh + ayky + azkz)e~JikxX+kyy+kzZ) 

= -jka„e-jkan-R, 

hence Eq. (8-28a) can be written as 

-7 /c (E 0 - a>-^ a " - R = 0, 
which requires 

a„ • E0 = 0. (8-28b) 

Thus the plane-wave solution in Eq. (8-26) imples that E0 is transverse to the direc
tion of propagation. 

The magnetic field associated with E(R) in Eq. (8-26) may be obtained from Eq. 
(7-104a) as 

H(R)= — 1 — \ xE(R) 
jCOfi 

or 

where 

(8-29) 

(8-30) 

is the intrinsic impedance^ of the medium. Substitution of Eq. (8-26) in Eq. (8-29) 
yields 

(8-31) 

It is now clear that a uniform plane wave propagating in an arbitrary direction, a„, 
is a TEM wave with E 1 H and that both E and H are normal to a„. 

EXAMPLE 8-2 if E(R) of a TEM wave is given, as in Eq. (8-26), H(R) can be found 
by using Eq. (8-29). Obtain a relation expressing E(R) in terms of H(R). 

Solution Assuming H(R) to have the form 

H(R) = H 0 e-^ a " , R , (8-32) 

Also called wave impedance. 
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we obtain from Eq. (7-104b) 

E(R) = - V x H(R) jcoe 

= j^(-jk)znxH(R) 
or 

E ( R ) = - 1 M H ( R ) (V/m). (8-33) 

Alternatively, we can obtain the same result by cross-multiplying both sides of Eq. 
(8-29) by a„ and using the back-cab rule in Eq. (2-20). nnn 

8-2.3 POLARIZATION OF PLANE WAVES 

The polarization of a uniform plane wave describes the time-varying behavior of the 
electric field intensity vector at a given point in space. Since the E vector of the plane 
wave in Example 8-1 is fixed in the x direction (E = axEx, where Ex may be positive 
or negative), the wave is said to be linearly polarized in the ^-direction. A separate 
description of magnetic-field behavior is not necessary, inasmuch as the direction of 
H is definitely related to that of E. 

In some cases the direction of E of a plane wave at a given point may change 
with time. Consider the superposition of two linearly polarized waves: one polarized 
in the ^-direction, and the other polarized in the ^-direction and lagging 90° (or n/2 
rad) in time phase. In phasor notation we have 

E(z) = a j ^ z ) + ay£2(z) (g_34) 

= *xE10e-Jkz-ayjE20e-Jkz, 

where £10 and E20 are real numbers denoting the amplitudes of the two linearly 
polarized waves. 

The instantaneous expression for E is 
E(z, t) = 0te{\*xE,{z) + ay£2(z)]£>'} 

= axE10 cos (cot — kz) + ayE20 cos I cot — kz — — ). 

In examining the direction change of E at a given point as t changes, it is convenient 
to set z = 0. We have 

E(0, t) = aJ^O, t) + ay£2(0, t) (g_35) 

= ax£10 cos cot + ayE20 sin cot. 

As cot increases from 0 through n/2, n, and 3n/2—completing the cycle at 2n—the 
tip of the vector E(0, t) will traverse an elliptical locus in the counterclockwise 
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direction. Analytically, we have 

cos cot = 
£i(Q, t) 

£10 
and 

sm cot = 
E2(0, t) 

-20 

= yjl— COS2 COt = 1 — 

which leads to the following equation for an ellipse: 

£i(0, t) 
-^10 

E2(0, t) 
' 2 0 + 

X(o, 0" 
no 

= 1. (8-36) 

Hence E, which is the sum of two linearly polarized waves in both space and time 
quadrature, is elliptically polarized if E20 # E10, and is circularly polarized if E20 = 
E10. A typical polarization circle is shown in Fig. 8-5(a). 

When £2o = E10, the instantaneous angle a that E makes with the x-axis at z = 0 
is 

1 E2 0, t) 
a = t a n " 1 - ^ - 4 = tot, $-37) 

FIGURE 8-5 
Polarization diagrams for sum of two linearly polarized 
waves in space quadrature at z = 0: (a) circular polarization, 
£(0, t) = El0(ax cos cot + ny sin cot); (b) linear polarization, 
E(0, t) = {AXE10 + nyE20) cos cot. 
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which indicates that E rotates at a uniform rate with an angular velocity co in a 
counterclockwise direction. When the fingers of the right hand follow the direction 
of the rotation of E, the thumb points to the direction of propagation of the wave. 
This is a right-hand or positive circularly polarized wave. 

If we start with an E2{z), which leads Ex{z) by 90° (n/2 rad) in time phase, Eqs. 
(8-34) and (8-35) will be, respectively, 

E(z) = axE10e-*z + ayjE20e~*z (8-38) 

and 
E(0, t) = axE10 cos cot — ayE20 sin cot. (8-39) 

Comparing Eq. (8-39) with Eq. (8-35), we see that E will still be elliptically polarized. 
If E20 = E10, E will be circularly polarized, and its angle measured from the x-axis 
at z = 0 will now be — cot, indicating that E will rotate with an angular velocity co 
in a clockwise direction; this is a left-hand or negative circularly polarized wave. 

If E2(z) and E^z) are in space quadrature but in time phase, their sum E will be 
linearly polarized along a line that makes an angle t a n - 1 (£20/£10) with the x-axis, 
as depicted in Fig. 8-5(b). The instantaneous expression for E at z = 0 is 

E(0, 0 = (ax£10 + ay£20) cos cot. (8-40) 

The tip of the E(0, t) will be at the point P1 when cot = 0. Its magnitude will decrease 
toward zero as cot increases toward n/2. After that, E(0, t) starts to increase again, 
in the opposite direction, toward the point P2 where cot = n. 

In the general case, E2(z) and E^z), which are in space quadrature, can have 
unequal amplitudes (E20 # -Eio) and can differ in phase by an arbitrary amount (not 
zero or an integral multiple of n/2). Their sum E will be elliptically polarized, and 
the principal axes of the polarization ellipse will not coincide with the axes of the 
coordinates (see Problem P.8-7). 

We note here that the electromagnetic waves radiated by AM broadcast stations 
from their antenna towers are linearly polarized with the E-field perpendicular to 
the ground. For maximum reception the receiving antenna should be parallel to the 
E-field—that is, vertical. Television signals, on the other hand, are linearly polarized 
in the horizontal direction. This is why the wires of rooftop TV receiving antennas 
are horizontal. The waves radiated by FM broadcast stations are generally circularly 
polarized; hence the orientation of an FM receiving antenna is not critical as long 
as it lies in a plane normal to the direction of the signal. 

EXAMPLE 8-3 Prove that a linearly polarized plane wave can be resolved into a 
right-hand circularly polarized wave and a left-hand circularly polarized wave of 
equal amplitude. 

Solution Consider a linearly polarized plane wave propagating in the + z-direction. 
We can assume, with no loss of generality, that E is polarized in the x-direction. In 
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phasor notation we have 

But this can be written as 

where 

and 

E(z) = axE0e-*z. 

E(z) = Erc(z) + EJc(z), 

Erc(z) = ^(ax-jay)e-^ (8-41a) 

Efc(z) = ^ ( a x + 7 a > - ^ . (8-41b) 

From previous discussions we recognize that Erc(z) in Eq. (8-4la) and EZc(z) in Eq. 
(8-41b) represent right-hand and left-hand circularly polarized waves, respectively, 
each having an amplitude E0/2. The statement of this problem is therefore proved. 
The converse statement that the sum of two oppositely rotating circularly polarized 
waves of equal amplitude is a linearly polarized wave is, of course, also true. mm 

8—3 Plane Waves in Lossy Media 

In a source-free lossy medium the homogeneous vector Helmholtz's equation to be 
solved is 

V2E + fc2E = 0, (8-42) 

where the wavenumber kc = (D^[PLEC is a complex number, as given in Eq. (7-114). 
The derivations and discussions pertaining to plane waves in a lossless medium in 
Section 8-2 can be modified to apply to wave propagation in a lossy medium by 
simply replacing k with kc. However, in an effort to conform with the conventional 
notation used in transmission-line theory, it is customary to define a propagation 
constant, y, such that 

y=jkc=j(D^n€c (m x). (8-43) 

Since y is complex, we write, with the help of Eq. (7-110), 

or, from Eq. (7-114), 

a \ 1 / 2 

y = a + j j g = j t » V ^ ( l + T — , (8-44) 

y = a+jP=jcojne'[ l-j^j) , (8-45) 

where a and jff are the real and imaginary parts of y, respectively. Their physical 
significance will be explained presently. For a lossless medium, a = 0 (e" = 0, e = e'), 
a = 0, and /? = k = co>/ue. 
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The Helmholtz's equation, Eq. (8-42), becomes 

V2E - y2E = 0. (8-46) 

The solution of Eq. (8-46), representing a uniform plane wave propagating in the 
+ z-direction, is 

E = ixEx = ixE0e-", (8-47) 

where we have assumed that the wave is linearly polarized in the x-direction. The 
propagation factor e~yz can be written as a product of two factors: 

Ex = E0e-aze-^. 

As we shall see, both a and (3 are positive quantities. The first factor, e~az, decreases 
as z increases and thus is an attenuation factor, and a is called an attenuation con
stant. The SI unit of the attenuation constant is neper per meter (Np/m).1" The second 
factor, e~jl3z, is a phase factor; /? is called a phase constant and is expressed in radians 
per meter (rad/m). The phase constant expresses the amount of phase shift that occurs 
as the wave travels one meter. 

General expressions of a and /? in terms of co and the constitutive parameters—e, 
H, and a—of the medium are rather involved (see Problem P.8-9). In the following 
paragraphs we examine the approximate expressions for low-loss dielectrics, good 
conductors, and ionized gases. 

8-3.1 LOW-LOSS DIELECTRICS 

A low-loss dielectric is a good but imperfect insulator with a nonzero equivalent 
conductivity, such that e" « e' or u/coe « 1. Under this condition, y in Eq. (8-45) 
can be approximated by using the binomial expansion: 

from which we obtain the attenuation constant 

1 • €" l € 

2 \ / e 
and the phase constant 

a^—- / 4 (Np/m) (8-48) 

(3 = (Dyjllt' l + (rad/m). (8-49) 

It is seen from Eq. (8-48) that the attenuation constant of a low-loss dielectric is a 
positive quantity and is approximately directly proportional to the frequency. The 
phase constant in Eq. (8-49) deviates only very slightly from the value coyjjie for a 
perfect (lossless) dielectric. 

f Neper is a dimensionless quantity. If a = l (Np/m), then a unit wave amplitude decreases to a magnitude 
e"1 ( = 0.368) as it travels a distance of 1 (m). An attenuation of 1 (Np/m) equals 20 log10e = 
8.69 (dB/m). 
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The intrinsic impedance of a low-loss dielectric is a complex quantity. 

(8-50) 

1 + 7 ^ 7 ) («)• 

Since the intrinsic impedance is the ratio of Ex and Hy for a uniform plane wave, the 
electric and magnetic field intensities in a lossy dielectric are thus not in time phase, 
as they are in a lossless medium. 

The phase velocity up is obtained from the ratio co/fi in a manner similar to that 
in Eq. (8-9). Using Eq. (8-49), we have 

i - 1 feyi (m/s)- <8-51) CD 1 

lfi€ L 

8-3.2 GOOD CONDUCTORS 

A good conductor is a medium for which a/coe » 1. Under this condition it is con
venient to use Eq. (8-44) and neglect 1 in comparison with the term a/jco€. We 
write 

i— f~o~ r- i 1+7 / 
y = jcoy/ne -— = V/ yJcoiMJ = -j=- ^coficr 

^jcoe ^2 
or 

y = a + JP ^ (1 + fiy/nfa, (8-52) 

where we have used the relations 

V77 = (^ / 2 ) 1 / 2 = ^ 4 ^ ( l + 7 ) / V / 2 

and co = Inf. Equation (8-52) indicates that a and jS for a good conductor are 
approximately equal and both increase as ^Jf and yja. For a good conductor, 

a = jS = yjitfpuj. 

The intrinsic impedance of a good conductor is 

W£- a \ a a («), 

5-53) 

(8-54) 

which has a phase angle of 45°. Hence the magnetic field intensity lags behind the 
electric field intensity by 45°. 

The phase velocity in a good conductor is 
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which is proportional to ^ff and l/yfa. Consider copper as an example: 

a = 5.80 x 107 (S/m), 
^ = 471 x 10-7 (H/m), 

wp = 720(m/s) at 3 (MHz), 

which is about twice the velocity of sound in air and is many orders of magnitude 
slower than the velocity of light in air. The wavelength of a plane wave in a good 
conductor is 

(m). 5-56) 

For copper at 3 (MHz), X = 0.24 (mm). As a comparison, a 3 (MHz) electromagnetic 
wave in air has a wavelength of 100 (m). 

At very high frequencies the attenuation constant a for a good conductor, as 
given by Eq. (8-53), tends to be very large. For copper at 3 (MHz), 

a = VTT(3 x 106)(4TT X 10"7)(5.80 X 107) = 2.62 x 104 (Np/m). 

Since the attenuation factor is e~az, the amplitude of a wave will be attenuated by a 
factor of e'1 = 0.368 when it travels a distance 8 = 1/a. For copper at 3 (MHz) this 
distance is (1/2.62) x 10 ~4 (m), or 0.038 (mm). At 10 (GHz) it is only 0.66 (/mi)—a 
very small distance indeed. Thus a high-frequency electromagnetic wave is attenuated 
very rapidly as it propagates in a good conductor. The distance 3 through which the 
amplitude of a traveling plane wave decreases by a factor of e~1 or 0.368 is called the 
skin depth or the depth of penetration of a conductor: 

S = - = 
1 

a y/nffia 
(m). (8-57) 

Since a = /? for a good conductor, 3 can also be written as 

b--
1 
/< 

I 
2% 

(m). (8-58) 

At microwave frequencies the skin depth or depth of penetration of a good con
ductor is so small that fields and currents can be considered as, for all practical 
purposes, confined in a very thin layer (that is, in the skin) of the conductor surface. 

Table 8-1 lists the skin depths of several types of materials at various frequencies. 

EXAMPLE 8-4 The electric field intensity of a linearly polarized uniform plane wave 
propagating in the +z-direction in seawater is E = ax100 cos (1077rt) (V/m) at z = 0. 
The constitutive parameters of seawater are er = 72, \ir = 1, and a = 4 (S/m). (a) De-
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TABLE 8-1 
Skin Depths, 5 in (mm), of Various Materials 

Material 

Silver 
Copper 
Gold 
Aluminum 
Iron (ji, =* 103) 

Seawater 

o (S/m) 

6.17 x 107 

5.80 x 107 

4.10 x 107 

3.54 x 107 

1.00 x 107 

4 

/ = 60(Hz) 

8.27 (mm) 
8.53 

10.14 
10.92 
0.65 

32 (m) 

1 (MHz) 

0.064 (mm) 
0.066 
0.079 
0.084 
0.005 

0.25 (m) 

1 (GHz) 

0.0020 (mm) 
0.0021 
0.0025 
0.0027 
0.00016 

t 

+ The e of seawater is approximately 72e0. At / = 1 (GHz), o/coe s 1 (not »1). Under these conditions, 
seawater is not a good conductor, and Eq. (8-57) is no longer applicable. 

termine the attenuation ponstant, phase constant, intrinsic impedance, phase velocity, 
wavelength, and skin depth, (b) Find the distance at which the amplitude of E is 1 % 
of its value at z = 0. (c) Write the expressions for E(z, t) and H(z, t) at z = 0.8 (m) 
as functions of t. 

Solution 
OD = 107TT (rad/s), 

(D 
/ = 2^ = 5 x l ° 6 (Hz)' 

"e "e°er 1 0 7 " f i x 10_9 m = 200 » 1. 

Hence we can use the formulas for good conductors. 
a) Attenuation constant: 

a = VTT/^ = V57rl06(47rl0-7)4 = 8.89 (Np/m). 
Phase constant: 

£ = 7 ^ = 8.89 (rad/m). 
Intrinsic impedance: 

.N nfu 

Phase velocity: 

= {1+}) M s x i o ^ x i o - ^ nelnli 

u„ = % = ̂ -r? = 3.53 x 106 (m/s). 
P 8.89 
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Wavelength: 

Skin depth: 

b) Distance zl at which the amplitude of wave decreases to 1% of its value at z = 0: 

e -« z ' = 0.01 or eazi = - — = 100, 

Z' = a lnl0° = W = a518 W 

c) In phasor notation, 
E(z) = axl00e~aze-jpz. 

The instantaneous expression for E is 
E(z, t) = <%*[E(z)ejcot] 

= ms[axl00e-azej{wt~Pz)] = SLx100e~az cos (cot - 0z). 
At z = 0.8 (m) we have 

E(0.8, 0 = ax100e-°-8a cos (1077it - 0.8$ 
= ax0.082 cos (1077ct - 7.11) (V/m). 

We know that a uniform plane wave is a TEM wave with E 1 H and that both are 
normal to the direction of wave propagation az. Thus H = ayHy. To find H(z, t), the 
instantaneous expression of H as a function of t, we must not make the mistake of 
writing Hy(z, t) = Ex(z, t)/rjc because this would be mixing real time functions Ex(z, t) 
and Hz(z, t) with a complex quantity nc. Phasor quantities Ex(z) and Hy{z) must be 
used. That is, „ , . 

from which we obtain the relation between instantaneous quantities 

HJz, t) = Ske Me>t" 
For the present problem we have, in phasors, 

inn -o.8« -jo.8/? 0 082e~ i 7-u 

«/0.8) = m\eZ = ft05^ = 0.026,—. 
Note that both angles must be in radians before combining. The instantaneous 
expression for H at z = 0.8 (m) is then 

H(0.8, t) = a/).026 cos (I07nt - 1.61) (A/m). 

We can see that a 5 (MHz) plane wave attenuates very rapidly in seawater and 
becomes negligibly weak a very short distance from the source. Even at very low 



8-3 Plane Waves in Lossy Media 373 

frequencies, long-distance radio communication with a submerged submarine is very 
difficult. - ■ 

8-3.3 IONIZED GASES 

In the earth's upper atmosphere, roughly from 50 to 500 (km) in altitude, there exist 
layers of ionized gases called the ionosphere. The ionosphere consists of free electrons 
and positive ions that are produced when the ultraviolet radiation from the sun is 
absorbed by the atoms and molecules in the upper atmosphere. The charged particles 
tend to be trapped by the earth's magnetic field. The altitude and character of the 
ionized layers depend both on the nature of the solar radiation and on the composi
tion of the atmosphere. They change with the sunspot cycle, the season, and the hour 
of the day in a very complicated way. The electron and ion densities in the individual 
ionized layers are essentially equal. Ionized gases with equal electron and ion densities 
are called plasmas. 

The ionosphere plays an important role in the propagation of electromagnetic 
waves and affects telecommunication. Because the electrons are much lighter than the 
positive ions, they are accelerated more by the electric fields of electromagnetic waves 
passing through the ionosphere. In our analysis we shall ignore the motion of the ions 
and regard the ionosphere as a free electron gas. Furthermore, we shall neglect the 
collisions between the electrons and the gas atoms and molecules.1" 

An electron of charge — e and mass m in a time-harmonic electric field E in the 
x-direction at an angular frequency a> experiences a force — eE, which displaces it 
from a positive ion by a distance x such that 

d2x 
- e E = m -rr- = -mco2x (8-59) 

dt2 

or 
x = - % E, (8-60) 

ma)z 

where E and x are phasors. Such a displacement gives rise to an electric dipole 
moment: 

p = -ex. (8-61) 

If there are N electrons per unit volume, we have a volume density of electric dipole 
moment or polarization vector 

Ne2 

P = Np = j E. (8-62) 

In writing Eq. (8-62) we have implicitly neglected the mutual effect of the induced 
dipole moments of the electrons on one another. From Eqs. (3-97) and (8-62) we 

1 This is not a good assumption in the lowest regions of the ionosphere where the atmospheric pressure 
is high. 
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obtain 

D = e0E + P = e0 1 
Ne2 

mco e 
E 

= e n ! l - ^ f - ) E , 
(D2 

where 

(rad/s) 

(8-63) 

(8-64) 

is called the plasma angular frequency, a characteristic of the ionized medium. The 
corresponding plasma frequency is 

f = ^=— h2 
p 2% 2% \ men 

(Hz). (8-65) 

Thus the equivalent permittivity of the ionosphere or plasma is 

(8-66) 

On the basis of Eq. (8-66) we obtain the propagation constant as 

ff\2 
y=j(D^/n€0 / l - ' p 

fr 
and the intrinsic impedance as 

nP = no 
'i J_P 

f 

(8-67) 

(8-68) 

where TJ0 = Vi"o7^o = 1207T (Q). 
From Eq. (8-66) we note the peculiar phenomenon of a vanishing e as / ap

proaches fp. When e becomes zero, electric displacement D (which depends on free 
charges only) is zero even when electric field intensity E (which depends on both free 
and polarization charges) is not. In that case it would be possible for an oscillating E 
to exist in the plasma in the absence of free charges, leading to a so-called plasma 
oscillation. 

When f <fp,y becomes purely real, indicating an attenuation without propaga
tion; at the same time, rjp becomes purely imaginary, indicating a reactive load with 
no transmission of power. Thus fp is also referred to as the cutoff frequency. We 
will discuss wave reflection and transmission under various conditions later in this 
chapter. When / > fp, y is purely imaginary, and electromagnetic waves propagate 
unattenuated in the plasma (assuming negligible collision losses). 
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If the value of e, m, and e0 are substituted into Eq. (8-65), we find a very simple 
formula for the plasma (cutoff) frequency: 

fv^9jN (Hz). (8-69) 

As we have mentioned before, N at a given altitude is not a constant; it varies with the 
time of the day, the season, and other factors. The electron density of the ionosphere 
ranges from about 1010/m3 in the lowest layer to 1012/m3 in the highest layer. Using 
these values for N in Eq. (8-69), we find fp to vary from 0.9 to 9 (MHz). Hence, for 
communication with a satellite or a space station beyond the ionosphere we must 
use frequencies much higher than 9 (MHz) to ensure wave penetration through the 
layer with the largest N at any angle of incidence (see Problem P.8-14). Signals with 
frequencies lower than 0.9 (MHz) cannot penetrate into even the lowest layer of the 
ionosphere but may propagate very far around the earth by way of multiple reflec
tions at the ionosphere's boundary and the earth's surface. Signals having frequencies 
between 0.9 and 9 (MHz) will penetrate partially into the lower ionospheric layers 
but will eventually be turned back where N is large. We have given here only a very 
simplified picture of wave propagation in the ionosphere. The actual situation is com
plicated by the lack of distinct layers of constant electron densities and by the presence 
of the earth's magnetic field. 

EXAMPLE 8-5 When a spacecraft reenters the earth's atmosphere, its speed and 
temperature ionize the surrounding atoms and molecules and create a plasma. It has 
been estimated that the electron density is in the neighborhood of 2 x 108 per (cm3). 
Discuss the plasma's effect on frequency usage in radio communication between the 
spacecraft and the mission controllers on earth. 

Solution For 
N = 2 x 108 per (cm3) 

= 2 x 1014 per (m3), 

Eq. (8-69) gives fp = 9 x j l x 1014 = 12.7 x 107 (Hz), or 127 (MHz). Thus, radio 
communication cannot be established for frequencies below 127 (MHz). mm 

8—4 Group Velocity 

In Section 8-2 we defined the phase velocity, up, of a single-frequency plane wave 
as the velocity of propagation of an equiphase wavefront. The relation between up 
and the phase constant, /?, is 

UP = -a ( m / s ) - (8-70) 

For plane waves in a lossless medium, /?_== coy/fie is a linear function of co. As a 
consequence, the phase velocity up = 1/yJJie is a constant that is independent of fre
quency. However, in some cases (such as wave propagation in a lossy dielectric, as 
discussed previously, or along a transmission line, or in a waveguide to be discussed 
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E(z, t) 

in later chapters) the phase constant is not a linear function of co; waves of different 
frequencies will propagate with different phase velocities. Inasmuch as all information-
bearing signals consist of a band of frequencies, waves of the component frequencies 
travel with different phase velocities, causing a distortion in the signal wave shape. 
The signal "disperses." The phenomenon of signal distortion caused by a dependence 
of the phase velocity on frequency is called dispersion. In view of Eqs. (8-51) and 
(7-115), we conclude that a lossy dielectric is obviously a dispersive medium. 

An information-bearing signal normally has a small spread of frequencies (side
bands) around a high carrier frequency. Such a signal comprises a "group" of fre
quencies and forms a wave packet. A group velocity is the velocity of propagation 
of the wave-packet envelope (of a group of frequencies). 

Consider the simplest case of a wave packet that consists of two traveling waves 
having equal amplitude and slightly different angular frequencies co0 + Aco and 
co0 - Aco (Aco « co0). The phase constants, being functions of frequency, will also be 
slightly different. Let the phase constants corresponding to the two frequencies be 
j80 + AjS and j80 - A0. We have 

E(z, t) = E0 cos [(co0 + Aco)t - (j80 + AjS)z] 
+ E0 cos [ K - Aco)t - (0O - Aj8)z] 

= 2E0 COS (tAco - Z A/?) cos (co0t - yS0z). 
5-71) 

Since Aco « co0, the expression in Eq. (8-71) represents a rapidly oscillating wave 
having an angular frequency co0 and an amplitude that varies slowly with an angular 
frequency Aco. This is depicted in Fig. 8-6. 

The wave inside the envelope propagates with a phase velocity found by setting 
%£ — Poz — Constant: 

dz co0 
Up~dt~p0 

The velocity of the envelope (the group velocity ug) can be determined by setting 
the argument of the first cosine factor in Eq. (8-71) equal to a constant: 

t Aco — z A/3 = Constant, 

FIGURE 8-6 
Sum of two time-harmonic traveling waves of equal amplitude and slightly different 
frequencies at a given t. 
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* FIGURE 8-7 
P co-fi graph for ionized gas. 

from which we obtain 

In the limit that Aco -
a dispersive medium: 

dz Aco 
Ug^~dt=~Af} 

1 
Afi/Aco 

0, we have the formula for computing the group velocity in 

(8-72) 

This is the velocity of a point on the envelope of the wave packet, as shown in Fig. 
8-6, and is identified as the velocity of the narrow-band signal.f As we saw in Sub
section 8-3.3, [} is a function of co. If co is plotted versus /?, an co~p graph is obtained. 
The slope of the straight line drawn from the origin to a point on the graph gives 
the phase velocity, co//?, and the local slope of the tangent to the graph at the point 
is the group velocity, dco/d/3. 

In Fig. 8-7 an co~p graph for wave propagation in an ionized medium is plotted, 
based on Eq. (8-67): 

/? = 0 ) V / ^ l~J 
CO ■ 1 - 1 ^ 

CO 

(8-73) 

At co = COp (the cutoff angular frequency), fi = 0. For co > cop, wave propagation is 
possible, and 

co 

1 
co 

(8-74) 

f The concept of group velocity is not applicable to wide-band signals in a dispersive medium (see Subsection 
10-3.2). 
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Substituting Eq. (8-73) in Eq. (8-72), we have 

un — c /1 — Op 

CO 
J-75) 

We note that up> c and ug < c, and for wave propagation in an ionized medium, 
upug = c2. A similar situation exists in waveguides (Section 10-2). 

A general relation between the group and phase velocities may be obtained by 
combining Eqs. (8-70) and (8-72). From Eq. (8-70) we have 

d /co\ 1 co du, 
dco dco \u{ •P/ UP 

Substitution of the above in Eq. (8-72) yields 
u„ 

Up dco 

1 co du, 
(8-76) 

up dco 

From Eq. (8-76) we see three possible cases: 

a) No dispersion: 

du 
dco 

b) Normal dispersion: 

uv independent of co, ft a linear function of co), 

un = u, *P-

dco 
(u decreasing with co), 

c) Anomalous dispersion: 
ug < Up. 

dco 
(u increasing with co), 

v 

un> u v 

EXAMPLE 8-6 A narrow-band signal propagates in a lossy dielectric medium which 
has a loss tangent 0.2 at 550 (kHz), the carrier frequency of the signal. The dielectric 
constant of the medium is 2.5. (a) Determine a and /?. (b) Determine up and ug. Is the 
medium dispersive? 

Solution 

a) Since the loss tangent e"/e' = 0.2 and e//2/8e/2 « 1, Eqs. (8-48) and (8-49) can 
be used to determine a and /? respectively. But first we find e" from the loss 
tangent: 

6" = 0.2 e' = 0.2 x 2.5 c0 

= 4 . 4 2 x l 0 - 1 2 (F/m). 
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Thus, 

" i " X l l 
a = °^- \t = n{5SQ x 103) x (4.42 x 10"12) x - — 

2 Ve' JZ5 

379 

= 1.82 x 10" 3 (Np/m); 

ft = a)y/ne' 1 + 
1 fe ,"\2 

= 2TT(550 x 103) 
/2.5 

1 + ^ (0.2): 

3 x 108 

= 0.0182 x 1.005 = 0.0183 (rad/m). 

b) Phase velocity (from Eq. 8-51): 

co 1 

1 
3 x 108 

■4(f 
V2-5 

c) Group velocity (from Eq. 8-49): 

1 - i (0.2)2 

ifie'L 

= U 

i-Kf 

x 108 (m/s). 

^ = V / i € 1 + 
1 /e Jf\2 

(dP/dcD) - ^ = U„. 

Thus a low-loss dielectric is nearly nondispersive. Here we have assumed e" to 
be independent of frequency. For a high-loss dielectric, e" will be a function of 
co and may have a magnitude comparable to e'. The approximation in Eq. (8-49) 
will no longer hold, and the medium will be dispersive. » 

8—5 Flow of Electromagnetic Power and the Poynting Vector 

Electromagnetic waves carry with them electromagnetic power. Energy is transported 
through space to distant receiving points by electromagnetic waves. We will now 
derive a relation between the rate of such energy transfer and the electric and magnetic 
field intensities associated with a traveling electromagnetic wave. 

We begin with the curl equations: 

V x E = -
dB. 

V x H = J + 
~dt 

(7 -53a) (8-77) 

(7-53b) (8-78) 
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The verification of the following identity of vector operations (see Problem P.2-33) 
is straightforward: 

V • (E x H) = H • (V x E) - E • (V x H). (8-79) 
Substitution of Eqs. (8-77) and (8-78) in Eq. (8-79) yields 

V - ( E x H ) = - H - ^ - E - ^ - E - J . (8-80) 

In a simple medium, whose constitutive parameters e, fi, and o do not change with 
time, we have 

E . dB _ E . ffeE) = 1 d(eE • E) _ d [1 
dt dt 2 dt dt\2€ 

E • J = E • (ffE) = oE2. 
Equation (8-80) can then be written as 

V • (E x H) = - A f i €£2 + l- yH2) - oE2, (8-81) 

which is a point-function relationship. An integral form of Eq. (8-81) is obtained by 
integrating both sides over the volume of concern: 

£ ( E x H ) - ^ - I I ( i eE2 + l- yH^j dv - ^ oE2 dv, (8-82) 

where the divergence theorem has been applied to convert the volume integral of 
V • (E x H) to the closed surface integral of (E x H). 

We recognize that the first and second terms on the right side of Eq. (8-82) 
represent the time-rate of change of the energy stored in the electric and magnetic 
fields, respectively. [Compare with Eqs. (3-176b) and (6-172c).] The last term is the 
ohmic power dissipated in the volume as a result of the flow of conduction current 
density aE in the presence of the electric field E. Hence we may interpret the right 
side of Eq. (8-82) as the rate of decrease of the electric and magnetic energies stored, 
subtracted by the ohmic power dissipated as heat in the volume V. To be consistent 
with the law of conservation of energy, this must equal the power (rate of energy) 
leaving the volume through its surface. Thus the quantity (E x H) is a vector rep
resenting the power flow per unit area. Define 

= E x H (W/nr (8-83) 

Quantity &> is known as the Poynting vector, which is a power density vector 
associated with an electromagnetic field. The assertion that the surface integral of 0* 
over a closed surface, as given by the left side of Eq. (8-82), equals the power leaving 
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the enclosed volume is referred to as Poynting's theorem. This assertion is not limited 
to plane waves. 

Equation (8-82) may be written in another form: 

- j)sP • ds = j t j y (we + wm) dv + §v Va dv, (8-84) 

where 
we = \eE2 = \eE • E* = Electric energy density, (8-85) 
wm = \\ift2 = yjuH • H* = Magnetic energy density, (8-86) 
pa = aE2 = J2/a = (TE • E* = J • J*/a = Ohmic power density. (8-87) 

In words, Eq. (8-84) states that the total power flowing into a closed surface at any 
instant equals the sum of the rates of increase of the stored electric and magnetic 
energies and the ohmic power dissipated within the enclosed volume. 

Two points concerning the Poynting vector are worthy of note. First, the power 
relations given in Eqs. (8-82) and (8-84) pertain to the total power flow across a 
closed surface obtained by the surface integral of (E x H). The definition of the 
Poynting vector in Eq. (8-83) as the power density vector at every point on the sur
face is an arbitrary, albeit useful, concept. Second, the Poynting vector 0* is in a 
direction normal to both E and H. 

If the region of concern is lossless (a = 0), then the last term in Eq. (8-84) 
vanishes, and the total power flowing into a closed surface is equal to the rate of 
increase of the stored electric and magnetic energies in the enclosed volume. In a 
static situation, the first two terms on the right side of Eq. (8-84) vanish, and the 
total power flowing into a closed surface is equal to the ohmic power dissipated in 
the enclosed volume. 

EXAMPLE 8-7 Find the Poynting vector on the surface of a long, straight con
ducting wire (of radius b and conductivity a) that carries a direct current /. Verify 
Poynting's theorem. 

Solution Since we have a d-c situation, the current in the wire is uniformly dis
tributed over its cross-sectional area. Let us assume that the axis of the wire coincides 
with the z-axis. Figure 8-8 shows a segment of length € of the long wire. We have 

and 

a onb 

On the surface of the wire, 

H = ^ 

file:////ift2
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FIGURE 8-8 
Illustrating Poynting's theorem (Example 8-7). 

Thus the Poynting vector at the surface of the wire is 

& = E x H = (az x a J J 

= —a 

*'2<m2tf 
I2 

2 l3 ' r 2an2b 

which is directed everywhere into the wire surface. 
To verify Poynting's theorem, we integrate & over the wall of the wire segment 

in Fig. 8-8: 

i^'d^-i^-^=y^y^ 
=p anb< 

= I2R, 

where the formula for the resistance of a straight wire in Eq. (5-27), R = S/aS, has 
been used. The above result affirms that the negative surface integral of the Poynting 
vector is exactly equal to the I2R ohmic power loss in the conducting wire. Hence 
Poynting's theorem is verified. ■■ 

8-5.1 INSTANTANEOUS AND AVERAGE POWER DENSITIES 

In dealing with time-harmonic electromagnetic waves we have found it convenient 
to use phasor notation. The instantaneous value of a quantity is then the real part 



8-5 Flow of Electromagnetic Power and the Poynting Vector 383 

of the product of the phasor quantity and ejcot when cos cot is used as the reference. 
For example, for the phasor 

E(z) = axEx(z) = &xE0e-(«+M\ (8-88) 

the instantaneous expression is 

E(z, t) = ^ [ E ( z y - ] = a ^ o * " " »s\_e**-**\ 
= axE0e-«zcos{wt-pz). 

For a uniform plane wave propagating in a lossy medium in the + z-direction, the 
associated magnetic field intensity phasor is 

H(z) = 2iyHy{z) = ay - j ^ g-«e-J0»«+»n)> (g-90) 

where 0V is the phase angle of the intrinsic impedance n = \n\e}6r< of the medium. The 
corresponding instantaneous expression for H(z) is 

H(z, 0 = <%*[H{z)eja)t] = ^yjj e~az cos {cot - fiz - 0„). (8-91) 

This procedure is permissible as long as the operations and/or the equations involving 
the quantities with sinusoidal time dependence are linear. Erroneous results will be 
obtained if this procedure is applied to such nonlinear operations as a product of 
two sinusoidal quantities. (A Poynting vector, being the cross product of E and H, 
falls in this category.) The reason is that 

^[E{z)ejat] x ^[U{z)ej(ot] # <^[E(z) x U{z)ejmt\ 

The instantaneous expression for the Poynting vector or power density vector, 
from Eqs. (8-88) and (8-90), is 

^>(z, t) = E(z, t) x H(z, t) = @s[E{z)ej(at~\ x ^[U(z)ej(0t~\ 
E2 

= azT^-e-2az cos {cot - fiz) cos {cot - fiz - 0.) 
\n\ v (8-92)* 
E2 

= az -p r e"2az[cos 6V + cos {2cot - 2fiz - 0„)]. 

* Consider two general complex vectors A and B. We know that 
M4X) «= i(A + A*) and a*(B) = £(B + B*), 

where the asterisk denotes "the complex conjugate of." Thus 
£*(A) x #<{B) = |(A + A*) x i(B + B*) 

= i[(A x B* + A* x B) + (A x B + A* x B*)] 
= | ^ ( A x B* + A x B). (8-93) 

This relation holds also for dot products of vector functions and for products of two complex scalar func
tions. It is a straightforward exercise to obtain the result in Eq. (8-92) by identifying the vectors A and 
B in Eq. (8-93) with E(z)eJl0t and H(z)ej(at, respectively. 
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On the other hand, 

0te\nz) x H(z)ejat] = az^-e~2az cos (cot - 2£z - 6\ 

which is obviously not the same as the expression in Eq. (8-92). 
As far as the power transmitted by an electromagnetic wave is concerned, its 

average value is a more significant quantity than its instantaneous value. From Eq. 
(8-92), we obtain the time-average Poynting vector, ^av(z): 

(8-94)* 

where T = 2n/(D is the time period of the wave. The second term on the right side 
of Eq. (8-92) is a cosine function of a double frequency whose average is zero over 
a fundamental period. 

Using Eq. (8-93), we can express the instantaneous Poynting vector in Eq. (8-92) 
as the real part of the sum of two terms, instead of the product of the real parts of 
two complex vectors: 

0»(z, 0 = @*[Elz)ejwt] x @s[H(z)ejat] 
= i ^ [ E ( z ) x H*(z) + E(z) x H(z)ej2atl 

The average power density, SPJ<z\ can be obtained by integrating &>(z, t) over a 
fundamental period T. Since the average of the last (second-harmonic) term in Eq. 
(8-95) vanishes, we have 

^ a v (z ) = \0le\nz) X H*(z)]. 

f Equation (8-94) is quite similar to the formula for computing the power dissipated in an impedance 
Z = \Z\ejBz when a sinusoidal voltage v(t) = V0 cos cot appears across its terminals. The instantaneous 
expression for the current i(t) through the impedance is 

i(t) = —2- cos {cot - 0Z). 

From the theory of a-c circuits we know that the average power dissipated in Z is 

Pa^^j\m)dt = ^cos6z, 

where cos dz is the power factor of the load impedance. The cos 0n factor in Eq. (8-94) can be considered 
as the power factor of the intrinsic impedance of the medium. 

file:///0le/nz


8-5 Flow of Electromagnetic Power and the Poynting Vector 385 

In the general case we may not be dealing with a wave propagating in the z-direction. 
We write 

= i^(E x H*) (W/m2), - Q f i ^ (8-96) 

and 

which is a general formula for computing the average power density in a propagating 
wave. 

EXAMPLE 8-8 The far field of a short vertical current element / df located at the 
origin of a spherical coordinate system in free space is 

WLR, 9) = a»£»(«. 9) = »,() ^ ^ sin flV"* (V/m) 

H(R, 6) - a , ^ ^ = a , ( ; g sin fl)^* (A/m), 

where X = 2n/fi is the wavelength. 

a) Write the expression for instantaneous Poynting vector. 
b) Find the total average power radiated by the current element. 

Solution 
a) We note that EJH^ = rj0 = 120 n (Q). The instantaneous Poynting vector is 

&(R, 9; t) = @s[E(R, 9)ej(0t] x ^[H(R, 9)ejtot] 
fld^2 

= (ae x a^OTr ( —— 1 sin2 9 sin2 (cot - #R) 

= *Rl5n\j^[) s i n 2 eVl ~ c o s 2 M - W ] (W/m2). 

b) The average power density vector is, from Eq. (8-96), 

^av(i?,0) = a i , 1 5 7 r ^ Y s i n 2 0 , 

which is seen to equal the time-average value of ^{R, 9; t) given in part (a) of 
this solution. The total average power radiated is obtained by integrating ^*av(R, 9) 

* We are reminded that in circuit theory if a voltage v{t) = V0 cos {cot + 0) = SL [F0e-/(cot+<M] produces a 
current i{t) = I0 cos {cot + 0 - 0Z) = ^^[/0e j (cot+*"f lz)] in an impedance, the average power dissipated is 
pav = (JVo/2) cos 0Z. In terms of phasors we have V = V^, I = / 0 e j W _ ( H and 

^av = i V o cos 0Z = \®4VI*) (W), (8-97) 
which is analogous to Eq. (8-96). 
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over the surface of the sphere of radius R: 

Total P„ = $*„(*, «)•* = £*£ 

(W), 

' K ^ ' - R2 sin 9 d9 dcfr 

= «*i'^V 
where / is the amplitude (^2 times the effective value) of the sinusoidal current in 

8-6 Normal Incidence at a Plane Conducting Boundary 

Up to this point we have discussed the propagation of uniform plane waves in an 
unbounded homogeneous medium. In practice, waves often propagate in bounded 
regions where several media with different constitutive parameters are present. When 
an electromagnetic wave traveling in one medium impinges on another medium with 
a different intrinsic impedance, it experiences a reflection. In Sections 8-6 and 8-7 
we examine the behavior of a plane wave when it is incident upon a plane conducting 
boundary. Wave behavior at an interface between two dielectric media will be 
discussed in Sections 8-8, 8-9, and 8-10. 

For simplicity we shall assume that the incident wave (Eh H£) travels in a lossless 
medium (medium l:a± = 0) and that the boundary is an interface with a perfect con
ductor (medium 2: a2 = oo). Two cases will be considered: normal incidence and 
oblique incidence. In this section we study the field behavior of a uniform plane wave 
incident normally on a plane conducting boundary. 

Reflected 
wave 

Incident 
wave 

Perfect conductor 

0 >z 

Medium l 
(a, = 0) 

Medium 2 
( f f i = oo) 

Z = 0 

FIGURE 8-9 
Plane wave incident normally on a plane conducting 
boundary. 
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Consider the situation in Fig. 8-9 where the incident wave travels in the + z-
direction, and the boundary surface is the plane z = 0. The incident electric and 
magnetic field intensity phasors are 

Ei(z) = ax£l.0e-^1Z, (8-98) 

H,(z) = a, ^ *-■»■**, (8-99) 

where Ei0 is the magnitude of Et at z = 0, and ^ and Y\X are the phase constant and 
the intrinsic impedance, respectively, of medium 1. It is noted that the Poynting vector 
of the incident wave, SP^i) = E;(z) x H,-(z), is in the az direction, which is the direction 
of energy propagation. The variable z is negative in medium 1. 

Inside medium 2 (a perfect conductor), both electric and magnetic fields vanish, 
E2 = 0, H2 = 0; hence no wave is transmitted across the boundary into the z > 0 
region. The incident wave is reflected, giving rise to a reflected wave (Er, Hr). The 
reflected electric field intensity can be written as 

Er(z) = axEr0e+j^, (8-100) 

where the positive sign in the exponent signifies that the reflected wave travels in the 
—z-direction, as discussed in Section 8-2. The total electric field intensity in medium 
1 is the sum of E4 and Er: 

Ei(z) = E,{z) + Er(z) = *JLEtoe-»" + Er0e+j^z). (8-101) 

Continuity of the tangential component of the E-field at the boundary z = 0 demands 
that 

Ei(0) = *JLEi0 + Er0) = E2(0) = 0, 

which yields Er0 = —Ei0. Thus, Eq. (8-101) becomes 

Elvz) = axK.0(e-j7hz - e+j7?iz) n ; x ,ov ; (8-102) 
= -aJlEnsmPiZ. 

The magnetic field intensity H r of the reflected wave is related to Er by Eq. (8-29): 

Hr(z) = — a„r x Er(z) = — (-a z ) x Er(z) 

= -ay — Er0e+j^z = ay^e+j^z. 

Combining Hr(z) with H,(z) in Eq. (8-99), we obtain the total magnetic field intensity 
in medium 1: 

Hlvz) = HiVz) + Hr(z) = ay2 ^ cos filZ. (8-103) 

It is clear from Eqs. (8-102), (8-103), and (8-96) that no average power is associated 
with the total electromagnetic wave in medium 1, since Et(z) and H^z) are in phase 
quadrature. 
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In order to examine the space-time behavior of the total field in medium 1, we 
first write the instantaneous expressions corresponding to the electric and magnetic 
field intensity phasors obtained in Eqs. (8-102) and (8-103): 

Ei(z, t) = @£[E1(z)ejcot~] = ax2Ei0 sin ^z sin cot, 

E 
H^z , t) = @s[H1(z)ejo3t'] = ay2 - ^ cos 0lZ cos cot. 

Vi 

(8-104) 

(8-105) 

Both E^z, t) and H^z, t) possess zeros and maxima at fixed distances from the con
ducting boundary for all t, as follows: 

Zeros of E^z, t)) X 
_ . . f T T , , > occur at /^z = -mi, or z = —n-, n = 0, 1, 2 , . . . 
Maxima of H^z, t)J 2 

Maxima of E^z, t)~) 
_ . . V ■ 
Zeros of H l (z, t) j 0CCUr * ^ = ^ + 1} \ °T Z = ~{2n + 1} ? 

n = 0, 1, 2,... 

The total wave in medium 1 is not a traveling wave. It is a standing wave, resulting 
from the superposition of two waves traveling in opposite directions. For a given t, 
both E1 and Hx vary sinusoidally with the distance measured from the boundary 
plane. The standing waves of Ex = a ^ and Hx = ayH1 are shown in Fig. 8-10 for 

wt = TT/2 

w/ = 7r/4,37r/4 

Perfect 
conductor 

(b) H\ versus z. 

z = 0 

FIGURE 8-10 
Standing waves of EJL = a ^ and 
Hx = a ^ for several values of cot. 
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several values of wt. Note the following three points: (1) E t vanishes on the con
ducting boundary (Er0 = —Ei0) as well as at points that are multiples of A/2 from 
the boundary; (2) H t is a maximum on the conducting boundary (Hr0 = Hi0 = £i0/,71)» 
(3) the standing waves of E1 and H1 are in time quadrature (90° phase difference) 
and are shifted in space by a quarter wavelength. 

EXAMPLE 8-9 A y-polarized uniform plane wave (Eh HJ with a frequency 100 
(MHz) propagates in air in the + x direction and impinges normally on a perfectly 
conducting plane at x = 0. Assuming the amplitude of Ef to be 6 (mV/m), write the 
phasor and instantaneous expressions for (a) Et and Ht of the incident wave; (b) Er 

and H r of the reflected wave; and (c) E t and Hi of the total wave in air. (d) Determine 
the location nearest to the conducting plane where Ex is zero. 

Solution At the given frequency 100 (MHz), 

co = 2nf = 2% x 108 (rad/s), 
co In x 108 2;r 

^ = /c° = 7 = T7Io^ = T (rad/m)' 
^ i = / 7 o = /— = 12071 (Q). 

V eo 

a) For the incident wave (a traveling wave): 

i) Phasor expressions: 

Et(x) = ay6 x K r V 2 * * ' 3 (V/m), 
1 10"4 

Ht(x) = - ax x Et<x) = a2 — e ^ 2 - ' 3 (A/m). 

ii) Instantaneous expressions: 

Et(x, t) = @s\_Ei(x)ej<ot'] 

= ay6 x 10~3 cos (in x 108t - y x ) (V/m), 

Hjfo 0 = az —— cos I 2TT X 108t - -^ x ) (A/m). 

b) .For £/ie reflected wave (a traveling wave): 
i) Phasor expressions: 

Er(x) = - a y 6 x 10" V 2 " x / 3 (V/m), 
1 10"4 

Hr(x) = - ( - a j x Er(x) = az — - e ^« /3 ( A / m ) . 
»h 2% 
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ii) Instantaneous expressions: 

Er(x, t) = ^[Er(x)ejmt] = -a„6 x 10 "3 cos (in x 108£ l y x ) (V/m), 

1 n—4 / o \ 
H,(x, 0 = az —— cos (In x 108t + y x ) (A/m). 

c) For the total wave (a standing wave): 
i) Phasor expressions: 

E^x) = E(<x) + Er(x) = -ayjl2 x 10"3 sin ( y 

H^x) = H,<x) + H,(x) = az ^ cos f y x) (A/m). 

ii) Instantaneous expressions: 

Et(x, t) = ®e[El(x)ei(or] = ay12 x 1(T3 sin ( y x) sin (2TT X 108f) (V/m), 
-i /~v — 4 /o \ 

H1(x, f) = az cos I —- x ) cos (27r x 108t) (A/m). 

d) The electric field vanishes at the surface of the conducting plane at x = 0. In 
medium 1 the first null occurs at 

8—7 Oblique Incidence at a Plane Conducting Boundary 

When a uniform plane wave is incident on a plane conducting surface obliquely, 
the behavior of the reflected wave depends on the polarization of the incident wave. 
In order to be specific about the direction of Et we define a plane of incidence as 
the plane containing the vector indicating the direction of propagation of the incident 
wave and the normal to the boundary surface. Since an E{ polarized in an arbitrary 
direction can always be decomposed into two components—one perpendicular and 
the other parallel to the plane of incidence—we consider these two cases separately. 
The general case is obtained by superposing the results of the two component cases. 

8-7.1 PERPENDICULAR POLARIZATION* 

In the case of perpendicular polarization, Et is perpendicular to the plane of inci
dence, as illustrated in Fig. 8-11. Noting that 

ani = ax sin fy + az cos 0h (8-106) 

f Also referred to as horizontal polarization or ^-polarization. 
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where Qt is the angle of incidence measured from the normal to the boundary surface, 
we obtain, using Eqs. (8-26) and (8-29), 

E£(JC, z) = a^-0e" j / i i a"'"R = a,,Ei0e--«»l(xsinfl'+zcosfl'>, 

Hjfo z) = — [ani x E,<x, z)] 

For the reflected wave, 

( - a x cos 0£ + az sin 0.)e-.«w*sin*i+Zcos0,)# 

a„r = ax sin 0r — az cos 0„ 

where 0r is the angle of reflection, we have 

Er(jc, z) = ayE r0e-# l (xs in*'-zco8f l r ). 

(8-107) 

(8-108) 

(8-109) 

(8-110) 

At the boundary surface, z = 0, the total electric field intensity must vanish. Thus, 

E1(x,0) = Ei(jc,0) + Er(x,0) 
= ny{Eioe-JPiXSin9i + Er0e-jPlxsiner) = 0. 

In order for this relation to hold for all values of x, we must have Er0 = — Ei0 and 
matched phase terms, that is, 6r = 9t. The latter relation, asserting that the angle of 
reflection equals the angle of incidence, is referred to as Snell's law of reflection. Thus, 
Eq. (8-110) becomes 

Er(jc, z) = -nyEi0e-^xs{nBi-z™ei). (8-111) 

Reflected -v 
wave 

Incident 
wave 

Medium 1 
(en = 0) 

z = 0 

FIGURE 8-11 
Plane wave incident obliquely on a plane conducting 
boundary (perpendicular polarization). 
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The corresponding Hr(x, z) is 

Hr(x, z) = —[a„r x EP(x, z)] 
ni (8-112) 

= — ( - a , cos 0,. - az sin 0)e-#l(*sin®'-zcos»'>. 

The total field is obtained by adding the incident and reflected fields. From Eqs. 
(8-107) and (8-111) we have 

Ex(x, z) = Et(x, z) + Er(x, z) 
= a E- (e~JPizcosei — eJPizcos0i\e-JPixsin0i (8-113) 

= -ayj2Ei0 sin (j^z cos 0£)e--«»1*sin<\ 

Adding the results in Eqs. (8-108) and (8-112), we get 

Hi(x, z) = - 2 — Tax cos 0, cos (j^z cos 0.)e--«,1*sin*< 

+ azj sin 0£ sin (j^z cos 9i)e~jl3ixsinei]. 
5-114) 

Equations (8-113) and (8-114) are rather complicated expressions, but we can 
make the following observations about the oblique incidence of a uniform plane 
wave with perpendicular polarization on a plane conducting boundary: 

1. In the direction (z-direction) normal to the boundary, Ely and Hlx maintain 
standing-wave patterns according to sin /?lzz and cos /?lzz, respectively, where 
Piz — Pi c o s Qi- No average power is propagated in this direction since Ely and 
Hlx are 90° out of time phase. 

2. In the direction (x-direction) parallel to the boundary, Ely and Hlz are in both 
time and space phase and propagate with a phase velocity 

0) 0) U1 
tti'"jr."K^8,"^8i' (8"115, 

The wavelength in this direction is 
2n X-i 

0i« sin 6i 
3. The propagating wave in the x direction is a nonuniform plane wave because 

its amplitude varies with z. 
4. Since E1 = 0 for all x when sin (/^z cos 0£) = 0 or when 

271 
pxz cos 6i = — z cos 0, = —mn, m — 1, 2, 3 , . . . , 

a conducting plate could be inserted at 

z = - - ^ - , m= 1 ,2 ,3 , . . . , (8-117) 
2 cos 6/; 
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without changing the field pattern that exists between the conducting plate and 
the conducting boundary at z = 0. A transverse electric (TE) wave (Elx = 0) 
would bounce back and forth between the conducting planes and propagate in 
the x-direction. We would have, in effect, a parallel-plate waveguide. 

An illustration of the bouncing waves and the interference pattern between a 
conducting plate inserted at z = —XJ2 cos 0t and the conducting boundary at z = 0 
is given in Fig. 8-12. The long (thick) dashed lines represent the plane-wave crests 
with the E-vector out of the page, and the short (thin) dashed lines represent wave 
troughs with the E-vector into the page. At the conducting surfaces the reflected E-
vector has a 180° phase change, cancelling the incident E-vector; hence the inter
sections of the long and short dashed lines (such as points 0, A, and A") are locations 
of zero electric intensity. The intersections of two long dashed lines (such as B) are 
locations of maximum electric field intensity directed out of the page, and the inter
sections of two short dashed lines (such as B') are locations of maximum electric 
field intensity into the page. The intersections of the two plane waves (incident and 
reflected) travel in the x-direction with a phase velocity given by Eq. (8-115). From 
Fig. 8-12 we have 

» - * - * • 

OA = b = h 
2 cos 0, 

(8-118) 

(8-119) 

Conducting 
plate" 

FIGURE 8-12 
Illustrating bouncing waves and interference patterns 
of oblique incidence at a plane conducting boundary 
(perpendicular polarization). 
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The traveling wave in the parallel-plate waveguide has a guide wavelength equal 
to 20A", or 

2 = 20 A" = 2 
sin 9t 

h 
(8-120) 

sin 9t 
> Xv 

At 9( = 0 there would be no propagating wave in the x-direction. The properties 
of TE waves between parallel plates will be discussed in Subsection 10-3.2. 

EXAMPLE 8-10 A uniform plane wave (E;, H;) of an angular frequency co is incident 
from air on a very large, perfectly conducting wall at an angle of incidence 9{ with 
perpendicular polarization. Find (a) the current induced on the wall surface, and 
(b) the time-average Poynting vector in medium 1. 

Solution 

a) The conditions of this problem are exactly those we have just discussed; hence 
we could use the formulas directly. Let z — 0 be the plane representing the surface 
of the perfectly conducting wall, and let Ef be polarized in the y direction, as 
was shown in Fig. 8-11. At z = 0, E^x, 0) = 0, and H^x, 0) can be obtained 
from Eq. (8-114): 

Hx(x, 0) = - (ax2 cos 9i)e~JlioXsinei. (8-121) 
no 

Inside the perfectly conducting wall, both E2 and H2 must vanish. There is then 
a discontinuity in the magnetic field. The amount of discontinuity is equal to 

Reflected *\_>*E/-
wave 

Incident 
wave " ' 

Medium 1 
(a, = 0) 

Z = 0 

FIGURE 8-13 
Plane wave incident obliquely on a plane conducting 
boundary (parallel polarization). 
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the surface current. From Eq. (7-68b) we have 

Js(*) = a„2 x Hi(x, 0) 

= ( - a z ) x ( - a j — (2 cos 0de~jPoX8ia9i 

60ft 

The instantaneous expression for the surface current is 

JS(JC, t) = a. — l^- cos 0f cos co ( t sin 0£) (A/m). (8-122) 
60ft \ C / 

It is this induced current on the wall surface that gives rise to the reflected wave 
in medium 1 and cancels the incident wave in the conducting wall. 

b) The time-average Poynting vector in medium 1 is found by using Eqs. (8-113) 
and (8-114) in Eq. (8-96). Since Ely and Hlx are in time quadrature, ^»av will 
only have a nonvanishing x-component arising from Ely and Hlz: 

^ a v i = ^ [ E J C X , z) x H*(x, z)] 

,E?0 - n ■ 2o ( 8 ~ 1 2 3 ) 
= ax2 — sin 0, sin p l z z , 

where jS lz = / ^ cos 0,-. The time-average Poynting vector in medium 2 (a perfect 
conductor) is, of course, zero. mm 

8-7.2 PARALLEL POLARIZATION 

We now consider the case of Et lying in the plane of incidence while a uniform plane 
wave impinges obliquely on a perfectly conducting plane boundary, as depicted in 
Fig. 8-13. The unit vectors aw- and a„r, representing the directions of propagation 
of the incident and reflected waves, respectively, remain the same as those given in 
Eqs. (8-106) and (8-109). Both Ef and E r now have components in x- and z-direc-
tions, whereas H t and H r have only a y-component. We have, for the incident wave, 

E-
H.(x z) = a —— e _ ^ l ( j c s i n 0 i + z c o s 0 ' ) 

y Vi 

E,<x, z) = Ei0{nx cos 0i - az sin 0^e~ifil(xsin6i+zcose<\ (8-124) 

(8-125) 

The reflected wave (E r, H r) have the following phasor expressions: 

Er(x, z) = Er0(ax cos dr + az sin er)e~jPl(xsine'-zcose'-\ (8-126) 

Hr(x,z) = - a ^ e - ^ ^ ^ - ^ H (8-127) 

Also referred to as vertical polarization or H-polarization. 
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At the surface of the perfect conductor, z = 0, the tangential component (the x-
component) of the total electric field intensity must vanish for all x, or Eix{x, 0) + 
Erx(x, 0) = 0. From Eqs. (8-124) and (8-126) we have 

(Ei0 cos 0t)e-jfiixaiaei + {Er0 cos 0r)e-#1*sinfl- = 0, 

which requires Er0 = -Ei0 and 0r = 6t. The total electric field intensity in medium 1 
is the sum of Eqs. (8-124) and (8-126): 

E^x, z) = E,(x, z) + Er(x, z) 
= nxEi0 cos ei{e~JfilZCoaet - e#lZC08fl')e--//,15CSinfl' 

- azEi0 sin 0.(e-#lZCOSfll + etfizc°sfc)e-# lXsinfl ' 
or 

E^x, z) = — 2Ei0[aJ cos 6{ sin {fitz cos 0j) 
+ az sin 0t cos (jglZ cos 0 , )> -^* s i n e \ ( 8" 1 2 8 ) 

Adding Eqs. (8-125) and (8-127), we obtain the total magnetic field intensity in 
medium 1: 

H^x, z) = Hj(x, z) + Hr(x, z) 

= ay2 ^ cos {^z cos 0&-^xAn\ ( 8_129) 

The interpretation of Eqs. (8-128) and (8-129) is similar to that of Eqs. (8-113) 
and (8-114) for the perpendicular-polarization case, except that E^x, z), instead of 
H^x, z), now has both an x- and a z-component. We conclude, therefore: 

1. In the direction (z-direction) normal to the boundary, Elx and Hly maintain 
standing-wave patterns according to sin /?lzz and cos plzz, respectively, where 
Piz — Pi c o s ®i- No average power is propagated in this direction, since Elx and 
Hly are 90° out of time phase. 

2. In the x-direction parallel to the boundary, Elz and Hly are in both time and 
space phase and propagate with a phase velocity ulx = ujsin 9h which is the 
same as that in the perpendicular polarization. 

3. As in the case of perpendicular polarization, the propagating wave in the x-
direction is a nonuniform plane wave. 

4. The insertion of a conducting plate at z = —mXJ2 cos 6t (m = 1, 2, 3,.. .) where 
Elx = 0 for all x would not affect the field pattern that exists between the con
ducting plate and the conducting boundary at z = 0; we would then have a 
parallel-plate waveguide. A tranverse magnetic (TM) wave (H l x = 0) will pro
pagate in the x-direction. (TM waves between parallel plates will be discussed 
in Subsection 10-3.1.) 

We note here that the E t and Hl expressions for oblique incidence in Eqs. (8-113), 
(8-114), (8-128), and (8-129) are the sums of the fields of incident and reflected 
waves. They represent interference patterns. If the incident wave is confined in a 
narrow beam, the reflected waves will also be a narrow beam propagating in a 
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different direction. There will then be no interference except for a very small region 
near the conducting surface. Thus, the reflectors on microwave relay towers receive, 
amplify, and retransmit the original incident wave, not the interference pattern. 

8—8 Normal Incidence at a Plane Dielectric Boundary 

When an electromagnetic wave is incident on the surface of a dielectric medium that 
has an intrinsic impedance different from that of the medium in which the wave is 
originated, part of the incident power is reflected and part is transmitted. We may 
think of the situation as being like an impedance mismatch in circuits. The case of 
wave incidence on a perfectly conducting boundary discussed in the two previous 
sections is like terminating a generator that has a certain internal impedance with a 
short circuit; no power is transmitted into the conducting region. 

As before, we will consider separately the two cases of the normal incidence and 
the oblique incidence of a uniform plane wave on a plane dielectric medium. Both 
media are assumed to be dissipationless (ox = <r2 = 0). We will discuss the wave be
havior for normal incidence in this section. The case of oblique incidence will be 
taken up in Section 8-9. 

Consider the situation in Fig. 8-14, where the incident wave travels in the + z-
direction and the boundary surface is the plane z = 0. The incident electric and mag
netic field intensity phasors are 

Uz) = *xEi0e-»1', 

H;(z) = a, iJLo-JPi 

(8-130) 

(8-131) 

These are the same expressions as those given in Eqs. (8-98) and (8-99). Note that 
z is negative in medium 1. 
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FIGURE 8-14 
Plane wave incident normally on a plane 
dielectric boundary. 
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Because of the medium discontinuity at z = 0, the incident wave is partly reflected 
back into medium 1 and partly transmitted into medium 2. We have 

a) For the reflected wave (En Hr): 
Er(z) = *xEr0e^z, 

Hr(z) = ( - a z x— Er(z)= - a , ^ V * * . 

b) For the transmitted wave (E„ Ht): 
Et(z) = axEt0e-^\ 

nt(z) = azx~Et(z) = ay
E^e-^\ 

(8-132) 

(8-133) 

(8-134) 

(8-135) 

where Et0 is the magnitude of Et at z = 0, and (32 and rj2 are the phase constant 
and the intrinsic impedance, respectively, of medium 2. 

Note that the directions of the arrows for Er and Et in Fig. 8-14 are arbitrarily 
drawn because Er0 and Et0 may themselves be positive or negative, depending on 
the relative magnitudes of the constitutive parameters of the two media. 

Two equations are needed for determining the two unknown magnitudes Er0 
and Et0. These equations are supplied by the boundary conditions that must be 
satisfied by the electric and magnetic fields. At the dielectric interface z = 0 the 
tangential components (the x-components) of the electric and magnetic field intensities 
must be continuous. We have 

and 
E,(0) + Er(0) = Et(0) or E,-n + Er(, = E ho 

or H,(0) + Hr(0) = Ht(0) 

Solving Eqs. (8-136) and (8-137), we obtain 

to 1 (F F \ E 

n\ n2 

hr0 — — ^i0» 

Eto -

Vi + Vi 
2*12 

rji + Vi Eto. 

(8-136) 

(8-137) 

(8-138) 

(8-139) 

The ratios Er0/Ei0 and Et0/Ei0 are called reflection coefficient and transmission co
efficient, respectively. In terms of the intrinsic impedances they are 

and 

p _ Er0 _ Vl - *7l 
Eio Vi + Vi 

(Dimensionless) 

_ Et0 _ 2r)2 

Ei0 n2 + vi 
(Dimensionless). 

(8-140) 

(8-141) 
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Note that the reflection coefficient F in Eq. (8-140) can be positive or negative, de
pending on whether r\2 is greater or less than nv The transmission coefficient x, 
however, is always positive. 

The definitions for T and x in Eqs. (8-140) and (8-141) apply even when the 
media are dissipative—that is, even when r]1 and/or Y\2 are complex. Thus T and x 
may themselves be complex in the general case. A complex T (or t) simply means 
that a phase shift is introduced at the interface upon reflection (or transmission). 
Reflection and transmission coefficients are related by the following equation: 

1 + T = T (Dimensionless). (8-142) 

If medium 2 is a perfect conductor, rj2 = 0, Eqs. (8-140) and (8-141) yield T = - 1 
and T = 0. Consequently, Er0 = -Ei0, and Et0 = 0. The incident wave will be totally 
reflected, and a standing wave will be produced in medium 1. The standing wave 
will have zero and maximum points, as discussed in Section 8-6. 

If medium 2 is not a perfect conductor, partial reflection will result. The total 
electric field in medium 1 can be written as 

Ex(z) = E,(z) + E,(z) = axEi0(e-^ + Te^) 
= axEi0[(l + T)e~^z + T{e^z - e ^ 1 2 ) ] 
= aA>[( l + r)e~JPlZ + r(./2 sin ftz)] 

or, in view of Eq. (8-142), 

Ex(z) = axEi0[re-j^z + T(j2 sin ftz)]. (8-143) 

We see in Eq. (8-143) that Ex(z) is composed of two parts: a traveling wave with an 
amplitude TE I 0 and a standing wave with an amplitude 2TEi0. Because of the exis
tence of the traveling wave, Ex(z) does not go to zero at fixed distances- from the 
interface; it merely has locations of maximum and minimum values. 

The locations of maximum and minimum |E1(z)| are conveniently found by re
writing Ex(z) as 

Ei(z) = axEi0e-^z(\ + I V 2 ^ ) . (8-144) 

For dissipationless media, rj1 and rj2 are real, making both F and x also real. However, 
T can be positive or negative. Consider the following two cases. 

1. T > 0 (rj2 > nJ. 
The maximum value of |Ei(z)| is £ i0(l + T), which occurs when 2j81zmax = 
-2nn (n = 0, 1, 2 , . . . ) , or at 

zmax=-j-=—Y> n = 0 , 1 , 2 , . . . (8-145) 

The minimum value of lE^z)] is £ i0(l - T), which occurs when 2jS1zmin = 
— (In + l)7i, or at 

_ (2n + l)n [2n + \)Xx 
min YB _ 4 ' » = 0, 1, 2,. . . (8-146) 
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2. r < o (r,2 < m). 
The maximum value of lE^z)! is Ei0(l — F), which occurs at zmin given in Eq. 
(8-146); and the minimum value of lE^z)] is Ei0{l + F), which occurs at zmax given 
in Eq. (8-145). In other words, the locations for |£i(z)|max and |£i(z)|min when 
T > 0 and when F < 0 are interchanged. 

The ratio of the maximum value to the minimum value of the electric field in
tensity of a standing wave is called the standing-wave ratio (SWR), S. 

5-147) 
\E\ I + Irl 

c _ 1 Imax _ ' I I fnimrnQinnlrQQ^ 
\E min 1 - |1] 

An inverse relation of Eq. (8-147) is 

(8-148) 

While the value of F ranges from — 1 to + 1 , the value of S ranges from 1 to oo. It is 
customary to express S on a logarithmic scale. The standing-wave ratio in decibels is 
20 log10 S. Thus S = 2 corresponds to a standing-wave ratio of 20 log10 2 = 6.02 dB 
and | r | = (2 — l)/(2 + 1) = J. A standing-wave ratio of 2 dB is equivalent to S = 1.26 
and | r | = 0.115. 

The magnetic field intensity in medium 1 is obtained by combining H£(z) and 
Hr(z) in Eqs. (8-131) and (8-133), respectively: 

H1(z) = a , ^ ( e - ^ i z - r ^ i z ) 

= a, i^<r^z(i-rV2< i i2). 
(8-149) 

This should be compared with Et(z) in Eq. (8-144). In a dissipationless medium, F 
is real; and (H^z)! will be a minimum at locations where lE^z)] is a maximum, and 
vice versa. 

In medium 2, (Ef, H() constitute the transmitted wave propagating in + z-direc-
tion. From Eqs. (8-134) and (8-141) we have 

Ef(z) = axTEi0e-^z. (8-150) 

And from Eq. (8-135) we obtain 

Ht(z) = ay-Ei0e-^. 5-151) 
ni 

EXAMPLE 8-11 A uniform plane wave in a lossless medium with intrinsic impe
dance 77 x is incident normally onto another lossless medium with intrinsic impedance 
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r\2 through a plane boundary. Obtain the expressions for the time-average power 
densities in both media. 

Solution Equation (8-96) provides the formula for computing the time-average 
power density, or time-average Poynting vector: 

^>av = i ^ ( E x H*). 

In medium 1 we use Eqs. (8-144) and (8-149): 

(^av)i = *z | ^ ^ [ ( 1 + r V 2 ^ ) ( l - re" '2**)] 

= az | ^ £«[(1 - T2) + I V 2 * * - g-'2**)] 
2 ^ (8-152) 

= az f ^ , [ ( l - T 2 ) + ; 2 r sin 2 jV] 

where T is a real number because both media are lossless. 
In medium 2 we use Eqs. (8-150) and (8-151) to obtain 

(^av)2 = a z ^ T 2 . (8-153) 
2772 

Since we are dealing with lossless media, the power flow in medium 1 must equal 
that in medium 2; that is, 

(^av)l = (^av)2, (8-154) 

or 

I _ F 2 = ^ T 2 . (8-155) 

That Eq. (8-155) is true can be readily verified by using Eqs. (8-140) and (8-141). 

8—9 Normal Incidence at Multiple Dielectric Interfaces 

In certain practical situations a wave may be incident on several layers of dielectric 
media with different constitutive parameters. One such situation is the use of a dielec
tric coating on glass to reduce glare from sunlight. Another is a radome, which is 
a dome-shaped enclosure designed not only to protect radar installations from in
clement weather but to permit the propagation of electromagnetic waves through 
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FIGURE 8-15 
Normal incidence at multiple dielectric 
interfaces. 

the enclosure with as little reflection as possible. In both situations, determining the 
proper dielectric material and its thickness is an important design problem. 

We now consider the three-region situation depicted in Fig. 8-15. A uniform plane 
wave traveling in the +z-direction in medium 1 (el5 iix) impinges normally at a plane 
boundary with medium 2 (e2, fi2)> at z = 0. Medium 2 has a finite thickness and inter
faces with medium 3 (e3, /J.3) at z = d. Reflection occurs at both z = 0 and z = d. 
Assuming an x-polarized incident field, the total electric field intensity in medium 1 
can always be written as the sum of the incident component axEi0e~jlilz and a reflected 
component axEr0ejl3lz: 

E, = ax(Eioe-jl3lZ + Er0e^z). (8-156) 

However, owing to the existence of a second discontinuity at z = d, Er0 is no longer 
related to Ei0 by Eq. (8-138) or Eq. (8-140). Within medium 2, parts of waves bounce 
back and forth between the two bounding surfaces, some penetrating into media 1 
and 3. The reflected field in medium 1 is the sum of (a) the field reflected from the 
interface at z = 0 as the incident wave impinges on it, (b) the field transmitted back 
into medium 1 from medium 2 after a first reflection from the interface at z = d, (c) the 
field transmitted back into medium 1 from medium 2 after a second reflection at z = d, 
and so on. The total reflected wave is, in fact, the resultant of the initial reflected com
ponent and an infinite sequence of multiply reflected contributions within medium 2 
that are transmitted back into medium 1. Since all of the contributions propagate in 
the — z-direction in medium 1 and contain the propagation factor eJpiZ, they can be 
combined into a single term with a coefficient Er0. But how do we determine the 
relation between Er0 and Ei0 now? 

One way to find Er0 is to write down the electric and magnetic field intensity 
vectors in all three regions and apply the boundary conditions. The Hi in region 1 
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that corresponds to the Ex in Eq, (8-156) is, from Eqs. (8-131) and (8-133), 

Ht = a, — (Ei0e-j^z - Er0ej^z). (8-157) 

The electric and magnetic fields in region 2 can also be represented by combinations 
of forward and backward waves: 

E2 = ax{E^e-jp2Z + E2e^2Z\ (8-158) 

H2 = av — (Ete-jp2Z - E^e^22). (8-159) 

In region 3, only a forward wave traveling in + z-direction exists. Thus, 

E3 = axE^e~jp3Z, (8-160) 
E + 

H 3 = a v — e ^ 3 2 . (8-161) 

On the right side of Eqs. (8-156) through (8-161) there are a total of four un
known amplitudes: Er0, E2, JEJ, and JEj. They can be determined by solving the 
four boundary-condition equations required by the continuity of the tangential com
ponents of the electric and magnetic fields. 

Atz = 0: 
Ei(0) = E2(0), (8-162) 
H^O) = H2(0). (8-163) 

At z = d: 
E2(d) = E3(d), (8-164) 
H2(d) = H3(d). (8-165) 

The procedure is straightforward and purely algebraic (Problem P. 8-29). In the fol
lowing subsections we introduce the concept of wave impedance and use it in an alter
native approach for studying the problem of multiple reflections at normal incidence. 

8-9.1 WAVE IMPEDANCE OF THE TOTAL FIELD 

We define the wave impedance of the total field at any plane parallel to the plane 
boundary as the ratio of the total electric field intensity to the total magnetic field 
intensity. With a z-dependent uniform plane wave, as was shown in Fig. 8-15, we 
write, in general, 

„ , , Total EJz) 

For a single wave propagating in the + z-direction in an unbounded medium, the 
wave impedance equals the intrinsic impedance, rj, of the medium; for a single wave 
traveling in the —z-direction, it is —r\ for all z. 
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In the case of a uniform plane wave incident from medium 1 normally on a plane 
boundary with an infinite medium 2, such as that illustrated in Fig. 8-14 and discussed 
in Section 8-8, the magnitudes of the total electric and magnetic field intensities in 
medium 1 are, from Eqs. (8-144) and (8-149), 

Elx(z) = Ei0(e-^z + Ye^% (8-167) 

H (z) = 5 ° (e~^z - Tej^z). (8-168) 

Their ratio defines the wave impedance of the total field in medium 1 at a distance z 
from the boundary plane: 

^ , , Elx(z) e-JP^ + YeW 
ZM-HJjj^e-^-rei'"' ( 8"1 6 9 ) 

which is obviously a function of z. 
A distance z = — / to the left of the boundary plane, 

^^tj^r^e^-Te-^ (8-1?0) 

Using the definition of Y = (r\2 — r\l)l{r\2 + *7I) m Eq. (8-170), we obtain 

7( /\-„ ^ c o s / ? / + 7 ? h s i n / ? / 
Zl{~° - nx ^cosPS+fosmfiS (8_171) 

which correctly reduces to r\x when r\2 = r\x. In that case there is no discontinuity at 
z = 0; hence there is no reflected wave and the total-field wave impedance is the same 
as the intrinsic impedance of the medium. 

When we study transmission lines in the next chapter, we will find that Eqs. 
(8-170) and (8-171) are similar to the formulas for the input impedance of a trans
mission line of length / that has a characteristic impedance rj t and terminates in an 
impedance rj2. There is a close similarity between the behavior of the propagation 
of uniform plane waves at normal incidence and the behavior of transmission lines. 

If the plane boundary is perfectly conducting, r\2 = 0 and F = — 1, and Eq. (8-171) 
becomes 

Zx{-£) =jr\l tan 0 / , (8-172) 

which is the same as the input impedance of a transmission line of length £ that has 
a characteristic impedance r\1 and terminates in a short circuit. 

8-9.2 IMPEDANCE TRANSFORMATION WITH MULTIPLE DIELECTRICS 

The concept of total-field wave impedance is very useful in solving problems with 
multiple dielectric interfaces such as the situation shown in Fig. 8-15. The total field 
in medium 2 is the result of multiple reflections of the two boundary planes at z = 0 
and z = d; but it can be grouped into a wave traveling in the + z-direction and an
other traveling in the — z-direction. The wave impedance of the total field in medium 
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2 at the left-hand interface z = 0 can be found from the right side of Eq. (8-171) by 
replacing n2 by rj3, rj1 by n2, ^ by /?2, and / by d. Thus, 

7 crw M n3 cos p2d+jri2 sin p2d 
Z2(0) = n2 0 , , . • 0 y (8-173) 

n2 cos p2d +7^3 sin p2d 
As far as the wave in medium 1 is concerned, it encounters a discontinuity at z = 0 

and the discontinuity can be characterized by an infinite medium with an intrinsic 
impedance Z2(0) as given in Eq. (8-173). The effective reflection coefficient at z = 0 
for the incident wave in medium 1 is 

_ Ern Hrn Z?(0) — n, 
Ei0 Hi0 Z2(0) + r\x 

We note that T0 differs from T only in that r\2 has been replaced by Z2(0). Hence 
the insertion of a dielectric layer of thickness d and intrinsic impedance r\2 in front 
of medium 3, which has intrinsic impedance 7?3, has the effect of transforming ^3 to 
Z2(0). Given rj1 and ^3, T0 can be adjusted by suitable choices of v\2 and d. 

Once T0 has been found from Eq. (8-174), Er0 of the reflected wave in medium 
1 can be calculated: Er0 = T0Ei0. In many applications, r o and Er0 are the only 
quantities of interest; hence this impedance-transformation approach is conceptually 
simple and yields the desired answers in a direct manner. If the fields E2, E2, and 
Et in media 2 and 3 are also desired, they can be determined from the boundary 
conditions at z = 0 and z = d, as indicated in Eqs. (8-162) through (8-165). 

EXAMPLE 8-12 A dielectric layer of thickness d and intrinsic impedance rj2 is placed 
between media 1 and 3 having intrinsic impedances r\x and tj3i respectively. Determine 
d and rj2 such that no reflection occurs when a uniform plane wave in medium 1 
impinges normally on the interface with medium 2. 
Solution With the dielectric layer interposed between media 1 and 3 as shown in Fig. 
8-15, the condition of no reflection at interface z = 0 requires T0 = 0, or Z2(0) = r\v 
From Eq. (8-173) we have 

fj2(rj3 cos [l2d + jr\2 sin fi2d) = r\x(r\2 cos (i2d + jrj3 sin fi2d). (8-175) 

Equating the real and imaginary parts separately, we require 

ri2 cos p2d = rj1 cos fi2d (8-176) 
and 

Y\\ sin p2d = ^ 3 sin p2d. (8-177) 

Equation (8-176) is satisfied if either 

ri3 = Vi (8-178) 
or 

cos p2d = 0, (8-179) 
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which implies that 

j M = ( 2 n + l ) | , 
or 

X 
d = {2n+l)~-, n = 0, 1, 2 , . . . (8-180) 

On the one hand, if condition (8-178) holds, Eq. (8-177) can be satisfied when 
either (a) n2 = n3 = nu which is the trivial case of no discontinuities at all, or (b) 
sin p2d = 0, or d = nX2/2. 

On the other hand, if relation (8-179) or (8-180) holds, sin (32d does not vanish, 
and Eq. (8-177) can be satisfied when r\2 = y/r^rjl. We have then two possibilities 
for the condition of no reflection. 

1. When n3 = rjx, we require 
X 

d = n^, n = 0 , 1 , 2 , . . . , (8-181) 

that is, that the thickness of the dielectric layer be a multiple of a half-wavelength 
in the dielectric at the operating frequency. Such a dielectric layer is referred to 
as a half-wave dielectric window. Since X2 = up2/f = V / v J u ^ , where / is the 
operating frequency, a half-wave dielectric window is a narrow-band device. 

2. When n3 # rjx, we require 
12 = JnSh (8-182a) 

and 
X 

d = {In + 1) -j, n = 0, 1, 2 , . . . . (8-182b) 

When media 1 and 3 are different, rj2 should be the geometric mean of Y\X and 
n3, and d should be an odd multiple of a quarter wavelength in the dielectric 
layer at the operating frequency in order to eliminate reflection. Under these 
conditions the dielectric layer (medium 2) acts like a quarter-wave impedance 
transformer. We will refer to this term again when we study analogous trans
mission-line problems in Chapter 9. ™ 

We see from the above that if a radome is to be constructed around a radar 
installation (n1 = »/3 = n0), it should be a half-wave window in order to minimize 
reflection; that is, it should be a multiple of XJ2 (= l / 2 / 2 ^ 2 e 2 ) thick at the operating 
radar frequency f2, where \i2 and e2 are the permeability and permittivity, respectively, 
of the radome material. 

8—10 Oblique Incidence at a Plane Dielectric Boundary 

We now consider the case of a plane wave that is incident obliquely at an arbitrary 
angle of incidence 9t on a plane interface between two dielectric media. The media 
are assumed to be lossless and to have different constitutive parameters (e1? HJ) and 
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(€2,ji2), a s indicated in Fig. 8-16. Because of the medium's discontinuity at the inter
face, a part of the incident wave is reflected and a part is transmitted. Lines AO, O'A', 
and O'B are the intersections of the wavefronts (surfaces of constant phase) of the 
incident, reflected, and transmitted waves respectively, with the plane of incidence. 
Since both the incident and the reflected waves propagate in medium 1 with the same 
phase velocity upl, the distances OA' and ~AO' must be equal. Thus, 

00' sin 9r = 00' sin d{ 

or 

(8-183) 

Equation (8-183) assures us that the angle of reflection is equal to the angle of 
incidence, which is SnelVs law of reflection. 

In medium 2 the time it takes for the transmitted wave to travel from 0 to B 
equals the time for the incident wave to travel from A to 0'. We have 

from which we obtain 

OB 
Up2 

OB 
AO' 

sin 6t 

sin 0t 

AO' 
upi 

00' sin 
00' sin 

Up2 

«p l 

0t 

Ol 

Pi 
$2 

__Up2 

Upl 

" l 

n2 
(8-184) 

(Y 

J V 
*ii/ 

Incident f 
wave 

Medium 1 
(ei. Ml) 

V —■ r 

Medium 2 
(<2. Pi) 

z = 0 

FIGURE 8-16 
Uniform plane wave incident obliquely on a plane dielectric 
boundary. 
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where nx and n2 are the indices of refraction for media 1 and 2, respectively. The 
index of refraction of a medium is the ratio of the speed of light (electromagnetic 
wave) in free space to that in the medium; that is, n = c/up. The relation in Eq. (8-184) 
is known as SnelVs law of refraction. It states that at an interface between two dielectric 
media, the ratio of the sine of the angle of refraction (transmission) in medium 2 to the 
sine of the angle of incidence in medium 1 is equal to the inverse ratio of indices of 
refraction n1ln2. 

For nonmagnetic media, fi1 = fi2 = A*o> Eq. (8-184) becomes 

(8-185) 
sin 9t 

sin 61 V € 2 V€r2 n2 nx 

where nx and r\2 are the intrinsic impedances of the media. Furthermore, if medium 
1 is free space such that e r l = 1 and nx = 1, Eq. (8-185) reduces to 

(8-186) 

Since n2 > 1, it is clear that a plane wave incident obliquely at an interface with a 
denser medium will be bent toward the normal. 

We have derived here Snell's law of reflection and Snell's law of refraction from a 
consideration of the ray paths of the incident, reflected, and refracted waves. No men
tion has been made of the polarization of the waves. Thus Snell's laws are independent 
of wave polarization. These laws can also be derived by matching the phases of the 
various propagating waves at the boundary surface z = 0, as we shall see when we 
take up the cases of perpendicular polarization (Subsection 8-10.2) and parallel 
polarization (Subsection 8-10.3). 

8-10.1 TOTAL REFLECTION 

Let us now examine Snell's law in Eq. (8-185) for ex > e2—that is, when the wave 
in medium 1 is incident on a less dense medium 2. In that case, 9t > 9t. Since 9t 
increases with 0t, an interesting situation airses when 9t = n/2, at which angle the 
refracted wave will glaze along the interface; a further increase in 6t would result in 
no refracted wave, and the incident wave is then said to be totally reflected. The 
angle of incidence 9C (which corresponds to the threshold of total reflection 6t = n/2) 
is called the critical angle. We have, by setting 9t = n/2 in Eq. (8-185), 

sin 0, = I— (8-187) 

or 
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This situation is illustrated in Fig. 8-17, where ani, a„r, and a„f are unit vectors de
noting the directions of propagation of the incident, reflected, and transmitted waves, 
respectively. 

What happens mathematically if 0t is larger than the critical angle 9C (sin 9{ > 
sin 9C = yje2/e1)l From Eq. (8-185) we have 

sin 9t = — sin 9t > 1, 
^2 

(8-189) 

which does not yield a real solution for 9t. Although sin 9t in Eq. (8-189) is still real, 
cos 9t becomes imaginary when sin 9t > 1: 

cos lt = Vl - sin2 9t = ±j — sin: - 1 . (8-190) 

In medium 2 the unit vector a„f in the direction of propagation of a typical trans
mitted (refracted) wave, as shown in Fig. 8-16, is 

a„t = nx sin 9t + az cos 0t. 

Both E( and H t vary spatially in accordance with the following factor: 
g-j /?2a„t-R __ g-j/J2(xsiti 8t + z cos 8t) 

which, when Eqs. (8-189) and (8-190) for 9t > 9C are used, becomes 

(8-191) 

where 

and 

1-2Z0-jp2xX 

a2 = p2y/(e1/e2)sm29i- 1 

Pix = Pi^Jti sin 0;. 

(8-192) 

Incident 
wave 

Medium 1 
(e i» MO) 

Medium 2 

z = 0 
FIGURE 8-17 
Plane wave incident at critical angle, e1> e2. 
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FIGURE 8-18 
An underwater light source (Example 

Water Light Source 8-13). 

The upper sign in Eq. (8-190) has been abandoned because it would lead to the im
possible result of an increasing field as z increases. We can conclude from (8-192) that 
for 9i > 9C an evanescent wave exists along the interface (in the x-direction), which is 
attenuated exponentially (rapidly) in medium 2 in the normal direction (z-direction). 
This wave is tightly bound to the interface and is called a surface wave. It is illustrated 
in Fig. 8-17. Obviously, it is a nonuniform plane wave. No power is transmitted into 
medium 2 under these conditions. (See Problem P.8-37.) 

EXAMPLE 8-13 The permittivity of water at optical frequencies is 1.75e0. It is found 
that an isotropic light source at a distance d under water yields an illuminated 
circular area of a radius 5 (m). Determine d. 

Solution The index of refraction of water is nw = JL15 = 1.32. Refer to Fig. 8-18. 
The radius of illuminated area, O'P = 5 (m), corresponds to the critical angle 

fl, = » n - ( i ) = ! i n- ( r L) = 49.2'. 
Hence, 

WP 5 
d = - = = 4.32 (m). 

tan0c tan 49.2° V } 

As illustrated in Fig. 8-18, an incident ray with 6t = 9C at P results in a reflected ray 
and a tangential refracted ray. Incident waves for 0i < 6C are partially reflected back 
into the water and partially refracted into the air above, and those for 0i > 6C are 
totally reflected (the evanescent surface waves are not shown). m 

FIGURE 8-19 
Dielectric rod or fiber guiding electromagnetic wave by total internal reflection. 



8-10 Oblique Incidence at a Plane Dielectric Boundary 411 

EXAMPLE 8-14 A dielectric rod or fiber of a transparent material can be used to 
guide light or an electromagnetic wave under the conditions of total internal reflec
tion. Determine the minimum dielectric constant of the guiding medium so that a 
wave incident on one end at any angle will be confined within the rod until it emerges 
from the other end. 

Solution Refer to Fig. 8-19. For total internal reflection, 0X must be greater than 
or equal to 9C for the guiding dielectric medium; that is, 

sin Qx > sin 6C 

or, since Bx = n/2 — 6t, 
cos 0t > sin 0C. (8-193) 

From Snell's law of refraction, Eq. (8-186), we have 

sin 0t = -j= sin 0t. (8-194) 

It is important to note here that the dielectric medium has been designated as medium 
1 (the denser medium) in order to be consistent with the notation of this subsection. 
Combining Eqs. (8-193), (8-194), and (8-187), we obtain 

which requires 
e r l > 1 + sin2 et. (8-195) 

Since the largest value of the right side of (8-195) is reached when 6t = n/2, we 
require the dielectric constant of the guiding medium to be at least 2, which corre
sponds to an index of refraction n1 = y/2. This requirement is satisfied by glass and 
quartz. ^ 

We observe that Snell's law of refraction in Eq. (8-185) and the critical angle for 
total reflection in Eq. (8-188) are independent of the polarization of the incident elec
tric field. The formulas for the reflection and transmission coefficients, however, are 
polarization-dependent. In the following two subsections we discuss perpendicular 
polarization and parallel polarization separately. 

8-10.2 PERPENDICULAR POLARIZATION 

For oblique incidence with perpendicular polarization we refer to Fig. 8-20. The inci
dent electric and magnetic field intensity phasors in medium 1 are, from Eqs. (8-107) 
and (8-108), 

E,<x, z) = ayEioe~jp^xsin6i+z cos0i) (8-196) 
p 

Ht{x, z) = — ( - a , cos 0j + az sin.0^-#l(*BinO'+ZCOBO'). (8-197) 
*/i 
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Reflected 
wave 

Incident 

FIGURE 8-20 
Plane wave incident on a plane dielectric boundary 
(perpendicular polarization). 

The reflected electric and magnetic fields can be obtained from Eqs. (8-110) and 
(8-112), but remember that Er0 is no longer equal to — Ei0: 

Er{x, Z) = a j !£ r Oe-J/M*sin0 r-zcos0 r) 

Hr(x, z) = ^ (a, cos 9r + a2 sin or)e-JM*™er-zcose^ 

(8-198) 

(8-199) 

In medium 2 the transmitted electric and magnetic field intensity phasors can be 
similarly written as 

Et(x, z) = ayEt0e-jP2{xsinet+z cos6t} (8-200) 

Ut{x, z) = — ( - a x cos dt + az sin et)e-JP2{xsinet+zcoset\ (8-201) 

There are four unknown quantities in Eqs. (8-196) through (8-201), namely, Er0, 
Et0, 9r, and 9t. Their determination follows from the requirements that the tangen
tial components of E and H be continuous at the boundary z = 0. From Eiy(x, 0) + 
Ery{x, 0) = Ety{x, 0) we have 

EiQe-jplX sin 6i + Er0e-j^xsiner = Et0e-jp2XSinet. (8-202) 

Similarly, from Hix(x, 0) + Hrx(x, 0) = Htx(x, 0) we require 

— {-Ei0 cos Bp-W*** + Er0 cos 9re-JPiXS'iner) = - ^ cos 9te-jli2Xsine\ (8-203) 

Because Eqs. (8-202) and (8-203) are to be satisfied for all x, all three exponential 
factors that are functions of x must be equal ("phase-matching"). Thus, 

PiX sin 9t = pxx sin 9r = p2x sin 9t, 
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which leads to Snell's law of reflection (0P = 0t) and Snell's law of refraction (sin 0J 
sin 0t = PJP2 = njn2). Equations (8-202) and (8-203) can now be written simply 
as 

£,0 + Er0 = Et0 (8-204) 
and 

1 P 
— (Ei0 - Er0) cos 0t = - ^ cos 6t, (8-205) 

from which Er0 and Et0 can be found in terms of Ei0. We have 

Er0 r)2
 c o s Qi — tli c o s Ot 

and 

■p —ru 
TI~E7-

T± = E~ 

t\2 cos 6t 

(rj 2/cos 0 
(^2/cos 0 

+ t]1 COS 0t 

t) - (r/i/cos 
t) + (fj!/C0S 

COS d{ 

^2 cos dt + t]1 cos 0 
2(^2/cos 0t) 

ot) 
ed 

(8-206)t 

(8-207)* 

fa2/cos 0t) + (r/i/cos d^ 

Comparing these expressions with the formulas for the reflection and transmission 
coefficients at normal incidence, Eqs. (8-140) and (8-141), we see that the same for
mulas apply if r\x and rj2 are changed to (rjjcos 0t) and (fh/cos 6t), respectively. When 
6t = 0, making 6r = 0t = 0, these expressions reduce to those for normal incidence, 
as they should. Furthermore, Y± and x± are related in the following way: 

1 + r ± = TL, (8-208) 

which is similar to Eq. (8-142) for normal incidence. 
If medium 2 is a perfect conductor, rf2 = 0. We have r ± = — 1 (Er0 = —Ei0) and 

T± = 0 (Et0 = 0). The tangential E field on the surface of the conductor vanishes, and 
no energy is transmitted across a perfectly conducting boundary, as we have noted 
in Sections 8-6 and 8-7. 

Noting that the numerator for the reflection coefficient in Eq. (8-206) is in the 
form of a difference of two terms, we inquire whether there is a combination of rju 
r\2, and 6h which makes T± - 0 for no reflection. Denoting this particular di by 0B1, 
we require 

r\2 cos 6B1 = t]1 cos 0t. (8-209) 

Using Snell's law of refraction, we have 

cos 0t = y/l- sin2 0t = / l - ^ - s i n 2 ^ (8-210) 
V n2 

f These are sometimes referred to as Fresnel's equations. 
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Reflected 
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V\ ransmim 
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(ei, Ml) 
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(f2. «> 

Z = 0 

FIGURE 8-21 
Plane wave incident obliquely on a plane 
dielectric boundary (parallel polarization). 

and obtain from Eq. (8-209) 

sin2 6B1 = 
1 - fi1e2/fi2e1 

1 - W^)2 5-211) 

The angle 9B1 is called the Brewster angle of no reflection for the case of perpendicular 
polarization. For nonmagnetic media, fi1 = \i2 = jU0, the right side of Eq. (8-211) be
comes infinite, and 6B1 does not exist. In the case of e1 — e2 and fi1 =£ fi2, Eq. (8-211) 
reduces to 

1 
(8-212) sin 9B1 = 

Vl + OVM; 

which does have a solution whether fijfi2 is greater or less than unity. However, it 
is a very rare situation in electromagnetics that two contiguous media have the same 
permittivity but different permeabilities. 

8-10.3 PARALLEL POLARIZATION 

When a uniform plane wave with parallel polarization is incident obliquely on a 
plane boundary, as illustrated in Fig. 8-21, the incident and reflected electric and 
magnetic field intensity phasors in medium 1 are, from Eqs. (8-124) through (8-127): 

Et(x, i) = Ei0(ax cos 9t - az sin Q.)e-Jfiwe< + ">°*<><) 
E, 

H,(X, Z) = a y - ^ e-J/M*sin0 i + Z c o s 0 O 

Vi 

(8-213) 

(8-214) 
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Er(x, z) = Er0(ax cos 0r + az sin 0r)g-tfi<* sin <>P-*«*<« 

Ur(x,z) = -Ay — e ,-JPi(x sin 6r-2 cos 6r) 

(8-215) 

(8-216) 

The transmitted electric and magnetic field intensity phasors in medium 2 are 

E((x, z) - Et0{ax cos 0t - az sin e^-^Xiia9t+zeoa9t\ (8-217) 
Et Ht(x, z) = a, "tO e~JPi(x sin 0t + z cos 0t) (8-218) 

Continuity requirements for the tangential components of E and H at z = 0 lead 
again to Snell's laws of reflection and refraction, as well as to the following two 
equations: 

(Ei0 + Er0) cos 6t = Et0 cos 6t, 

Solving for Er0 and Et0 in terms of Ei0, we obtain 

Er0 rj2 cos 0t — rj1 cos d{ 

and 

It is easy to verify that 

1 I I -

T l l = 

Ei0 rj2 cos 0t + rj1 cos 0t 

Et0 2rj2 cos 0t 

Ei0 rj2 cos 0t + rj1 cos 0t 

i i r r (cos e<\ 1 ' r"-T|'VcosflJ 

(8-219) 

(8-220) 

(8-221)1" 

(8-222)f 

(8-223) 

Equation (8-223) is seen to be different from Eq. (8-208) for perpendicular polariza
tion except when 0t = 0t = 0, which is the case for normal incidence. At normal in
cidence, T|| and t|| reduce to T and % given in Eqs. (8-140) and (8-141), respectively, 
as did r ± and T±. 

If medium 2 is a perfect conductor (r\2 = 0), Eqs. (8-221) and (8-222) simplify 
to T|| = — 1 and T|| = 0 , respectively, making the tangential component of the total 
E field on the surface of the conductor vanish, as expected. We note here that the 
choices of the reference directions of Er and H r in Figs. 8-11, 8-13, 8-20, and 8-21 
are all arbitrary. The actual directions of Er and Hr in Figs. 8-11 and 8-13 are opposite 
to those chosen because Er0 = — Ei0. In Figs. 8-20 and 8-21 the actual directions 
of E, and Hr may or may not be the same as those shown, depending on whether 
r ± in Eq. (8-206) and r^ in Eq. (8-221) is positive or negative, respectively. 

If we plot | r± |2 and |F|||2 versus 0it we will find the former always greater than 

These are also referred to as Fresnel's equations. 
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the latter except for 0,. = 0. This means that when an unpolarized wave strikes a 
plane dielectric interface, the reflected wave will contain more power in the compo
nent with perpendicular polarization than that with parallel polarization. A popular 
application of this fact is the design of Polaroid sunglasses to reduce sun glare. Much 
of the sunlight received by the eye has been reflected from horizontal surfaces on 
earth. Because | r j 2 > | r j 2 , the light reaching the eye is predominantly perpendic
ular to the plane of reflection (same as the plane of incidence), and hence the electric 
field is parallel to the earth's surface. Polaroid sunglasses are designed to filter out 
this component. 

From Eq. (8-221) we find that rN goes to zero when the angle of incidence 0t 
equals 0B\\, such that 

rj2 cos 0, = r\y cos 0B||, (8-224) 

which, together with Eq. (8-210), requires that 

sin2 0BN = 
1 - ii2€jii& 

1 " (€!/e2)2 0*i = t*2) (8-225) 

The angle 0B|| is known as the Brewster angle of no reflection for the case of parallel 
polarization. A solution for Eq. (8-225) always exists for two contiguous nonmag
netic media. Thus if/^ = fi2, a reflection-free condition is obtained when the angle 
of incidence in medium 1 equals the Brewster angle 6Bll, such that 

0*i = Vi) 5-226) 

An alternative form for Eq. (8-226) is 

— ton - 1 2 t o « - l = t a n - i / — = tan _ 1 — . 0*i = Vi) 5-227) 

Because of the difference in the formulas for Brewster angles for perpendicular 
and parallel polarizations, it is possible to separate these two types of polarization 
in an unpolarized wave. When an unpolarized wave such as random light is incident 
upon a boundary at the Brewster angle 0B)| given by Eq. (8-225), only the compo
nent with perpendicular polarization will be reflected. Thus a Brewster angle is also 
referred to as a polarizing angle. Based on this principle, quartz windows set at the 
Brewster angle at the ends of a laser tube are used to control the polarization of 
an emitted light beam. 

EXAMPLE 8-15 The dielectric constant of pure water is 80. (a) Determine the 
Brewster angle for parallel polarization, 0B||, and the corresponding angle of trans-
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mission, (b) A plane wave with perpendicular polarization is incident from air on 
water surface at dt — BB\\. Find the reflection and transmission coefficients. 

Solution 

a) The Brewster angle of no reflection for parallel polarization can be obtained di
rectly from Eq. (8-226): 

0B|I = s in - 1 

= s in - 1 , l = 81.0°. 
Vl + (1/80) 

The corresponding angle of transmission is, from Eq. (8-186), 

x /s in0B i | \ . _„ / 1 
sin 1 —7==̂ - = sin er2 / \Jer2 + 1 

1 
= sin_ 1 - = =6.38°. 

VV8l/ 
b) For an incident wave with perpendicular polarization, we use Eqs. (8-206) and 

(8-207) to find r ± and t± at 0, = 81.0° and 0t = 6.38°: 

r\1 = 311 (Q), rjjcos ^ = 2410 (Q), 

rj2 = ^L = 40.1 (Q), ri2/cos 0t = 40.4 (Q). 
V^2 

Thus, 
40.4 - 2410 

r - 4 O 4 T 2 « 0 - - a 9 6 7 ' 
2 x 40.4 

T- ~ 40.4 + 2410 = °-°33-

We note that the relation between T± and xL given in Eq. (8-208) is satisfied. 

Review Questions 

R.8-1 Define uniform plane wave. 
R.8-2 What is a wavefrontl 
R.8-3 Write the homogeneous vector Helmholtz's equation for E in free space. 
R.8-4 Define wavenumber. How is wavenumber related to wavelength? 
R.8-5 Define phase velocity. 
R.8-6 Define intrinsic impedance of a medium. What is the value of the intrinsic impedance 
of free space? 
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R.8-7 What is Doppler effect! 
R.8-8 What is a TEM wave? 
R.8-9 Write the phasor expressions for the electric and magnetic field intensity vectors of 
an x-polarized uniform plane wave propagating in the + z-direction. 
R.8-10 What is meant by the polarization of a wave? When is a wave linearly polarized? 
Circularly polarized? 
R.8-11 Two orthogonal linearly polarized waves are combined. State the conditions under 
which the resultant will be (a) another linearly polarized wave, (b) a circularly polarized 
wave, and (c) an elliptically polarized wave. 
R.8-12 How is the E-field from AM broadcast stations polarized? From television stations? 
From FM broadcast stations? 
R.8-13 Define (a) propagation constant, (b) attenuation constant, and (c) phase constant. 
R.8-14 What is meant by the skin depth of a conductor? How is it related to the attenuation 
constant? How does it depend on a? On / ? 
R.8-15 What is the constitution of the ionosphere? 
R.8-16 What is a plasma? 
R.8-17 What is the significance of plasma frequency? 
R.8-18 When does the equivalent permittivity of the ionosphere become negative? What 
is the significance of a negative permittivity in terms of wave propagation? 
R.8-19 What is meant by the dispersion of a signal? Give an example of a dispersive medium. 
R.8-20 Define group velocity. In what ways is group velocity different from phase velocity? 
R.8-21 Define Poynting vector. What is the SI unit for this vector? 
R.8-22 State Poynting's theorem. 
R.8-23 For a time-harmonic electromagnetic field, write the expressions in terms of elec
tric and magnetic field intensity vectors for (a) instantaneous Poynting vector, and (b) time-
average Poynting vector. 
R.8-24 What is a standing wave? 
R.8-25 What do we know about the magnitude of the tangential components of E and H 
at the interface when a wave impinges normally on a perfectly conducting plane boundary? 
R.8-26 Define plane of incidence. 
R.8-27 What do we mean when we say that an incident wave has (a) perpendicular polar
ization, and (b) parallel polarization? 
R.8-28 Define reflection coefficient and transmission coefficient. What is the relationship 
between them? 
R.8-29 Under what conditions will reflection and transmission coefficients be real? 
R.8-30 What are the values of the reflection and transmission coefficients at an interface 
with a perfectly conducting boundary? 
R.8-31 A plane wave originating in medium 1 (el5 fix = /i0, o"i = 0) is incident normally on 
a plane interface with medium 2 (e2 ^ e1; \i2 = /i0, a2 = 0). Under what condition will the 
electric field at the interface be a maximum? A minimum? 
R.8-32 Define standing-wave ratio. What is its relationship with reflection coefficient? 
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R.8-33 What is meant by the wave impedance of the total field. When is this impedance 
equal to the intrinsic impedance of the medium? 
R.8-34 A thin dielectric coating is sprayed on optical instruments to reduce glare. What 
factors determine the thickness of the coating? 
R.8-35 How should the thickness of the radome in a radar installation be chosen? 
R.8-36 State Snell's law of reflection. 
R.8-37 State Snell's law of refraction. 
R.8-38 Define critical angle. When does it exist at an interface of two nonmagnetic media? 
R.8-39 Define Brewster angle. When does it exist at an interface of two nonmagnetic media? 
R.8-40 Why is a Brewster angle also called a polarizing angle! 
R.8-41 Under what conditions will the reflection and transmission coefficients for perpen
dicular polarization be the same as those for parallel polarization? 

Problems 

P.8-1 Obtain the wave equations governing the E and H fields in a source-free conducting 
medium with constitutive parameters e, n, and a. 
P.8-2 Prove that the electric field intensity in Eq. (8-22) satisfies the homogeneous 
Helmholtz's equation provided that the condition in Eq. (8-23) is satisfied. 
P.8-3 A Doppler radar is used to determine the speed of a moving vehicle by measuring 
the frequency shift of the wave reflected from the vehicle. 

a) Assuming that the reflecting surface of the vehicle can be represented by a perfectly 
conducting plane and that the transmitted signal is a time-harmonic uniform plane 
wave of a frequency / incident normally on the reflecting surface, find the relation 
between the frequency shift A/ and the speed u of the vehicle. 

b) Determine u both in (km/hr) and in (miles/hr) if A/ = 2.33 (kHz) with / = 10.5 (GHz). 
P.8-4 For a harmonic uniform plane wave propagating in a simple medium, both E and 
H vary in accordance with the factor exp (— jk • R) as indicated in Eq. (8-26). Show that 
the four Maxwell's equations for uniform plane wave in a source-free region reduce to the 
following: 

k x E = cofM, 
k x H = -coeE, 

k • E = 0, 
k • H = 0. 

P.8-5 The instantaneous expression for the magnetic field intensity of a uniform plane wave 
propagating in the + y direction in air is given by 

H = az4 x 10" 6 cosf 1077rt - k0y + ^J (A/m). 

a) Determine k0 and the location where Hz vanishes at t = 3 (ms). 
b) Write the instantaneous expression for E. 

P.8-6 The E-field of a uniform plane wave propagating in a dielectric medium is given by 
E(t, z) = ax 2 cos (108t - z/yfi) - ay sin (108t - z/yfi) (V/m). 



8 Plane Electromagnetic Waves 

a) Determine the frequency and wavelength of the wave. 
b) What is the dielectric constant of the medium? 
c) Describe the polarization of the wave. 
d) Find the corresponding H-field. 

P.8-7 Show that a plane wave with an instantaneous expression for the electric field 
E(z, t) = axE10 sin (cot — kz) + ayE20 sin (cot — kz + ty) 

is elliptically polarized. Find the polarization ellipse. 
P.8-8 Prove the following: 

a) An elliptically polarized plane wave can be resolved into right-hand and left-hand 
circularly polarized waves. 

b) A circularly polarized plane wave can be obtained from a superposition of two op
positely directed elliptically polarized waves. 

P.8-9 Derive the following general expressions of the attenuation and phase constants for 
conducting media: 

a = co 
\_\ 

A 

f o\2 1 
/ l + — - 1 
/ W/ 
/ ( o \ ~ 
1+ — +1 / w _ 

(Np/m). 

/? = « . / f L / l + ( —V + l T (rad/m). 

P.8-10 Determine and compare the intrinsic impedance, attentuation constant (in both 
Np/m and dB/m), and skin depth of copper [<rcu = 5.80 x 107 (S/m)], silver 
\oag = 6.15 x 107 (S/m)], and brass [<rbr = 1.59 x 107 (S/m)] at the following frequencies: 
(a) 60 (Hz), (b) 1 (MHz), and (c) 1 (GHz). 
P.8-11 A 3 (GHz), y-polarized uniform plane wave propagates in the + x-direction in a 
nonmagnetic medium having a dielectric constant 2.5 and a loss tangent 10"2. 

a) Determine the distance over which the amplitude of the propagating wave will be 
cut in half. 

b) Determine the intrinsic impedance, the wavelength, the phase velocity, and the 
group velocity of the wave in the medium. 

c) Assuming E = a^50 sin (6nl09t + 7t/3)(V/m) at x = 0, write the instantaneous ex
pression for H for all t and x. 

P.8-12 The magnetic field intensity of a linearly polarized uniform plane wave propagating 
in the + y-direction in seawater [er = 80, \ir = 1, a = 4 (S/m)] is 

H = ax0.1 sin (I010nt - n/3) (A/m) 
at y = 0. 

a) Determine the attenuation constant, the phase constant, the intrinsic impedance, 
the phase velocity, the wavelength, and the skin depth. 

b) Find the location at which the amplitude of H is 0.01 (A/m). 
c) Write the expressions for E(y, t) and H(y, t) at y = 0.5 (m) as functions of t. 

P.8-13 Given that the skin depth for graphite at 100 (MHz) is 0.16 (mm), determine (a) the 
conductivity of graphite, and (b) the distance that a 1 (GHz) wave travels in graphite such 
that its field intensity is reduced by 30 (dB). 
P.8-14 Assume the ionosphere to be modeled by a plasma region with an electron density 
that increases with altitude from a low value at the lower boundary toward a value iVmax 
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and decreases again as the altitude gets higher. A plane electromagnetic wave impinges on 
the lower boundary at an angle 6t with the normal. Determine the highest frequency of the 
wave that will be turned back toward the earth. (Hint: Imagine the ionosphere to be strat
ified into layers of successively decreasing constant permittivities until the layer containing 
Nmax. The frequency to be determined corresponds to that for an emerging angle of n/2.) 
P.8-15 Prove the following relations between group velocity ug and phase velocity up in 
a dispersive medium: 

P.8-16 There is a continuing discussion on radiation hazards to human health. The 
following calculations will provide a rough comparison. 

a) The U.S. standard for personal safety in a microwave environment is that the 
power density be less than 10 (mW/cm2). Calculate the corresponding standard 
in terms of electric field intensity. In terms of magnetic field intensity. 

b) It is estimated that the earth receives radiant energy from the sun at a rate of 
about 1.3 (kW/m2) on a sunny day. Assuming a monochromatic plane wave 
(which it is not), calculate the equivalent amplitudes of the electric and magnetic 
field intensity vectors. 

P.8-17 Show that the instantaneous Poynting vector of a circularly polarized plane wave 
propagating in a lossless medium is a constant that is independent of time and distance. 
P.8-18 Assuming that the radiation electric field intensity of an antenna system is 

E = agEg + a ^ , 
find the expression for the average outward power flow per unit area. 
P.8-19 From the point of view of electromagnetics, the power transmitted by a lossless 
coaxial cable can be considered in terms of the Poynting vector inside the dielectric 
medium between the inner conductor and the outer sheath. Assuming that a d-c voltage V0 
applied between the inner conductor (of radius a) and the outer sheath (of inner radius b) 
causes a current I to flow to a load resistance, verify that the integration of the Poynting 
vector over the cross-sectional area of the dielectric medium equals the power VQI that 
is transmitted to the load. 
P.8-20 A uniform plane electromagnetic wave propagates in the + z- (downward) direction 
and impinges normally at z = 0 on an ocean surface. Let the magnetic field at z = 0 be 
H(0, t) = ayH0 cos 104t (A/m). 

a) Determine the skin depth. (For the ocean: Conductivity = a, permeability = fi0.) 
b) Find the expressions for H(z, t) and E(z, t). 
c) Find the power loss per unit area (in terms of H0) into the ocean. 

P.8-21 A right-hand circularly polarized plane wave represented by the phasor 

E(z) = £ 0 ( a x - > > - ^ 

impinges normally on a perfectly conducting wall at z = 0. 
a) Determine the polarization of the reflected wave. 
b) Find the induced current on the conducting wall. 
c) Obtain the instantaneous expression of the total electric intensity based on a 

cosine time reference. 
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P.8-22 A uniform sinusoidal plane wave in air with the following phasor expression for 
electric intensity 

Ej(x,z) = a,10e-;(6*+8z) (V/m) 

is incident on a perfectly conducting plane at z = 0. 
a) Find the frequency and wavelength of the wave. 
b) Write the instantaneous expressions for E;(x, z; t) and H,(x, z; t), using a cosine 

reference. 
c) Determine the angle of incidence. 
d) Find Er(x, z) and Hr(x, z) of the reflected wave. 
e) Find E^x, z) and H^x, z) of the total field. 

P.8-23 Repeat Problem P.8-22 for E£y, z) = 5(a„ + azV3y6(V3, ,"z)(V/m). 
P.8-24 For the case of oblique incidence of a uniform plane wave with perpendicular 
polarization on a perfectly conducting plane boundary as shown in Fig. 8-11, write (a) the 
instantaneous expressions 

Ex(x, z; t) and H^x, z; t) 

for the total field in medium 1, using a cosine reference, and (b) the time-average Poynting 
vector. 
P.8-25 For the case of oblique incidence of a uniform plane wave with parallel polarization 
on a perfectly conducting plane boundary as shown in Fig. 8-13, write (a) the instantaneous 
expressions 

E^x, z; t) and H^x, z; t) 

for the total field in medium 1, using a sine reference, and (b) the time-average Poynting 
vector. 
P.8-26 Determine the condition under which the magnitude of the reflection coefficient 
equals that of the transmission coefficient for a uniform plane wave at normal incidence on 
an interface between two lossless dielectric media. What is the standing-wave ratio in dB 
under this condition? 
P.8-27 A uniform plane wave in air with E,(z) = axl0e~j6z (V/m) is incident normally on an 
interface at z = 0 with a lossy medium having a dielectric constant 2.5 and a loss tangent 
0.5. Find the following: 

a) The instantaneous expressions for Er(z, t), Hr(z, t), Et(z, t), and Ht(z, t), using a cosine 
reference. 

b) The expressions for time-average Poynting vectors in air and in the lossy medium. 
P.8-28 A uniform plane wave in air with E;(z) = axE0 exp (— j(50z) impinges normally onto 
the surface at z = 0 of a highly conducting medium having constitutive parameters e0, n, 
and a {a/coe0 » 1). 

a) Find the reflection coefficient. 
b) Derive the expression for the fraction of the incident power absorbed by the 

conducting medium. 
c) Obtain the fraction of the power absorbed at 1 (MHz) if the medium is iron. 

P.8-29 Consider the situation of normal incidence at a lossless dielectric slab of thickness 
d in air, as shown in Fig. 8-15 with 

«i = e3 = e0 and ^ = JI3 = fi0. 



Problems 423 

a) Find Er0, E$,E2, and Et0 in terms of Ei0, d, e2, and \i2. 
b) Will there be reflection at interface z = 0 if d = A2/4? If d = A2/2? Explain. 

P.8-30 A transparent dielectric coating is applied to glass (er = 4, \ir = 1) to eliminate the 
reflection of red light [A0 = 0.75 (/mi)]. 

a) Determine the required dielectric constant and thickness of the coating. 
b) If violet light [A0 = 0.42 (/mi)] is shone normally on the coated glass, what percent

age of the incident power will be reflected? 
P.8-31 Refer to Fig. 8-15, which depicts three different dielectric media with two parallel 
interfaces. A uniform plane wave in medium 1 propagates in the + z-direction. Let T12 

and r 2 3 denote the reflection coefficients between media 1 and 2 and between media 2 and 
3, respectively. Express the effective reflection coefficient, T0, at z = 0 for the incident wave 
in terms of T12, r 2 3 , and j32d. 
P.8-32 A uniform plane wave with 

E,-(z, t) = ax£ i 0 cos col t 

in medium 1 (el5 jXj) is incident normally onto a lossless dielectric slab (e2, /i2) of a thickness 
d backed by a perfectly conducting plane, as shown in Fig. 8-22. Find 

a) Er(z, t) b) E^z, t) c) E2(z, t) d) [p„)x e) (^av)2 

f) Determine the thickness d that makes E^z, t) the same as if the dielectric slab were 
absent. 

■ 
f 
©—► yft H, 

Medium 1 
( e i . Ml ) 

Mcd. 2 

Perfect 
conductor 

z=0 z=d 

+ z 

FIGURE 8-22 
Plane wave incident normally onto a dielectric slab backed 
by a perfectly conducting plane (Problem P.8-32). 

P.8-33 A uniform plane wave with E;(z) = axEi0e~JPoZ in air propagates normally through a 
thin copper sheet of thickness d, as shown in Fig. 8-23. Neglecting multiple reflections 
within the copper sheets, find 

a) £2
+, Hi b) £ 2 , ff2- c) £ 3 0 , H30 d) (^av)3/(^av); 

Calculate (^>
av)3/(^>

av)l- for a thickness d that equals one skin depth at 10 (MHz). (Note that 
this pertains to the shielding effectiveness of the thin copper sheet.) 
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kE/ V 
y§> 

(eo. W) 
d 

I 
z = 0 

Copper 
sheet 

-¥Z 

(eo. M) FIGURE 8-23 
Plane wave propagating through a thin copper sheet 
(Problem P.8-33). 

P.8-34 A uniform plane wave is incident on the ionosphere at an angle of incidence 
0t = 60°. Assuming a constant electron density and a wave frequency equal to one-half of 
the plasma frequency of the ionosphere, determine 

a) r ± and xL, 
b) T|| and T||. 

Interpret the significance of these complex quantities. 
P.8-35 A 10 (kHz) parallelly polarized electromagnetic wave in air is incident obliquely on 
an ocean surface at a near-grazing angle 6{ = 88°. Using er = 81, \iT = 1, and o = 4 (S/m) 
for sea water, find (a) the angle of refraction 6t, (b) the transmission coefficient T||, 
(c) (^avX/C^av)^ a n d (d) the distance below the ocean surface where the field intensity has 
been diminished by 30 (dB). 
P.8-36 A light ray is incident from air obliquely on a transparent sheet of thickness d with 
an index of refraction n, as shown in Fig. 8-24. The angle of incidence is 9t. Find (a) 9t, 
(b) the distance tx at the point of exit, and (c) the amount of the lateral displacement «f2 of 
the emerging ray. 

FIGURE 8-24 
Light-ray impinging obliquely on a transparent 
sheet of refraction index n (Problem P.8-36). 

P.8-37 A uniform plane wave with perpendicular polarization represented by Eqs. (8-196) 
and (8-197) is incident on a plane interface at z = 0, as shown in Fig. 8-16. Assuming 
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e2 < e1 and 0i > 9C, (a) obtain the phasor expressions for the transmitted field (Ef, H,), and 
(b) verify that the average power transmitted into medium 2 vanishes. 
P.8-38 A uniform plane wave of angular frequency w in medium 1 having a refractive 
index n1 is incident on a plane interface at z = 0 with medium 2 having a refractive 
index n2 (<n1) at the critical angle. Let Ei0 and Et0 denote the amplitudes of the incident 
and refracted electric field intensities, respectively. 

a) Find the ratio Et0/Ei0 for perpendicular polarization. 
b) Find the ratio Et0/Ei0 for parallel polarization. 
c) Write the instantaneous expressions of E^x, z; t) and Et(x, z; t) for perpendicular 

polarization in terms of the parameters co, nl5 n2, 9h and Ei0. 
P.8-39 An electromagnetic wave from an underwater source with perpendicular polariza
tion is incident on a water-air interface at 9t = 20°. Using er = 81 and nr = 1 for fresh 
water, find (a) critical angle 9C, (b) reflection coefficient r x , (c) transmission coefficient TX, 
and (d) attenuation in dB for each wavelength into the air. 
P.8-40 Glass isosceles triangular prisms shown in Fig. 8-25 are used in optical instruments. 
Assuming er — 4 for glass, calculate the percentage of the incident light power reflected 
back by the prism. 

Incident 
f l i g h t 

Reflected 
light 

FIGURE 8-25 
Light reflection by a right isosceles triangular prism (Problem 
P.8-40). 

P.8-41 For preventing interference of waves in neighboring fibers and for mechanical pro
tection, individual optical fibers are usually cladded by a material of a lower refractive index, 
as shown in Fig. 8-26, where n2 < ny. 

a) Express the maximum angle of incidence 9a in terms of n0, nu and n2 for 
meridional rays incident on the core's end face to be trapped inside the core by 
total internal reflection. (Meridional rays are those that pass through the fiber axis. 
The angle 9a is called the acceptance angle, and sin 9a the numerical aperture (N.A.) 
of the fiber.) 

b) Find 9a and N.A. if nx = 2, n2 = 1.74, and n0 = 1. 

(no) 
Cladding {n$ 

Optical fiber (nt> 
(*2) 

(no) 

FIGURE 8-26 
A cladded-core optical fiber 
(Problem P.8-41). 
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P.8-42 An electromagnetic wave in dielectric medium 1 (e1; /i0) impinges obliquely on a 
boundary plane with dielectric medium 2 (e2, fi0). Let 0, and 9, denote the incident 
and refraction angles, respectively, and prove the following: 

a) For perpendicular polarization: 
_ sin (0,-0,-) _2sin0 (cos0 ; 

1 ~sin(0 ( + 0I.)' T± ~ sin (0, + 9t) ' 
b) For parallel polarization: 

sin 20, - sin 20,- 4 sin 0, cos 6{ 
r i i = — — — : — — - i Tii = sin 20, + sin 20; " sin 20, + sin 20; 

(These four relations are known as Fresnel formulas) 
P.8-43 Prove that, under the condition of no reflection at an interface, the sum of the 
Brewster angle and the angle of refraction is n/2 for: 

a) perpendicular polarization (fi1 ^ /i2), 
b) parallel polarization {e1 ̂  e2). 

P.8-44 For an incident wave with parallel polarization: 
a) Find the relation between the critical angle 0C and the Brewster angle 0B(| for 

nonmagnetic media. 
b) Plot 0C and 6Bll versus the ratio eje2. 

P.8-45 By using Snell's law of refraction, (a) express T and T in terms of en, er2, and 0;; and 
(b) plot T and T versus 0; for erJer2 = 2.25 for both perpendicular and parallel polarizations. 
P.8-46 A perpendicularly polarized uniform plane wave in air of frequency / is incident 
obliquely at an angle of incidence 0; on a plane boundary with a lossy dielectric medium 
that is characterized by a complex permittivity e2 = e' — je". Let the incident electric field be 

E,<x, z) = ayEi0e"Jko(*8infl'~ZCO8fl'). 
a) Find the expressions of the transmitted electric and magnetic field intensity phasors 

in terms of the given parameters. 
b) Show that the angle of refraction is complex and that H, is elliptically polarized. 

P.8-47 In some books the reflection and transmission coefficients for parallel polarization 
are defined as the ratios of the amplitude of the tangential components of the reflected and 
transmitted E fields, respectively, to the amplitude of the tangential component of the 
incident E field. Let the coefficients defined in this manner be designated rj| and -rjj, 
respectively. 

a) Find r[| and x\\ in terms of r\x, fj2, 6h and 0,; and compare them with r^ and Tn in 
Eqs. (8-221) and (8-222). 

b) Find the relation between rj| and z\\, and compare it with Eq. (8-223). 



9 
Theory and Applications 
of Transmission Lines 

9—1 Introduction 

We have now developed an electromagnetic model with which we can analyze electro
magnetic actions that occur at a distance and are caused by time-varying charges and 
currents. These actions are explained in terms of electromagnetic fields and waves. 
An isotropic or omnidirectional electromagnetic source radiates waves equally in all 
directions. Even when the source radiates through a highly directive antenna, its 
energy spreads over a wide area at large distances. This radiated energy is not guided, 
and the transmission of power and information from the source to a receiver is in
efficient. This is especially true at lower frequencies for which directive antennas 
would have huge dimensions and therefore would be excessively expensive. For in
stance, at AM broadcast frequencies a single half-wavelength antenna (which is only 
mildly directive1") would be over a hundred meters long. At the 60 (Hz) power fre
quency a wavelength is 5 million meters or 5 (Mm)! 

For efficient point-to-point transmission of power and information the source 
energy must be directed or guided. In this chapter we study transverse electromagnetic 
(TEM) waves guided by transmission lines. The TEM mode of guided waves is one 
in which E and H are perpendicular to each other and both are transverse to the 
direction of propagation along the guiding line. We discussed the propagation of 
unguided TEM plane waves in the last chapter. We will show in this chapter that 
many of the characteristics of TEM waves guided by transmission lines are the same 
as those for a uniform plane wave propagating in an unbounded dielectric medium. 

The three most common types of guiding structures that support TEM waves are: 

a) Parallel-plate transmission line. This type of transmission line consists of two 
parallel conducting plates separated by a dielectric slab of a uniform thickness. 

Principles of antennas and radiating systems will be discussed in Chapter 11. 

427 
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(a) Parallel-plate (b) Two-wire transmission line, (c) Coaxial transmission line. 
transmission line. 

FIGURE 9-1 
Common types of transmission lines. 

[See Fig. 9-1(a).] At microwave frequencies, parallel-plate transmission lines can 
be fabricated inexpensively on a dielectric substrate using printed-circuit tech
nology. They are often called striplines. 

b) Two-wire transmission line. This transmission line consists of a pair of parallel 
conducting wires separated by a uniform distance. [See Fig. 9-1(b).] Examples 
are the ubiquitous overhead power and telephone lines seen in rural areas and 
the flat lead-in lines from a rooftop antenna to a television receiver. 

c) Coaxial transmission line. This consists of an inner conductor and a coaxial outer 
conducting sheath separated by a dielectric medium. [See Fig. 9-1(c).] This struc
ture has the important advantage of confining the electric and magnetic fields 
entirely within the dielectric region. No stray fields are generated by a coaxial 
transmission line, and little external interference is coupled into the line. Examples 
are telephone and TV cables and the input cables to high-frequency precision 
measuring instruments. 

We should note that other wave modes more complicated than the TEM mode can 
propagate on all three of these types of transmission lines when the separation be
tween the conductors is greater than certain fractions of the operating wavelength. 
These other transmission modes will be considered in the next chapter. 

We will show that the TEM wave solution of Maxwell's equations for the parallel-
plate guiding structure in Fig. 9-1(a) leads directly to a pair of transmission-line 
equations. The general transmission-line equations can also be derived from a circuit 
model in terms of the resistance, inductance, conductance, and capacitance per unit 
length of a line. The transition from the circuit model to the electromagnetic model 
is effected from a network with lumped-parameter elements (discrete resistors, in
ductors, and capacitors) to one with distributed parameters (continuous distributions 
of R, L, G, and C along the line). From the transmission-line equations, all the char
acteristics of wave propagation along a given line can be derived and studied. 



9-2 Transverse Electromagnetic Wave along a Parallel-Plate Transmission Line 429 

The study of time-harmonic steady-state properties of transmission lines is greatly 
facilitated by the use of graphical charts, which avert the necessity of repeated cal
culations with complex numbers. The best known and most widely used graphical 
chart is the Smith chart. The use of Smith chart for determining wave characteristics 
on a transmission line and for impedance matching will be discussed. 

9—2 Transverse Electromagnetic Wave along a Parallel-Plate 
Transmission Line 

Let us consider a j/-polarized TEM wave propagating in the +z-direction along a 
uniform parallel-plate transmission line. Figure 9-2 shows the cross-sectional dimen
sions of such a line and the chosen coordinate system. For time-harmonic fields the 
wave equation to be satisfied in the sourceless dielectric region becomes the homo
geneous Helmholtz's equation, Eq. (8-46). In the present case the appropriate phasor 
solution for the wave propagating in the + z-direction is 

E = nyEy = nyE0e-yz. (9-la) 

The associated H field is, from Eq. (8-31), 

H = a x H x = - a x ^ e - ^ , (9-lb) 
n 

where y and r\ are the propagation constant and the intrinsic impedance, respectively, 
of the dielectric medium. Fringe fields at the edges of the plates are neglected. As
suming perfectly conducting plates and a lossless dielectric, we have, from Chapter 8, 

y=jP=jcoyfe (9-2) 
and 

" = Ji- (9-3) 

FIGURE 9-2 
Parallel-plate transmission line. 
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The boundary conditions to be satisfied at the interfaces of the dielectric and the 
perfectly conducting planes are, from Eqs. (7-68a, b, c, and d), as follows: 

At both y = 0 and y = d: 

and E< = ° <9"4) 
Hn = 0, (9-5) 

which are obviously satisfied because Ex = Ez = 0 and Hy = 0. 
At y = 0 (lower plate), a„ = ay: 

At y = 

ay • D = / v 

ay x H = J s , 

= d (upper plate), a„ = 

- a y - D = ps„ 

- a f x H = Js„ 

or 

or 

~ a r 
or 

or 

p„ = cEy = €E0e-^; 

3«=-*JIx = *^e-»\ 

Psu= ~eEy= -€E0e->»; 

J . = i A = - « , - ^ . 

(9-6a) 

(9-7a) 

(9-6b) 

(9-7b) 
»7 

Equations (9-6) and (9-7) indicate that surface charges and surface currents on the 
conducting planes vary sinusoidally with z, as do Ey and Hx. This is illustrated sche
matically in Fig. 9-3. 

Field phasors E and H in Eqs. (9-la) and (9-lb) satisfy the two Maxwell's curl 
equations: 

V x E = -jcofiH (9-8) 
and 

V x H = j w e E . (9-9) 

Since E = ayEy and H = axHx, Eqs. (9-8) and (9-9) become 

dE 
-^=jwliHx (9-10) 
dz 

i. 

l|tlW< 
1—T. -

> t i | ' 
^ 

»ISI«I*ISI«I 
*- «— *— *— ^_" 

+ 

® < 

———1 
—4= $ 

+ k 
•*•-•« * 

J, Ps 

FIGURE 9-3 
Field, charge, and current distributions along a parallel-plate transmission line. 
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and 
dH3 

~dz 
= jcoeEy. (9-11) 

Ordinary derivatives appear above because phasors Ey and Hx are functions of z only. 
Integrating Eq. (9-10) over y from 0 to d, we have 

TJd
oEydy=jcofi^Hxdy 

or 

(9-12) 

where 

dz~ = J^sui^d = jo) I H - j {Jsu{z)w] 

= jcoLI{z), 

V(z)=-jd
oEydy=-Ey(z)d 

is the potential difference or voltage between the upper and lower plates, 

I(z) = Jsu(z)w 

is the total current flowing in the + z direction in the upper plate (w = plate width), 
and 

(9-13) 

is the inductance per unit length of the parallel-plate transmission line. The depen
dence of phasors V{z) and I{z) on z is noted explicitly in Eq. (9-12) for emphasis. 

Similarly, we integrate Eq. (9-11) over x from 0 to w to obtain 

dz Jo Hxdx=jcoejQ Eydx 

or 

where 

- ^ = -jcoeEy(z)w =jco(e £ ) [ - £ ^ ) d ] 

= jcoCV{z), 
(9-14) 

(9-15) 

is the capacitance per unit length of the parallel-plate transmission line. 
Equations (9-12) and (9-14) constitute a pair of time-harmonic transmission-

line equations for phasors V(z) and I(z). They may be combined to yield second-order 
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differential equations for V(z) and for I(z): 

d2V{z) 
dz2 

d2I(z 
dz 

= -w2LCV{z), 

2 - -co2LCI{z). 

(9-16a) 

(9-16b) 

The solutions of Eqs. (9-16a) and (9-16b) are, for waves propagating in the +z-
direction, 

V(z) = V0e~jPz (9-17a) 
and 

I(z) = I0e-»*t (9-17b) 
where the phase constant 

jS = (D^JLC — (Dyjiie (rad/m) (9-18) 

is the same as that given in Eq. (9-2). The relation between V0 and /0 can be found 
by using either Eq. (9-12) or Eq. (9-14): 

Z0 = 
V(z) V0 I 
I(z) I0 V C m (9-19) 

which becomes, in view of the results of Eqs. (9-13) and (9-15), 

^ 0 
d 
w y 

fc ~-
y/ fc 

d 
= -r\ 

w 
(«). (9-20) 

The quantity Z0 is the impedance at any location that looks toward an infinitely 
long (no reflections) transmission line. It is called the characteristic impedance of the 
line. The ratio of V(z) and I(z) at any point on a finite line of any length terminated 
in Z0 is Z0.f For a parallel-plate transmission line with perfectly conducting plates 
of width w and separated by a lossless dielectric slab of thickness d, the characteristic 
impedance Z0 is (d/w) times the intrinsic impedance rj of the dielectric medium. 

The velocity of propagation along the line is 

(9-21) 

which is the same as the phase velocity of a TEM plane wave in the dielectric medium. 

f This statement will be proved in Section 9-4 (see Eq. 9-107). 
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9-2.1 LOSSY PARALLEL-PLATE TRANSMISSION LINES 

We have so far assumed the parallel-plate transmission line to be lossless. In actual 
situations, loss may arise from two causes. First, the dielectric medium may have a 
nonvanishing loss tangent; second, the plates may not be perfectly conducting. To 
characterize these two effects, we define two new parameters: G, the conductance per 
unit length across the two plates; and R, the resistance per unit length of the two plate 
conductors. 

The conductance between two conductors separated by a dielectric medium 
having a permittivity e and an equivalent conductivity o can be determined readily 
by using Eq. (5-81) when the capacitance between the two conductors is known. We 
have 

Use of Eq. (9-15) directly yields s 

G = 

G = 

w 

o 
e 

C. 

(S/m). 

(9-22) 

(9-23) 

If the parallel-plate conductors have a very large but finite conductivity oc (which 
must not be confused with the conductivity o of the dielectric medium), ohmic power 
will be dissipated in the plates. This necessitates the presence of a nonvanishing axial 
electric field az£z at the plate surfaces, such that the average Poynting vector 

^av = a,pff = i ^ ( a z £ z x axtf*) (9-24) 

has a y-component and equals the average power per unit area dissipated in each of 
the conducting plates. (Obviously the cross product of ayEy and &XHX does not result 
in a ^-component.) 

Consider the upper plate where the surface current density is Jsu = Hx. It is con
venient to define a surface impedance of an imperfect conductor, Zs, as the ratio of 
the tangential component of the electric field to the surface current density at the 
conductor surface. 

(9-25) 

For the upper plate we have 

Z = 
H, = nc 

(9-26a) 

where r\c is the intrinsic impedance of the plate conductor. Here we assume that both 
the conductivity oc of the plate conductor and the operating frequency are sufficiently 
high that the current flows in a very thin surface layer and can be represented by 
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the surface current Jsu. The intrinsic impedance of a good conductor has been given 
in Eq. (8-54). We have 

Zs = Rs+jXs = (1+;) W c m (9-26b) 

where the subscript c is used to indicate the properties of the conductor. 
Substitution of Eq. (9-26a) in Eq. (9-24) gives 

= \\JJ2R, (W/m2). 
(9-27) 

2 \u su\ 

The ohmic power dissipated in a unit length of the plate having a width w is wp0 
which can be expressed in terms of the total surface current, I = wJsu, as 

'.-■*--MS (W/m). (9-28) 

Equation (9-28) is the power dissipated when a sinusoidal current of amplitude 
/ flows through a resistance RJw. Thus, the effective series resistance per unit length 
for both plates of a parallel-plate transmission line of width w is 

R: = 2 | \ ̂ ) 
KwJ 

2 

w > 
/ ^ 

/ ^c 

(Q/m). (9-29) 

Table 9-1 lists the expressions for the four distributed parameters {R, L, G, and C 
per unit length) of a parallel-plate transmission line of width w and separation d. 

TABLE 9-1 
Distributed Parameters of Parallel-Plate 
Transmission Line (Width = w, 
Separation = d) 

Parameter 

R 

L 

G 

C 

Formula 

2 -

d 
P- — 

w w 

w 
e7 

Unit 

Q/m 

H/m 

S/m 

F/m 
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We note from Eq. (9-26b) that surface impedance Zs has a positive reactance 
term Xs that is numerically equal to Rs. If the total complex power (instead of its 
real part, the ohmic power Pa, only) associated with a unit length of the plate is con
sidered, Xs will lead to an internal series inductance per unit length Lt = Xs/a> = 
RJ(D. At high frequencies, Lt is negligible in comparison with the external induc
tance L. 

We note in the calculation of the power loss in the plate conductors of a finite 
conductivity cc that a nonvanishing electric field az£z must exist. The very existence 
of this axial electric field makes the wave along a lossy transmission line strictly not 
TEM. However, this axial component is ordinarily very small in comparison to the 
transverse component Ey. An estimate of their relative magnitudes can be made as 
follows: 

\EZ\ _ \ncHx\ j l , 
\Ey\ \r}Hx\ V ̂  

where Eq. (8-54) has been used. For copper plates \oc = 5.80 x 107 (S/m)] in air 
[e = e0 = 10_9/367i (F/m)] at a frequency of 3 (GHz), 

| £ z | ^5 .3 x 10~ 5 | £ , | « |£ , | . 

Hence we retain the designation TEM as well as all its consequences. The introduc
tion of a small Ez in the calculation of pff and R is considered a slight perturbation. 

9-2.2 MICROSTRIP LINES 

The development of solid-state microwave devices and systems has led to the wide
spread use of a form of parallel-plate transmission lines called microstrip lines or 
simply striplines. A stripline usually consists of a dielectric substrate sitting on a 
grounded conducting plane with a thin narrow metal strip on top of the substrate, as 
shown in Fig. 9-4(a). Since the advent of printed-circuit techniques, striplines can be 
easily fabricated and integrated with other circuit components. However, because the 
results that we have derived in this section were based on the assumption of two wide 

Grounded 
Metal strip /conducting plane 

TT^IIII / mi mi it 11 until WHIM hiifiin rf/i i II/I/D 

zA&m Dielectric 
substrate 

\)iiii)iii))ii))i)ii)i)iiiiii»i)>)tm'm'tf)m'iimn'iii 

\ Grounded FIGURE 9-4 
conducting plane T w Q t y p e s o f m i c r o s t r i p 

(b) lines. 

/coe 

Metal strip 
/ 

TBOS322A 
ielectric substrate 

\ji>»»>i)»iijiii)i>i>ii>inmiTimrmiiiiiti. ^ 'utnininiTT. 

\ Grounded 
conducting plane 

(a) 
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conducting plates (with negligible fringing effect) of equal width, they are not ex
pected to apply here exactly. The approximation is closer if the width of the metal 
strip is much greater than the substrate thickness. 

When the substrate has a high dielectric constant, a TEM approximation is found 
to be reasonably satisfactory. An exact analytical solution of the stripline in Fig. 
9-4(a) satisfying all the boundary conditions is a difficult problem. Not all the fields 
will be confined in the dielectric substrate; some will stray from the top strip into 
the region outside of the strip, thus causing interference in the neighboring circuits. 
Semiempirical modifications to the formulas for the distributed parameters and the 
characteristic impedance are necessary for more accurate calculations.1. All of these 
quantities tend to be frequency-dependent, and striplines are dispersive. 

One method for reducing the stray fields of striplines is to have a grounded 
conducting plane on both sides of the dielectric substrate and to put the thin metal 
strip in the middle as in Fig. 9-4(b). This arrangement is known as a triplate line. 
We can appreciate that triplate lines are more difficult and costly to fabricate and 
that the characteristic impedance of a triplate line is one-half of that of a correspon
ding stripline. 

EXAMPLE 9-1 Neglecting losses and fringe effects and assuming the substrate of a 
stripline to have a thickness 0.4 (mm) and a dielectric constant 2.25, (a) determine 
the required width w of the metal strip in order for the stripline to have a charac
teristic resistance of 50 (O); (b) determine L and C of the line; and (c) determine up 
along the line, (d) Repeat parts (a), (b), and (c) for a characteristic resistance of 75 (Q). 

Solution 
a) We use Eq. (9-20) directly to find w: 

d (jx 0.4 x 10"3 rjo 
w = / — = — 

Z o V e 50 ^ 
0.4 x lO-3 x 377 „ 1A_3 . . . , , 

= ; = 2 x 10 3 (m), or 2 (mm). 
50V125 

b) L = a- = 47rl0~7 x ~ = 2.51 x 10"7 (H/m), or 0.251 CuH/m). 
w 2 

C = e0er ̂  = i £_ ! x 2.25 x -£- = 99.5 x 10"12 (F/m), or 99.5 (pF/m). 
a 3o7r 0.4 

c)up = - ^ = - ^ = ^ = = = T7 = 2 x l ° 8 (m/s). 

t See, for instance, K. F. Sander and G. A. L. Reed, Transmission and Propagation of Electromagnetic 
Waves, 2nd edition, Sec. 6.5.6, Cambridge University Press, New York, 1986. 
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d) Since w is inversely proportional to Z0, we have, for Z'0 = 75 {Q), 

L = (^)L = (BS) X ° ' 2 5 1 = ° ' 3 7 7 (/"H/m)' C'= ©C = (^) x "'5 = 66'2 (pF/m)' 
«; = «p = 2 x 108 (m/s). 

9—3 General Transmission-Line Equations 
We will now derive the equations that govern general two-conductor uniform trans
mission lines that include parallel-plate, two-wire, and coaxial lines. Transmission 
lines differ from ordinary electric networks in one essential feature. Whereas the 
physical dimensions of electric networks are very much smaller than the operating 
wavelength, transmission lines are usually a considerable fraction of a wavelength 
and may even be many wavelengths long. The circuit elements in an ordinary electric 
network can be considered discrete and as such may be described by lumped param
eters. It is assumed that currents flowing in lumped-circuit elements do not vary spa
tially over the elements, and that no standing waves exist. A transmission line, on 
the other hand, is a distributed-parameter network and must be described by circuit 
parameters that are distributed throughout its length. Except under matched con
ditions, standing waves exist in a transmission line. 

Consider a differential length Az of a transmission line that is described by the 
following four parameters: 

R, resistance per unit length (both conductors), in Q/m. 
L, inductance per unit length (both conductors), in H/m. 
G, conductance per unit length, in S/m. 
C, capacitance per unit length, in F/m. 

Note that R and L are series elements and G and C are shunt elements. Figure 9-5 
shows the equivalent electric circuit of such a line segment. The quantities v(z, t) and 
v{z + Az, t) denote the instantaneous voltages at z and z + Az, respectively. Similarly, 
i{z, t) and i(z + Az, t) denote the instantaneous currents at z and z + Az, respectively. 
Applying Kirchhoff's voltage law, we obtain 

v(z, t)-R Azi(z, t)~LAz —^- - v{z + Az, t) = 0, (9-30) 

437 
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' ( Z ' ') A A A ^ Y Y Y > N 'iZ + AZ> ') 

v(Z + Az, t) 

FIGURE 9-5 
Equivalent circuit of a differential length Az of a 
two-conductor transmission line. 

which leads to 
v(z + Az,t)-v(z,t) di(z,t) 

= Ri(z, t) + L 
Az v ' ' dt 

In the limit as Az ->■ 0, Eq. (9-30a) becomes 

8viZ't] UM + L 8 1 ^ 
dz dt 

(9-30a) 

(9-31) 

Similarly, applying KirchhofFs current law to the node N in Fig. 9-5, we have 

i{z, t)-G Azv(z + Az, t)-CAz ^ Z'l) - i(z + Az, t) = 0. (9-32) 

On dividing by Az and letting Az approach zero, Eq. (9-32) becomes 

di(z,t) , x „dv(z,t) 
v ' ' = Gv(z, t) + C v ' ; 
dz dt 

(9-33) 

Equations (9-31) and (9-33) are a pair of first-order partial differential equations in 
v(z, t) and i(z, t). They are the general transmission-line equations.1' 

For harmonic time dependence the use of phasors simplifies the transmission-
line equations to ordinary differential equations. For a cosine reference we write 

v(z, t) = 0te\y{z)eim\ 
i{z, t) = 0te\l{z)eimt\ 

(9-34a) 
(9-34b) 

where V(z) and I(z) are functions of the space coordinate z only and both may be 
complex. Substitution of Eqs. (9-34a) and (9-34b) in Eqs. (9-31) and (9-33) yields 

Sometimes referred to as the telegraphist's equations or telegrapher's equations. 
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the following ordinary differential equations for phasors V{z) and I(z): 

dVjz) 
dz 

dl(z) 
dz 

= (R + jwL)I(z), 

= (G+jwC)V(z). 

(9-35a) 

(9-35b) 

Equations (9-35a) and (9-35b) are time-harmonic transmission-line equations, which 
reduce to Eqs. (9-12) and (9-14) under lossless conditions (R — 0, G = 0). 

9-3.1 WAVE CHARACTERISTICS ON AN INFINITE TRANSMISSION LINE 

The coupled time-harmonic transmission-line equations, Eqs. (9-35a) and (9—35b), 
can be combined to solve for V{z) and I{z). We obtain 

and 

where 

y = a + jfi = V(K + jcoL){G + jcoC) (m"1) 

(9-36a) 

(9-36b) 

(9-37) 

is the propagation constant whose real and imaginary parts, a and /?, are the 
attenuation constant (Np/m) and phase constant (rad/m) of the line, respectively. 
The nomenclature here is similar to that for plane-wave propagation in lossy media 
as defined in Section 8-3. These quantities are not really constants because, in gen
eral, they depend on co in a complicated way. 

The solutions of Eqs. (9-36a) and (9-36b) are 

Viz) = V+{z) + V~{z) 
= F0

+ e-" + Voe", 
I(z) = I+(z) + r(z) 

= !Wyz + Ioeyz, 

(9-38a) 

(9-38b) 

where the plus and minus superscripts denote waves traveling in the +z- and — z-
directions, respectively. Wave amplitudes (VQ,IQ) and {VQ, IQ) are related by Eqs. 
(9-35a) and (9-35b), and it is easy to verify (Problem P.9-5) that 

/o+ 

R + ja>L 
(9-39) 
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For an infinite line (actually a semi-infinite line with the source at the left end) 
the terms containing the eyz factor must vanish. There are no reflected waves; only 
the waves traveling in the + z-direction exist. We have 

V(z) = V+(z) = V+e~yz, (9-40a) 
/(z) = /+(z) = / 0

+ e -^ . (9-40b) 

The ratio of the voltage and the current at any z for an infinitely long line is inde
pendent of z and is called the characteristic impedance of the line. 

Zo-
R + jwL 

y 
y lR+ jcoL 

~ G + jcoC ~ yj G + jcoC 
(Q). (9-41) 

Note that y and Z 0 are characteristic properties of a transmission line whether or 
not the line is infinitely long. They depend on R, L, G, C, and co—not on the length 
of the line. An infinite line simply implies that there are no reflected waves. 

There is a close analogy between the general governing equations and the wave 
characteristics of a transmission line and those of uniform plane waves in a lossy 
medium. This analogy will be discussed in the following example. 

EXAMPLE 9-2 Demonstrate the analogy between the wave characteristics on a 
transmission line and uniform plane waves in a lossy medium. 

Solution In a lossy medium with a complex permittivity ec = e' — je" and a com
plex permeability y = y! -jy" the Maxwell's curl equations (7-104a) and (7-104b) 
become 

\ x E = -j(o(y' -jy")U, (9-42a) 
V x H = j(D{e' - J€")E. (9-42b) 

If we assume a uniform plane wave characterized by an Ex that varies only with z, 
Eq. (9-42a) reduces to (see Eq. 8-12b) 

dz (9-43a) 

= (coy" +jcoy')Hy. 

Similarly, we obtain from Eq. (9-42b) the following relation: 

dHJz ly^> _ 
dz 

= (coe" + j(D€')Ex. (9-43b) 

Comparing Eqs. (9-43a) and (9-43b) with Eqs. (9-35a) and (9-35b), respectively, we 
recognize immediately the analogy of the governing equations for Ex and Hy of a 
uniform plane wave and those for V and / on a transmission line. 
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Equations (9-43a) and (9-43b) can be combined to give 

d2Ex{z) = y2Ex(z) (9-44a) 
dz2 

and 
d2HJz) 

= y2Hy(z), (9-44b) 2 r "? dz 

which are entirely similar to Eqs. (9-36a) and (9-36b). The propagation constant of 
the uniform plane wave is 

y = a+j/S = y/W + jcofi')(co€" + jcoe'), (9-45). 

which should be compared with Eq. (9-37) for the transmission line. The intrinsic 
impedance of the lossy medium (the wave impedance of the plane wave traveling in 
the +z-direction) is (see Eq. 8-30) 

hi" +jn' 

"W r̂f- (9~46) 
which is analogous to the expression for the characteristic impedance of a trans
mission line in Eq. (9-41). 

Because of the above analogies, many of the results obtained for normal incidence 
of uniform plane waves can be adapted to transmission-line problems, and vice versa. 

The general expressions for the characteristic impedance in Eq. (9-41) and the 
propagation constant in Eq. (9-37) are relatively complicated. The following three 
limiting cases have special significance. 

(9-47) 
(9-48) 
(9-49) 

(9-50) 

(9-51) 

(9-52) 

(9-53) 

1. Lossless Line (R = 0, G = 
a) Propagation constant: 

b) Phase velocity: 

y = 
a = 

P = 

= 0). 

= a+j]5 = 
= 0, 

CO^/LC 

CO 

c) Characteristic impedance: 

Z0 = 

R0 = 

X0 = 

= jcoyJLC; 

(a linear function of 

= . (constant). 
yjLC 

R°+ix°'S; 

l-£ (constant), 

0. 

CO). 
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2. Low-Loss Line {R « coL, G « wC). The low-loss conditions are more easily sat
isfied at very high frequencies. 
a) Propagation constant: 

,1/2 

+ jwCj 
i—/ R \ 1 / 2 / G V y = a+^=7Q) > /LCf l+—J ( l + — 1 

* ja>^(l+-?-)(1+-?-
^ V 2jcoLj\ IjcoC 

1 (R GW ^jcosJLC 

■4Nhofc 
b) Phase velocity: 

CO 

(approximately a linear function of co). 

(approximately constant). 

c) Characteristic impedance: 

*-***.-$'*£)>&■" 
J _ /K _ G 

+ 2/coVL C 
L 

[I 1 /K G\ n 

3. Distortionless Line (R/L = G/C). If the condition 
R_G 

is satisfied, the expressions for both y and Z0 simplify. 
a) Propagation constant: 

y = a+jP= (R+ JcoL)(— + jcoC 

-'fr 

(9-54) 

(9-55) 

(9-56) 

(9-57) 

(9-58) 

(9-59) 

(9-60) 

(9-61) 

ft = coyJLC (a linear function of co). 

(9-62) 

(9-63) 

(9-64) 
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b) Phase velocity: 

P~ JLC 
c) Characteristic impedance: 

up = — = —/== (constant). (9-65) 

R0= fa (constant), (9-67) 

X0 = 0. (9-68) 

Thus, except for a nonvanishing attenuation constant, the characteristics of a distor
tionless line are the same as those of a lossless line—namely, a constant phase velocity 
(up = 1/A/LC) and a constant real characteristic impedance (Z0 = R0 = y/L/C). 

A constant phase velocity is a direct consequence of the linear dependence of the 
phase constant jB on co. Since a signal usually consists of a band of frequencies, it is 
essential that the different frequency components travel along a transmission line at 
the same velocity in order to avoid distortion. This condition is satisfied by a lossless 
line and is approximated by a line with very low losses. For a lossy line, wave 
amplitudes will be attentuated, and distortion will result when different frequency 
components attenuate differently, even when they travel with the same velocity. The 
condition specified in Eq. (9-61) leads to both a constant a and a constant up—thus 
the name distortionless line. 

The phase constant of a lossy transmission line is determined by expanding the 
expression for y in Eq. (9-37). In general, the phase constant is not a linear function 
of co; thus it will lead to a up, which depends on frequency. As the different frequency 
components of a signal propagate along the line with different velocities, the signal 
suffers dispersion. A general, lossy, transmission line is therefore dispersive, as is a 
lossy dielectric. 

EXAMPLE 9-3 It is found that the attenuation on a 50 (Q) distortionless trans
mission line is 0.01 (dB/m). The line has a capacitance of 0.1 (nF/m). 

a) Find the resistance, inductance, and conductance per meter of the line. 
b) Find the velocity of wave propagation. 
c) Determine the percentage to which the amplitude of a voltage traveling wave 

decreases in 1 (km) and in 5 (km). 

Solution 

a) For a distortionless line, 

R_G 
L~ C 
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The given quantities are 

*o = y ~ = 50 (Q), 

a = # T = 0m (dB/m) 

= g ^ (Np/m) = 1.15 x 1(T3 (Np/m). 

The three relations above are sufficient to solve for the three unknowns R, L, 
and G in terms of the given C = 1(T10 (F/m): 

R = aR0 = (1.15 x 1(T3) x 50 = 0.057 (Q/m); 
L=CRJ5= 10-10 x 502 = 0.25 (fiH/m); 
„ RC R 0.057 

b) The velocity of wave propagation on a distortionless line is the phase velocity 
given by Eq. (9-65). 

1 1 = 2 x 108 (m/s). P JLC V(0.25 x 10-6 x 10"10 

c) The ratio of two voltages a distance z apart along the line is 

After 1 (km), (V2/Vt) = e"1000" = e"1-15 = 0.317, or 31.7%. 
After 5 (km), (VJV,) = e-5000a = e"5-75 = 0.0032, or 0.32%. ma 

9-3.2 TRANSMISSION-LINE PARAMETERS 

The electrical properties of a transmission line at a given frequency are completely 
characterized by its four distributed parameters R, L, G, and C. These parameters 
for a parallel-plate transmission line are listed in Table 9-1. We will now obtain 
them for two-wire and coaxial transmission lines. 

Our basic premise is that the conductivity of the conductors in a transmission 
line is usually so high that the effect of the series resistance on the computation of 
the propagation constant is negligible, the implication being that the waves on the 
line are approximately TEM. We may write, in dropping R from Eq. (9-37), 

/ — / G V12 

, = W L C ( I + — J . (9-69) 
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From Eq. (8-44) we know that the propagation constant for a TEM wave in a 
medium with constitutive parameters {(i, e, a) is 

But 

(9-70) 

(9-71) 

in accordance with Eq. (5-81); hence comparison of Eqs. (9-69) and (9-70) yields 

LC = ixe. | (9-72) 

Equation (9-72) is a very useful relation, because if L is known for a line with 
a given medium, C can be determined, and vice versa. Knowing C, we can find G 
from Eq. (9-71). Series resistance R is determined by introducing a small axial Ez as 
a slight perturbation of the TEM wave and by finding the ohmic power dissipated 
in a unit length of the line, as was done in Subsection 9-2.1. 

Equation (9-72), of course, also holds for a lossless line. The velocity of wave 
propagation on a lossless transmission line, up — ljyjLC, therefore, is equal to the 
velocity of propagation, 1/SIM, of unguided plane wave in the dielectric of the 
line. This fact has been pointed out in connection with Eq. (9-21) for parallel-plate 
lines. 

1. Two-wire transmission line. The capacitance per unit length of a two-wire trans
mission line, whose wires have a radius a and are separated by a distance D, has 
been found in Eq. (4-47). We have 

(9-73)* 

and 

1 c ne 
1 " cosh_1(^/2fl) 

(F/m). 

i (9-71) we obtain 

-f^-1© (H/m) 

\G-
cosh-'iD/la) (S/m). 

-74t f (9-74) 

_7^t (9-75) 

* cosh"1 (D/2a) s In (D/a) if (D/2a)2 » 1. 
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To determine R, we go back to Eq. (9-28) and express the ohmic power 
dissipated per unit length of both wires in terms of pa. Assuming the current 
Js (A/m) to flow in a very thin surface layer, the current in each wire is / = 2naJs, 
and 

1 J K (W/m). (9-76) 

Hence the series resistance per unit length for both wires is 

R- = 21 
\ 
(R \ 
—-\LTia) 

1 
%a y 

nfu. 

J <*c 
(a/m). (9-77) 

In deriving Eqs. (9-76) and (9-77), we have assumed the surface current Js to be 
uniform over the circumference of both wires. This is an approximation, inasmuch 
as the proximity of the two wires tends to make the surface current nonuniform. 

2. Coaxial transmission line. The external inductance per unit length of a coaxial 
transmission line with a center conductor of radius a and an outer conductor of 
inner radius b has been found in Eq. (6-140): 

(9-78) 

From Eq. (9-72) we obtain 

and from Eq. (9-71), 

271 a 
(H/m). 

L 

c 2n€ 

In (b/a) 
(F/m), 

2%a 
In (b/a) (S/m), 

(9-79) 

(9-80) 

where a is the equivalent conductivity of the lossy dielectric. If one prefers, a 
could be replaced by coe" as in Eq. (7-112). 

To determine R, we again return to Eq. (9-27), where Jsi on the surface of 
the center conductor is different from Js0 on the inner surface of the outer con
ductor. We must have 

/ = 2naJsi = 2%bJS0. (9-81) 

The power dissipated in a unit length of the center and outer conductors are, 
respectively, 

P« = 2*ap«-l2!2(L)' (9-82) 

file:///LTia
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TABLE 9-2 
Distributed Parameters of Two-Wire and Coaxial 
Transmission Lines 

Parameter 

R 

L 

G 

C 

Two-Wire Line 

na 

na 
cosh"1 (D/2a) 

ne 
cosrT1 {D/2a) 

Coaxial Line 

2it Va V 

fin* 
2710" 

In (b/a) 
2ne 

In (b/a) 

Unit 

Q/m 

H/m 

S/m 

F/m 

JVote: Rs = y/nfitjo,; cosh"' (£>/2a) a In (D/a) if (£>/2a)2 » 1. Internal 
inductance is not included. 

From Eqs. (9-82) and (9-83), we obtain the resistance per unit length: 

(9-83) 

2TT la fo/ 2TC \/ cr, \a b ' (9-84) 

The R, L, G, C parameters for two-wire and coaxial transmission lines are listed 
in Table 9-2. 

9-3.3 ATTENUATION CONSTANT FROM POWER RELATIONS 

The attenuation constant of a traveling wave on a transmission line is the real part 
of the propagation constant; it can be determined from the basic definition in Eq. 
(9-37): 

a = @e(y) = gteU(R +jcoL)(G +jcoC)l (9-85) 

The attenuation constant can also be found from a power relationship. The 
phasor voltage and phasor current distributions on an infinitely long transmission 
line (no reflections) may be written as (Eqs. (9-40a) and (9-40b) with the plus super
script dropped for simplicity): 

V(z) = V0e~(a+mz, 

I(z) = ^-e~(a+ili)z. 

(9-86a) 

(9-86b) 
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The time-average power propagated along the line at any z is 

P{z) = ia*[V{z)I*(z)-] 

R0e~2az. 917 I z ^ 0 

(9-87) 

The law of conservation of energy requires that the rate of decrease of P(z) with dis
tance along the line equals the time-average power loss PL per unit length. Thus, 

dP(z) 
dz = P&) 

= 2aP(z), 

from which we obtain the following formula: 

(9-88) 

EXAMPLE 9-4 

a) Use Eq. (9-88) to find the attenuation constant of a lossy transmission line with 
distributed parameters R, L, G, and C. 

b) Specialize the result in part (a) to obtain the attenuation constants of a low-loss 
line and of a distortionless line. 

Solution 

a) For a lossy transmission line the time-average power loss per unit length is 

PL(z) = ^\I(z)\2R + \V(z)\2G] 

VI 
2|Z0| 

(R + G\Z0\2)e 2\„-2az (9-89) 

Substitution of Eqs. (9-87) and (9-89) in Eq. (9-88) gives 

(9-90) 

b) For a low-loss line, Z0^ R0 = yJL/C, Eq. (9-90) becomes 

■ « K £ + M -
-X'h'fc 

(9-91) 
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which checks with Eq. (9-55). For a distortionless line, Z 0 = R0 = y/Z/C, Eq. 
(9-91) applies, and 

1 / C / GL 

which, in view of the condition in Eq. (9-61), reduces to 

a = RJl- (9-92) 
Equation (9-92) is the same as Eq. (9-63). H 

9 - 4 Wave Characteristics on Finite Transmission Lines 

In Subsection 9-3.1 we indicated that the general solutions for the time-harmonic 
one-dimensional Helmholtz equations, Eqs. (9-36a) and (9-36b), for transmission 
lines are 

V{z) = V^e~yz + Voeyz (9-93a) 
and 

I(z) = lXe-i' + Ioei', (9-93b) 

where 

/0+ r0 
+ = —rr = Z0 . (9-94) 

For waves launched on an infinitely long line at z = 0 there can be only forward 
waves traveling in the + z-direction, and the second terms on the right side of Eqs. 
(9-93a) and (9-93b), representing reflected waves, vanish. This is also true for finite 
lines terminated in a characteristic impedance; that is, when the lines are matched. 
From circuit theory we know that a maximum transfer of power from a given voltage 
source to a load occurs under "matched conditions" when the load impedance is the 
complex conjugate of the source impedance (Problem P.9-11). In transmission line 
terminology, a line is matched when the load impedance is equal to the characteristic 
impedance (not the complex conjugate of the characteristic impedance) of the line. 

Let us now consider the general case of a finite transmission line having a charac
teristic impedance Z 0 terminated in an arbitrary load impedance ZL, as depicted in 
Fig. 9-6. The length of the line is *f. A sinusoidal voltage source Vg[0°_ with an internal 
impedance Zg is connected to the line at z = 0. In such a case, 

9..,-J-z" (9-95) 
which obviously cannot be satisfied without the second terms on the right side of 
Eqs. (9-93a) and (9-93b) unless ZL = Z0. Thus reflected waves exist on unmatched 
lines. 



450 9 Theory and Applications of Transmission Lines 

FIGURE 9-6 
Finite transmission line terminated with load impedance ZL. 

Given the characteristic y and Z 0 of the line and its length / , there are four 
unknowns VQ, VQ, IQ, and IQ in Eqs. (9-93a) and (9-93b). These four unknowns 
are not all independent because they are constrained by the relations at z = 0 and 
at z = / . Both V{z) and I{z) can be expressed either in terms of Vt and I{ at the input 
end (Problem P.9-12), or in terms of the conditions at the load end. Consider the 
latter case. 

Let z = / in Eqs. (9-93a) and (9-93b). We have 

VL=VSe-*+Voe", 

Z 0 7 
■ye ,y* 

(9-96a) 

(9-96b) 

(9-97a) 
(9-97b) 

Solving Eqs. (9-96a) and (9-96b) for V£ and VQ, we have 

^ i O i + AZoK 
Vo ={(VL-ILZ0)e-«. 

Substituting Eq. (9-95) in Eqs. (9-97a) and (9-97b), and using the results in Eqs. 
(9-93a) and (9-93b), we obtain 

I 
V(z) RZL + z0y«~* + (zL - z0)e-y«-% 

!(*) = ^ r [(ZL + Z 0 ^ - * > - (ZL - Z0)e-?«-*l 

(9-98a) 

(9-98b) 

Since £ and z appear together in the combination (/ — z), it is expedient to introduce 
a new variable z' = / — z, which is the distance measured backward from the load. 
Equations (9-98a) and (9-98b) then become 

v(z') = j - [(zL + z0yz ' + (zL - z0)e-^'], 

M = A- KZL + Zo)eyz' - (ZL - Z0)e-?z'l z Z 0 

(9-99a) 

(9-99b) 
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We note here that although the same symbols V and / are used in Eqs. (9-99a) and 
(9-99b) as in Eqs. (9-98a) and (9-98b), the dependence of V{z') and I(z') on z' is 
different from the dependence of V(z) and I(z) on z. 

The use of hyperbolic functions simplifies the equations above. Recalling the 
relations 

eyz' + e~yz' = 2coshyz' and eyz' - e~yz' = 2 sinh yz', 

we may write Eqs. (9-99a) and (9-99b) as 

V(z') = IL(ZL cosh yz' + Z 0 sinh yz'), 

I(z') = — (ZL sinh yz' + Z 0 cosh yz'), 

(9-100a) 

(9-100b) 

which can be used to find the voltage and current at any point along a transmission 
line in terms of IL, ZL, y, and Z0 . 

The ratio V(z')/I(z') is the impedance when we look toward the load end of the 
line at a distance z' from the load. 

z(z') = ]^l = z Z L c o s h yz' + z o s i n h yz' 
{Z) I(z') ° ZL sinh yz' + Z 0 cosh yz' 

or 

Z{z') = = z c 
?'i 
7 

+ ^0 
+ ZL 

tanh 
tanh 

yz' 
yz' (12). 

(9-101) 

(9-102) 

At the source end of the line, z' = / , the generator looking into the line sees an input 
impedance Z£. 

^ . ^ K f S S » (9-103) 

As far as the conditions at the generator are concerned, the terminated finite trans
mission line can be replaced by Zx, as shown in Fig. 9-7. The input voltage Vt and 
input current I{ in Fig. 9-6 are found easily from the equivalent circuit in Fig. 9-7. 

+ 

w r 
4 / ' i 

Zi 

-< \-

\ 

\ 

l + 

' — 

FIGURE 9-7 
Equivalent circuit for finite transmission line in Figure 9-6 
at generator end. 
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They are 

V' = z^Y^ (9-104a) 

'< = z ^ z T <9-104b> 
Of course, the voltage and current at any other location on line cannot be determined 
by using the equivalent circuit in Fig. 9-7. 

The average power delivered by the generator to the input terminals of the line is 

(P.v)i = i ^ [ W ] x = o,«'=/. (9-105) 

The average power delivered to the load is 

(Pav)L = ^ [F L /* ] z =/ ,z< = o 

Vh 

ZL 
VifcP*, , 9 - ' ° 6 ) 

For a lossless line, conservation of power requires that (Pav),- = (Pav)L. 
A particularly important special case is when a line is terminated with its charac

teristic impedance—that is, when ZL = Z0. The input impedance, Z( in Eq. (9-103), 
is seen to be equal to Z0 . As a matter of fact, the impedance of the line looking 
toward the load at any distance z' from the load is, from Eq. (9-102), 

Z(z') = Z0 (for ZL = Z0). (9-107) 

The voltage and current equations in Eqs. (9-98a) and (9-98b) reduce to 

V(z) = (IhZ0e^)e-yz = Vte-yz, (9-108a) 
I{z) = (Ihey')e-yz = Iie-yz. (9-108b) 

Equations (9-108a) and (9-108b) correspond to the pair of voltage and current equa
tions—Eqs. (9-40a) and (9-40b)—representing waves traveling in + z-direction, and 
there are no reflected waves. Hence, when a finite transmission line is terminated with its 
own characteristic impedance (when a finite transmission line is matched), the voltage 
and current distributions on the line are exactly the same as though the line has been 
extended to infinity. 

EXAMPLE 9-5 A signal generator having an internal resistance 1 (Q) and an open-
circuit voltage vg(t) = 0.3 cos 27il08t (V) is connected to a 50 (Q) lossless transmission 
line. The line is 4 (m) long, and the velocity of wave propagation on the line is 2.5 x 
108 (m/s). For a matched load, find (a) the instantaneous expressions for the voltage 
and current at an arbitrary location on the line, (b) the instantaneous expressions 
for the voltage and current at the load, and (c) the average power transmitted to the 
load. 
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Solution 

a) In order to find the voltage and current at an arbitrary location on the line, it is 
first necessary to obtain those at the input end (z = 0, z' = / ) . The given quan
tities are as follows: 

Vg = 0.3/(f (V), a phasor with a cosine reference, 
Zg = Rg=\ (Q), 
Z 0 = /*<> = 50 (Q), 
co = 2TT x 108 (rad/s), 
up = 2.5 x 108 (m/s), 
/ = 4 (m). 

Since the line is terminated with a matched load, Zt = Z 0 = 50 (Q). The voltage 
and current at the input terminals can be evaluated from the equivalent circuit 
in Fig. 9-7. From Eqs. (9-104a) and (9-104b) we have 

^ = 7 ^ 5 0 x 0.3/0^ = 0.294/^ (V), 

0.3/0° 
Ii = T+50 = a 0 0 5 9 ^ (A)-

Since only forward-traveling waves exist on a matched line, we use Eqs. 
(9-86a) and (9-86b) for the voltage and current, respectively, at an arbitrary 
location. For the given line, a = 0 and 

„ co 1% x 108
 nn , ,, x 

^^ = 2^W = °M (rad/m)-
Thus, 

|/(z) = 0.294e-;°-8;cz (V), 
I{z) = 0.0059e-J'°-87CZ (A). 

These are phasors. The corresponding instantaneous expressions are, from Eqs. 
(9-34a) and (9-34b), 

v(z, t) = @t[0.294ej{2nlo8t-0-8nz)] 
= 0.294 cos (27rl08t - 0.8TTZ) (V), 

i{z, t) = ^^[0.0059e j(2 ' t lo8t-0-8 ' tz)] 
= 0.0059 cos (27rl08t - 0.8TTZ) (A). 

b) At the load, z = / = 4 (m), 
v{4, t) = 0.294 cos (27rl08t - 3.2n) (V), 
i(4, t) = 0.0059 cos (27rl08t - 3.2TT) (A). 

c) The average power transmitted to the load on a lossless line is equal to that at 
the input terminals. 

(P,X = (PJi-^[V(z)I*(z)-] 
= i(0.294 x 0.0059) = 8.7 x 10~4 (W) = 0.87 (mW). H 
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9-4.1 TRANSMISSION LINES AS CIRCUIT ELEMENTS 

Not only can transmission lines be used as wave-guiding structures for transferring 
power and information from one point to another, but at ultrahigh frequencies— 
UHF: frequency from 300 (MHz) to 3 (GHz), wavelength from 1 (m) to 0.1 (m)—they 
may serve as circuit elements. At these frequencies, ordinary lumped-circuit elements 
are difficult to make, and stray fields become important. Sections of transmission 
lines can be designed to give an inductive or capacitive impedance and are used to 
match an arbitrary load to the internal impedance of a generator for maximum power 
transfer. The required length of such lines as circuit elements becomes practical in 
the UHF range. At frequencies much lower than 300 (MHz) the required lines tend 
to be too long, whereas at frequencies higher than 3 (GHz) the physical dimensions 
become inconveniently small, and it would be advantageous to use waveguide 
components. 

In most cases, transmission-line segments can be considered lossless: y = 7'/?, 
Z0 = R0, and tanh y/ = tanh (jfit) =j tan fit. The formula in Eq. (9-103) for the 
input impedance Z{ of a lossless line of length / terminated in ZL becomes 

0 l ? 0 + ; Z L tan ^ 
(9-109) 

(Lossless line) 

Comparison of Eq. (9-109) with Eq. (8-171) again confirms the similarity between 
normal incidence of a uniform plane wave on a plane interface and wave propagation 
along a terminated transmission line. 

We now consider several important special cases. 

1. Open-circuit termination (ZL ->■ 00). We have, from Eq. (9-109), 

Zi0 = jXi0 = - - ^ - = -jR0 cot £/. (9-110) 
tan/// 

Equation (9-110) shows that the input impedance of an open-circuited lossless 
line is purely reactive. The line can, however, be either capacitive or inductive 
because the function cot /?/ can be either positive or negative, depending on the 
value of 0f ( = 2TT///1). Figure 9-8 is a plot of Xio = -R0 cot fit versus t. We see 
that Xio can assume all values from — 00 to +00. 

When the length of an open-circuited line is very short in comparison with 
a wavelength, /?/ « 1, we can obtain a very simple formula for its capacitive reac
tance by noting that tan /?/ = /?/. From Eq. (9-110) we have 

R0 JL/C 1 
Zi0 = JXi0 ^-j — = -j ,— = -3 —=-., (9-111) 

which is the impedance of a capacitance of C7 farads. 
In practice, it is not possible to obtain an infinite load impedance at the end 

of a transmission line, especially at high frequencies, because of coupling to near
by objects and because of radiation from the open end. 
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FIGURE 9-8 
Input reactance of open-circuited transmission line. 

2. Short-circuit termination (ZL = 0). In this case, Eq. (9-109) reduces to 

Zu=jXla=jR0mPt. (9-H2) 
Since tan /?/ can range from — oo to + oo, the input impedance of a short-circuited 
lossless line can also be either purely inductive or purely capacitive, depending 
on the value of $L Figure 9-9 is a graph of Xis versus L We note that Eq. (9-112) 
has exactly the same form as that—Eq. (8-172)—of the wave impedance of the 
total field at a distance / from a perfectly conducting plane boundary. 

Comparing Figs. 9-8 and 9-9, we see that in the range where Xio is capacitive 
Xis is inductive, and vice versa. The input reactances of open-circuited and short-
circuited lossless transmission lines are the same if their lengths differ by an odd 
multiple of A/4. 

When the length of a short-circuited line is very short in comparison with a 
wavelength, fit « 1, Eq. (9-112) becomes approximately 

Zis =jXta *jR0fit = j J^ oijlct =jcoU, (9-113) 

which is the impedance of an inductance of L/ henries. 

1' I' I' 
Jl l) Inducti vejjl 

/! r b 
W 1 |3X / [5A 

'^ ;15 \J l4 -\J l4 > ' tf 
j (Capacitive) 

FIGURE 9-9 
Input reactance of short-circuited transmission line. 
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3. Quarter-wave section (/ = A/4, ftf = n/2). When the length of a line is an odd 
multiple of A/4, / = (In - l)A/4, (n = 1, 2, 3, . . . ) , 

/tf = ̂ ( 2 n - l ) J = (2n- l ) | , 

tan £/ = tan 

and Eq. (9-109) becomes 

( 2 n - l ) | ±oo, 

.R2 

Z, = —- (Quarter-wave line). (9-114) 

Hence, a quarter-wave lossless line transforms the load impedance to the input 
terminals as its inverse multiplied by the square of the characteristic resistance. 
It acts as an impedance inverter and is often referred to as a quarter-wave trans
former. An open-circuited, quarter-wave line appears as a short circuit at the 
input terminals, and a short-circuited quarter-wave line appears as an open cir
cuit. Actually, if the series resistance of the line itself is not neglected, the input 
impedance of a short-circuited, quarter-wave line is an impedance of a very high 
value similar to that of a parallel resonant circuit. It is interesting to compare 
Eq. (9-114) with the formula for quarter-wave impedance transformation with 
multiple dielectrics, Eq. (8-182a). 

4. Half-wave section (£ = A/2, fit = n). When the length of a line is an integral mul
tiple of A/2, / = nk/2 (n = 1, 2, 3, . . . ) , 

<* -T (T 
tan fit = 0, 

= nn, 

and Eq. (9-109) reduces to 

Zt = ZL (Half-wave line). (9-115) 

Equation (9-115) states that a half-wave lossless line transfers the load impe
dance to the input terminals without change. From Eq. (9-103) we observe that 
a half-wave line with loss does not have this property unless ZL — Z0 . 

By measuring the input impedance of a line section under open- and short-circuit 
conditions, we can determine the characteristic impedance and the propagation con
stant of the line. The following expressions follow directly from Eq. (9-103). 

Open-circuited line, ZL -> oo: 
Short-circuited line, ZL = 0: 

Zi0 = Z 0 coth yS. 
Zis = Z 0 tanh yt. 

(9-116) 
(9-117) 
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From Eqs. (9-116) and (9-117) we have 

and 

Z0 — ^JZioZis 

y^itanh-1 / ^ 

(Q) 

(m"1). 

(9-118) 

(9-119) 

Equations (9-118) and (9-119) apply whether or not the line is lossy. 

EXAMPLE 9-6 The open-circuit and short-circuit impedances measured at the input 
terminals of a lossless transmission line of length 1.5 (m), which is less than a quarter 
wavelength, are —7*54.6 (Q) and 7*103 (Q), respectively, (a) Find Z0 and y of the line. 
(b) Without changing the operating frequency, find the input impedance of a short-
circuited line that is twice the given length, (c) How long should the short-circuited 
line be in order for it to appear as an open circuit at the input terminals? 

Solution The given quantities are 

Zi0= -J54.6, Zis=jW3, 

a) Using Eqs. (9-118) and (9-119), we find 
Z 0 = V-7"54.60,103) = 75 (Q) 

= 1.5. 

y = — tanh i 7103 J = f- t an - x 1.373 = ;0.628 (rad/m). 
, -754.6 1.5 

b) For a short-circuited line twice as long, / = 3.0 (m), 
y«f =7'0.628 x 3.0 =jl.884 (rad). 

The input impedance is, from Eq. (9-117), 
Zis = 75 tanh (jl.884) =775 tan 108° 

= j75(-3.08)= - j231 (Q). 
Note that Zis for the 3 (m) line is now a capacitive reactance, whereas that for 
the 1.5 (m) line in part (a) is an inductive reactance. We may conclude from Fig. 
9-9 that 1.5 (m) < A/4 < 3.0 (m). 

c) In order for a short-circuited line to appear as an open circuit at the input termi
nals, it should be an odd multiple of a quarter-wavelength long: 

2TT 
= 10 (m). A = ^ = 

P 0.628 
Hence the required line length is 

' - 5 + 0-1)^ 
= 2.5 + 5 ( n - l ) (m), „ = 1, 2, 3 , . . . . 



9 Theory and Applications of Transmission Lines 

So far in this subsection we have considered only open- and short-circuited loss
less lines as circuit elements. We have seen in Figs. 9-8 and 9-9 that, depending on 
the length of the line, the input impedance of an open- or short-circuited lossless line 
can be either purely inductive or purely capacitive. Let us now examine the input 
impedance of a lossy line with a short-circuit termination. When the line length is a 
multiple of 1/2, the input impedance will not vanish as in Fig. 9-9. Instead, we have, 
from Eq. (9-117), 

Z , = Z 0 t a n h y / = Z 0 ^ ± ^ 

= Zo 
sinh a/ cos ftt + j cosh a/ sin ftt 
cosh a/ cos ftt + j sinh a/ sin fit? 

For / = nX/2, fit = nn, sin fit = 0, Eq. (9-120) reduces to 

Zis = Z 0 tanh a/ ^ Z0(a/), (9-121) 

where we have assumed a low-loss line: a/ « 1 and tanh a/ ^ a/. The quantity Zis 
in Eq. (9-121) is small but not zero. At / = nk/2 we have the condition of a series-
resonant circuit. 

When the length of a shorted lossy line is an odd multiple of X/4, the input 
impedance will not go to infinity as indicated in Fig. 9-9. For / = nX/4, /?/ = nn/2 
(n = odd), cos /?/ = 0, and Eq. (9-120) becomes 

Z, ,= Zo ' 0 

tanh a/ a/ 
(9-122) 

which is large but not infinite. We have the condition of a parallel-resonant circuit. 
It is a frequency-selective circuit, and we can determine the quality factor, or Q, of 
such a circuit by first finding its half-power bandwidth, or simply the bandwidth. 
The bandwidth of a parallel-resonant circuit is the frequency range A/ = f2 — ft 
around the resonant frequency f0, where f2 = f0 + A//2 and f± = f0 — Af/2 are half-
power frequencies at which the voltage across the parallel circuit is 1/^/2 or 70.7% 
of its maximum value a t / 0 (assuming a constant-current source). Hence the associated 
power, which is proportional to \Zis\2 and is maximum at f0, is one-half of its value 
a t / i and / 2 . 

Let f = f0 + Sf, where Sf is a small frequency shift from the resonant frequency. 
We have 

„, 2nf e 2n(f0 + 5f) 

up 

nn nn (bf 

Y 

n = odd, 

cos /?/ = — sin 

sin /?/ = cos 

rv^(bf_ 
~2\To 

_ S£ 
2 U 

nn 
"2 

nn = 1, 

(9-123) 

(9-124) 

(9-125) 
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where we have assumed (rm/2)(5f/f0)« 1. Substituting Eqs. (9-123), (9-124), and 
(9-125) in Eq. (9-120), noting that a/ « 1, and retaining only small terms of the first 
order, we obtain 

Z0 Z, = 

and 

\7 I2 -

. nn (df 

Z0\ 

(a/)2 + n% (df 

(9-126) 

(9-127) 

At / = f0, df = 0, \Zis\2 is a maximum and equals |Zis|^ax = |Z0|2/(a/)2. Thus, 
\7 I2 1 

l7 I2 

r ^ is max 1 + 2a/t/o 
(9-128) 

When df = ± A//2, we have the half-power frequencies /2 and / l9 at which the ratio 
in Eq. (9-128) equals i, or 

n7T 

2o^ (1)̂ (1)='' ■-* 
Therefore, the Q of the parallel-resonant circuit (a shorted lossy line having a length 
equal to an odd multiple of A/4) is 

^ A/ 2a (9-130) 

Using the expressions of a and /? for a low-loss line in Eqs. (9-55) and (9-56), we 
obtain 

Q ~ R + GL/C ~ [(R/coL) + (G/tt)C)] ' (9_131) 

For a well-insulated line, GL/C « R, and Eq. (9-131) reduces to the familiar expres
sion for the Q of a parallel-resonant circuit: 

Q=— ■ * R (9-132) 

In a similar manner an analysis can be made for the resonant behavior of an open-
circuited low-loss transmission line whose length is an odd multiple of A/4 (series 
resonance) or a multiple of A/2 (parallel resonance). (See Problem P.9-21.) 

EXAMPLE 9-7 The measured attenuation of an air-dielectric coaxial transmission 
line at 400 (MHz) is 0.01 (dB/m). Determine the Q and the half-power bandwidth of 
a quarter-wavelength section of the line with a short-circuit termination. 
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Solution At / = 4 x 108 (Hz), 

Therefore, 

„ c 3 x 108 

* = T = Ws = ™ (rad/m)' 
a = 0.01 (dB/m) = ^ (Np/m). 

„ j5 8.38x8.69 „ A 1 
Q = T- = o nn i = 3 6 4 1 ' 2a 2 x 0.01 

which is much higher than the Q obtainable from any lumped-element parallel-
resonant circuit at 400 (MHz). The half-power bandwidth is 

/o 4 x 108 

e 3641 
= 0.11 x 106 (Hz) 

= 0.11 (MHz), or 110 (kHz). 

9-4.2 LINES WITH RESISTIVE TERMINATION 

When a transmission line is terminated in a load impedance ZL different from the 
characteristic impedance Z0 , both an incident wave (from the generator) and a re
flected wave (from the load) exist. Equation (9-99a) gives the phasor expression for 
the voltage at any distance z' = £ - z from the load end. Note that in Eq. (9-99a), 
the term with eyzt represents the incident voltage wave and the term with e~yz' rep
resents the reflected voltage wave. We may write 

v(z') = I±(zL + z0y*' 1 + ? t ZQ_ 2yz ■] 
(9-133a) 

= y(zL + z 0 y [ i + re-2yi'l 
where 

(9-134) 

is the ratio of the complex amplitudes of the reflected and incident voltage waves at 
the load (z' = 0) and is called the voltage reflection coefficient of the load impedance 
ZL. It is of the same form as the definition of the reflection coefficient in Eq. (8-140) 
for a plane wave incident normally on a plane interface between two dielectric media. 
It is, in general, a complex quantity with a magnitude | r | < 1. The current equation 
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corresponding to V{z') in Eq. (9-133a) is, from Eq. (9-99b), 

W = ^r (ZL + Z0KZ'[1 - r e - 2 " ' ] . (9-133b) 
zz0 

The current reflection coefficient defined as the ratio of the complex amplitudes 
of the reflected and incident current waves, IQ/IQ, is different from the voltage re
flection coefficient. As a matter of fact, the former is the negative of the latter, inasmuch 
as IQ/IQ = - ^o /^o* a s is evident from Eq. (9-94). In what follows we shall 
refer only to the voltage reflection coefficient. 

For a lossless transmission line, y =jfi, Eqs. (9-133a) and (9—133b) become 

and 

V(z') = *-± (ZL + R0)e^ll + re" ' 2 " ' ] 

W = £- (zL + Ro)e}pz'[i - |r|e**-2*'>]. 
ZKQ 

(9-135a) 

(9-135b) 

The voltage and current phasors on a lossless line are more easily visualized from 
Eqs. (9-100a) and (9-100b) by setting y =j(i and VL = ILZL. Noting that coshjfl = 
cos 9, and sinh j9 =j sin 9, we obtain 

V{z') = VL cos jffz' + jILR0 sin £z', 

J(z') = / L cos £ z ' + 7 ^ sin £z'. 

(9-136a) 

(9-136b) 

(Lossless line) 
If the terminating impedance is purely resistive, ZL = RL, VL = ILRL, the voltage and 
current magnitudes are given by 

\V{z')\ = FLN/cos2 PZ' + (R0/Rh)2 sin2 £z', (9-137a) 
W)\ = ILJcos2Pz' + (RJR0)2sm2IJz', (9-137b) 

where R0 = *JL/C. Plots of \V{z')\ and \l(z')\ as functions of z' are standing waves 
with their maxima and minima occurring at fixed locations along the line. 

Analogously to the plane-wave case in Eq. (8-147), we define the ratio of the 
maximum to the minimum voltages along a finite, terminated line as the standing-wave 
ratio (SWR), S: 

\v i i + in 
C _ 1 maxl _ ' I I fnimfMicirm1pcc,l o — | | — I , ^JL/imensionicssj. 

1 'min| 1 HI 
(9-138) 
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The inverse relation of Eq. (9-138) is 

(9-139) 

It is clear from Eqs. (9-138) and (9-139) that on a lossless transmission line 

r = 0, S = 1 when ZL = Z 0 (Matched load); 
r = — 1, S -> oo when ZL = 0 (Short circuit); 
T = + 1, S -> oo when ZL -> oo (Open circuit). 

Because of the wide range of S, it is customary to express it on a logarithmic scale: 
20 log10 S in (dB). Standing-wave ratio S defined in terms of |/max|/|/min| results in the 
same expression as that defined in terms of |Fmax|/|Fmin| in Eq. (9-138). A high 
standing-wave ratio on a line is undesirable because it results in a large power loss. 

Examination of Eqs. (9-135a) and (9—135b) reveals that |Fmax| and \lmin\ occur 
together when 

0r - 20^ = -2mt, n = 0 , 1 , 2 , . . . . (9-140) 

On the other hand, |J^in| and |/max| occur together when 

9r - 2$z'm = -{In + l)7i, n = 0, 1, 2 , . . . . (9-141) 

For resistive terminations on a lossless line, ZL = RL, Z 0 = R0, and Eq. (9-134) 
simplifies to 

T = ^ L ~ ^ ° (Resistive load). (9-142) 

The voltage reflection coefficient is therefore purely real. Two cases are possible. 

1. RL> R0. In this case, T is positive real and 9r = 0. At the termination, z' = 0, 
and condition (9-140) is satisfied (for n = 0). This means that a voltage maximum 
(current minimum) will occur at the terminating resistance. Other maxima of the 
voltage standing wave (minima of the current standing wave) will be located at 
2/fe' = 2nn, or z' = nX/2 (n = 1, 2 , . . . ) from the load. 

2. RL< R0. Equation (9-142) shows that T will be negative real and 9r = -%. At 
the termination, z' = 0, and condition (9-141) is satisfied (for n = 0). A voltage 
minimum (current maximum) will occur at the terminating resistance. Other 
minima of the voltage standing wave (maxima of the current standing wave) will 
be located at z' = nX/2 (n = 1, 2 , . . . ) from the load. The roles of the voltage and 
current standing waves are interchanged from those for the case of RL> R0. 

Figure 9-10 illustrates some typical standing waves for a lossless line with resis
tive termination. 

The standing waves on an open-circuited line are similar to those on a resistance-
terminated line with RL > R0, except that the \V(z')\ and \l{z')\ curves are now mag
nitudes of sinusoidal functions of the distance z' from the load. This is seen from 
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Z4-

r\V(z')\forRL>R0 

^-\I(z')\ for RL<R0 

_ HI(z')\ for RL > R0 

^-\V(z')\ for RL<R0 

3X/4 A/2 X/4 

FIGURE 9-10 
Voltage and current standing waves on resistance-terminated lossless lines. 

Eqs. (9-137a) and (9-137b), by letting Rh -> oo. Of course, IL = 0, but VL is finite. 
We have 

\V(z')\ = Vh\cos Pz'\, (9-143a) 

\l(z')\=-±\smpz'\. (9-143b) 

All the minima go to zero. For an open-circuited line, T = 1 and S -> oo. 
On the other hand, the standing waves on a short-circuited line are similar to 

those on a resistance-terminated line with Rh < R0. Here Rh = 0, Vh = 0, but JL is 
finite. Equations (9-137a) and (9-137b) reduce to 

\V(z')\ = ILR0\sm(3z% 
|/(zO|=/L|cosjfe'|. 

(9-144a) 

(9-144b) 

Typical standing waves for open- and short-circuited lossless lines are shown in Fig. 
9-11. 

EXAMPLE 9-8 The standing-wave ratio S on a transmission line is an easily mea
surable quantity, (a) Show how the value of a terminating resistance on a lossless line 
of known characteristic impedance ,R0 can be determined by measuring S. (b) What 

Z'<r-L 

■ t _ 
I V(z')\ for open-circuited line. 
\I(z')\ for short-circuited line. 

r~ \I{z')\ for open-circuited line. 
—| V{z' )| for short-circuited line. 

FIGURE 9-11 
Voltage and current standing waves on open- and short-circuited lossless lines. 
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is the impedance of the line looking toward the load at a distance equal to one quarter 
of the operating wavelength? 

Solution 

a) Since the terminating impedance is purely resistive, ZL = RL, we can determine 
whether JRL is greater than JR0 (if there are voltage maxima at z' = 0, X/2, X, etc.) 
or whether JRL is less than JR0 (if there are voltage minima at z' = 0, X/2, X, etc.). 
This can be easily ascertained by measurements. 

First, if RL > R0, 6r = 0. Both |Kmax| and |/min| occur at /?/ = 0; and |Fmin| 
and \Imax\ occur at jSz' = n/2. We have, from Eqs. (9-136a) and (9-136b), 

\V I = K \V ■ I = K —• 
I r m a x | ' L J r m i n r L n 5 

Thus, 

| - 'min | - " L J | - 'max| -*L D 
K0 

I V I IT I R 
I "maxl P m a x l ^ -**-L 
1/ 7 ft 

| K m i n | Kmin l -^O 

or 
RL = SR0. (9-145) 

Second, if JRL < R0, 6r = — n. Both \Vmin\ and |/max| occur at fiz' = 0; and 
|l^a x | and |/min| occur at /3z' = n/2. We have 

\V ■ I = K \V I = K —• 
| r m i n | r L ' | r m a x | r L n ' 

Therefore, 

\i \ = r \j \ = j ^k. 
J m a x -*L5 l-'min ±L D 

K0 

V \ \I \ R 
' m a x -«r"*vl „ -»v _ C — u 

V I 17 I "~ R 
' m i n J m i n -**-L 

or 

RL = Y' (9-146) 

b) The operating wavelength, X, can be determined from twice the distance between 
two neighboring voltage (or current) maxima or minima. At z' = X/4, pz' = n/2, 
cos j8z' = 0, and sin j8z' = 1. Equations (9-136a) and (9-136b) become 

V(X/4)=jIhR0, 

(Question: What is the significance of the j in these equations?) The ratio of V(X/4) 
to I(X/4) is the input impedance of a quarter-wavelength, resistively terminated, 
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lossless line. 

Ziz' = A/4) = Rt = vim 
1(1/4) 

Rl 
RL 

This result is anticipated because of the impedance-transformation property of a 
quarter-wave line given in Eq. (9-114). ™ 

9-4.3 LINES WITH ARBITRARY TERMINATION 

In the preceding subsection we noted that the standing wave on a resistively terminated 
lossless transmission line is such that a voltage maximum (a current minimum) occurs 
at the termination where z' = 0 if RL > R0, and a voltage minimum (a current maxi
mum) occurs there if RL < R0. What will happen if the terminating impedance is not 
a pure resistance? It is intuitively correct to expect that a voltage maximum or mini
mum will not occur at the termination and that both will be shifted away from the 
termination. In this subsection we will show that information on the direction and 
amount of this shift can be used to determine the terminating impedance. 

Let the terminating (or load) impedance be ZL = RL+ jXL, and assume the volt
age standing wave on the line to look like that depicted in Fig. 9-12. We note that 
neither a voltage maximum nor a voltage minimum appears at the load at z' = 0. If 
we let the standing wave continue, say, by an extra distance /m, it will reach a mini
mum. The voltage minimum is where it should be if the original terminating impe
dance ZL is replaced by a line section of length £m terminated by a pure resistance 

FIGURE 9-12 
Voltage standing wave on a line terminated by an 
arbitrary impedance, and equivalent line section 
with pure resistive load. 
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Rm< R0, as shown in the figure. The voltage distribution on the line to the left of 
the actual termination (where z' > 0) is not changed by this replacement. 

The fact that any complex impedance can be obtained as the input impedance 
of a section of lossless line terminated in a resistive load can be seen from Eq. (9-109). 
Using Rm for ZL and /m for /, we have 

R^^~RoRo+jRmtanK- (9-147) 

The real and imaginary parts of Eq. (9-147) form two equations, from which the 
two unknowns, Rm and /m, can be solved (see Problem P.9-28). 

The load impedance ZL can be determined experimentally by measuring the 
standing-wave ratio S and the distance z'm in Fig. 9-12. (Remember that z'm + Sm = 
A/2.) The procedure is as follows: 

1. Find |r| from S. Use Irl = —— from Eq. (9-139). 
I I ' ' S + 1 

2. Find 9T from z'm. Use 9r = 2^z'm - % for n = 0 from Eq. (9-141). 
3. Find ZL, which is the ratio of Eqs. (9-135a) and (9-135b) at z' = 0: 

1 + \r\ej6r 

ZL = RL+ jXL = R0 1_Uejer- (9-148) 

The value of Rm that, if terminated on a line of length /m, will yield an input 
impedance ZL can be found easily from Eq. (9-147). Since Rm < R0, Rm = R0/S. 

The procedure leading to Eq. (9-148) is used to determine ZL from a measure
ment of S and of z'm, the distance from the termination to the first voltage minimum. 
Of course, the distance from the termination to a voltage maximum, z'M, could be 
used instead of z'm. In that case, Eq. (9-140) should be used to find 9T in Step 2 
above. 

EXAMPLE 9-9 The standing-wave ratio on a lossless 50 (Q) transmission line ter
minated in an unknown load impedance is found to be 3.0. The distance between suc
cessive voltage minima is 20 (cm), and the first minimum is located at 5 (cm) from 
the load. Determine (a) the reflection coefficient T, and (b) the load impedance ZL. 
In addition, find (c) the equivalent length and terminating resistance of a line such 
that the input impedance is equal to ZL. 

Solution 

a) The distance between successive voltage minima is half a wavelength. 

2 = 2x0.2 = 0.4 (m), 0 = y = ^ = 5n (rad/m). 

Step 1: We find the magnitude of the reflection coefficient, |r|, from the standing-
wave ratio S = 3. 

11 S + l 3+1 
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Step 2: Find the angle of the reflection coefficient, 9T, from 
9T = 2fiz'm - n = 2 x 5TT X 0.05 -n= -0.57c (rad), 
T = \T\ej6r = 0.5e-jO-5n = -j0.5. 

b) The load impedance ZL is determined from Eq. (9-148): 

zL = 5 ° ( [ ^ j ^ ) = 5°(°-60 -;°-8°) = 3 0 - J 4 0 (")• 
c) Now we find Rm and im in Fig. 9-12. We may use Eq. (9-147), 

X + 7 50 tan £/„ 
3 0 - ; 4 0 = 5 0 , 5 0 + . ^ t a n / ; 4 

and solve the simultaneous equations obtained from the real and imaginary parts 
for Rm and j5/m. Actually, we know z'm + /m = A/2 and Rm = R0/S. Hence,f 

m 2 
and 

- - 4 = 0 .2-0 .05 = 0.15 (m) 

Km = y = 1 6 . 7 (Q). 

9-4.4 TRANSMISSION-LINE CIRCUITS 

Our discussions on the properties of transmission lines so far have been restricted 
primarily to the effects of the load on the input impedance and on the characteristics 
of voltage and current waves. No attention has been paid to the generator at the 
"other end," which is the source of the waves. Just as the constraint (the boundary 
condition), VL = 7LZL, which the voltage Vh and the current Ih must satisfy at the 
load end (z = <f, z' = 0), a constraint exists at the generator end where z = 0 and 
z' = / . Let a voltage generator Vg with an internal impedance Zg represent the source 
connected to a finite transmission line of length / that is terminated in a load im
pedance ZL, as shown in Fig. 9-6. The additional constraint at z = 0 will enable the 
voltage and current anywhere on the line to be expressed in terms of the source 
characteristics (Vg, Zg), the line characteristics (y, Z0 , /) , and the load impedance (ZL). 

The constraint at z = 0 is 
Vt = Vg - IiZg. (9-149) 

But, from Eqs. (9-133a) and (9-133b), 

Vt = | (ZL + ZQy\\ + Te-2^ (9-150a) 

and 

Ii = — " <ZL + Zo)^K[l - re~2*]. (9-150b) 

+ Another set of solutions to part (c) is t'm = tm- A/4 = 0.05 (m) and R'm = SR0 = 150 (Q). Do you see why? 
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Substitution of Eqs. (9-150a) and (9-150b) in Eq. (9-149) enables us to find 

(9-151) 

where 

^(7 + 7 W' - Z°Vg 1 

2 ( Z L + z 0 J e - Z o + Zg[1_TgTe-2yty 

r„ = _ Zg - ZQ 

Z9 + Zo 
(9-152) 

is the voltage reflection coefficient at the generator end. Using Eq. (9-151) in Eqs. 
(9-133a) and (9-133b), we obtain 

, _ Z o ^ V(z') = ,-yz 

Z0 + Zg 

1 + Te'2yz' 
1 - rTe-™ 

Similarly, 

m - z„ 
K 
+ z, 

e~ "1 
f \ -Te~ 

TgTe 
2yz' \ 

zr2y^)' 

(9-153a) 

(9-153b) 

Equations (9-153a) and (9—153b) are analytical phasor expressions for the volt
age and current at any point on a finite line fed by a sinusoidal voltage source Vg. 
These are rather complicated expressions, but their significance can be interpreted 
in the following way. Let us concentrate our attention on the voltage equation 
(9-153a); obviously, the interpretation of the current equation (9-153b) is quite 
similar. We expand Eq. (9-153a) as follows: 

V{z') 

where 

z0vg 
z0 + zg 

ZgVg 

z0 + zg 

z0v9 
Z0 + Zg 

= vt + vi + v+ + V2 + • • • 

vaz0 . 

e~yz{\ + Te-2yz')(l - TgTe-^r1 

e'yz{l + Te-2yz'){\ + YgYe~2ye + r2
gr2e~4y' + • • •) 

[e~yz + (Te-y')e-yz' + Y g^e~2ye)e-yz + • • •] 

(9-154) 

-yz=VMe~yz, 1 z0 + zg 

VI = T{VMe-y*)e-yz\ 
VI =Tg(TVMe-^)e-yz 

(9-154a) 

(9-154b) 
(9-154c) 

The quantity 

VM = z0vg 
Z0 + Zg 

(9-155) 
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■© W 

z = 0 
z'=t 

-*\Vl 

I 

. _ r _ . 
■z' =1 - z 

z = l 
z'=0 

(a) (b) 

FIGURE 9-13 
A transmission-line circuit and traveling waves. 

is the complex amplitude of the voltage wave initially sent down the transmission 
line from the generator. It is obtained directly from the simple circuit shown in Fig. 
9-13(a). The phasor V± in Eq. (9-154a) represents the initial wave traveling in the 
+ z-direction. Before this wave reaches the load impedance ZL, it sees Z 0 of the line 
as if the line were infinitely long. 

When the first wave Vf = VMe~yz reaches ZL at z = / , it is reflected because of 
mismatch, resulting in a wave VI with a complex amplitude T(VMe~y') traveling in 
the — z-direction. As the wave Vf returns to the generator at z = 0, it is again re
flected for Zg^ Z0, giving rise to a second wave V\ with a complex amplitude 
Fg(TVMe~2y*) traveling in + z-direction. This process continues indefinitely with re
flections at both ends, and the resulting standing wave V(z!) is the sum of all the 
waves traveling in both directions. This is illustrated schematically in Fig. 9-13(b). 
In practice, y = a + jp has a real part, and the attenuation effect of e~a* diminishes 
the amplitude of a reflected wave each time the wave transverses the length of the 
line. 

When the line is terminated with a matched load, ZL = Z 0 , r = 0, only V? 
exists, and it stops at the matched load with no reflections. If ZL # Z 0 but Zg = Z 0 
(if the internal impedance of the generator is matched to the line), then r # 0 and 
T9 = 0. As a consequence, both Vf and VI exist, and V^t V^ and all higher-order 
reflections vanish. 

EXAMPLE 9-10 A 100 (MHz) generator with Vg = 10/0! (V) and internal resistance 
50 (Q) is connected to a lossless 50 (Q) air line that is 3.6 (m) long and terminated 
in a 25 + j25 (O) load. Find (a) V(z) at a location z from the generator, (b) Vt at the 
input terminals and VL at the load, (c) the voltage standing-wave ratio on the line, 
and (d) the average power delivered to the load. 

Solution Referring to Fig. 9-6, the given quantities are 

F9 = 10/0! (V), Z9 = 50 (Q), / = 1 0 8 (Hz), 
i?o = 50 (Q), ZL = 25+y25 = 35.36/45! (Q), t = 3.6 (m). 
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Thus, 

P = 7^JVW = T (md/m)' ^ = 2An (rad), 
T_ZL-Z0 (25 +;25) - 50 -25 + j25 35.36/135c 

ZL + Z0 (25 + J25) + 50 15+J25 79.1/18.4° 
= 0.447/116.6° = 0.447/0.6487E, 

r, = o. 
a) From Eq. (9-153a) we have 

ZQ + Zg 

_ 50(10) e - j 2 ^ z / 3 r | _j_ Q_447eJ(0.648-4.8)^j47rz/3-| 

= 5[e-j2KZ/3 + o.447e j ( 2z /3-°-152) , :] (V). 

We see that, because Tg = 0, V(z) is the superposition of only two traveling waves, 
Vt and VI, as denned in Eq. (9-154). 

b) At the input terminals, 
Vt = V{0) = 5(1 + 0A41e-j0A52n) 

= 5(1.396 -./0.207) 
= 7 .06 / -8 .43° (V). 

At the load, 
VL = 7(3.6) = 5[e-J0A* + 0A41ej02*8n] 

= 5(0.627 - /0.637) = 4.47/ -45 .5° (V). 

c) The voltage standing-wave ratio (VSWR) is 
l + | r | 1 + 0-447 

S s=I^ff = 1^0447 = 1 6 1 

d) The average power delivered to the load is 

P = 1 
1 a v /■} z L 

1 / 4.47 \ 2 

* L = ~ 

It is interesting to compare this result with the case of a matched load when 
Z L = Z 0 = 50 + ; 0 (Q). In that case, r = 0, 

1^1 = 1 ^ 1 = ^ = 5 (V), 

and a maximum average power is delivered to the load: 

Maximum P a v = ^ = ^ - | ^ = 0.25 (W), 
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which is larger than the Pav calculated for the unmatched load in part (d) by an 
amount equal to the power reflected, |r |2 x 0.25 = 0.05 (W). » 

9 - 5 Transients on Transmission Lines 

The discussion of the wave characteristics on transmission lines in the previous section 
was based on steady-state, single-frequency, time-harmonic sources and signals. We 
worked with voltage and current phasors. Quantities such as reactances (X), wave
length (A), wavenumber (k), and phase constant (jS) would lose their meaning under 
transient conditions. However, there are important practical situations in which the 
sources and signals are not time-harmonic and the conditions are not steady-state. 
Examples are digital (pulse) signals in computer networks and sudden surges in 
power and telephone lines. In this section we will consider the transient behavior 
of lossless transmission lines. For such lines (R = 0, G = 0), characteristic impedance 
becomes characteristic resistance RQ = 1/VZc, and voltage and current waves propa
gate along the line with a velocity u = 1/y/LC. 

The simplest case is shown in Fig. 9-14(a), where a d-c voltage source V0 is 
applied through a series (internal) resistance Rg at t = 0 to the input terminals of a 
lossless line terminated in a characteristic resistance R0. Since the impedance looking 
into the terminated line is R0, a voltage wave of magnitude 

VI = R0 V0 (9-156) 
R0 + R6 

travels down the line in the + z-direction with a velocity u = 1/y/LC. The corre
sponding magnitude, If, of the current wave is 

Vf V0 H = Ro Ro + R6 

(9-157) 

If we plot the voltage across the line at z = zx as a function of time, we obtain 
a delayed step function at t = zju as in Fig. 9-14(b). The current in the line at z = zx 

^ i , 0 

Z = 0 Z = Z\ Z = (' 

(a) Switch closed at t = 0. 

V? 

Z\lu 

(b) Voltage at z = zx. 

-¥t 

FIGURE 9-14 
A d-c source applied to a line terminated uncharacteristic resistance R0 through a series 
resistance Rg. 
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FIGURE 9-15 
A d-c source applied to a terminated lossless line 

= 0 z = f at t = 0 (general case) 

has the same shape with a magnitude If given in Eq. (9-157). When the voltage 
and current waves reach the termination at z = / , there are no reflected waves be
cause T = 0. A steady state is established, and the entire line is charged to a voltage 
equal to Vf. 

If both the series resistance Rg and the load resistance RL are not equal to R0, 
as in Fig. 9-15, the situation is more complicated. When the switch is closed at t = 0, 
the d-c source sends a voltage wave of magnitude 

VI = *° V0 (9-158) 
K0 + K 

in the + z-direction with a velocity u — 1/yjLC as before because the Vf wave has 
no knowledge of the length of the line or the nature of the load at the other end; it 
proceeds as if the line were infinitely long. At t = T = Sfu this wave reaches the load 
end z = / . Since RL # R0, a reflected wave will travel in the —z-direction with a 
magnitude 

VI = TLVt, (9-159) 
where 

„ Ri — Rn 
r^t^To i9-m 

is the reflection coefficient of the load resistance RL. This reflected wave arrives at 
the input end at t = IT, where it is reflected by Rg # R0. A new voltage wave having 
a magnitude V\ then travels down the line, where 

V+
2 = TaVi = TgTLVt. (9-161) 

In Eq. (9-161), 

R„ + RQ 
Yg = J _ „° (9-162) 

is the reflection coefficient of the series resistance Rg. This process will go on inde
finitely with waves traveling back and forth, being reflected at each end at t = nT 
(n = 1, 2, 3, . . . ) . 

Two points are worth noting here. First, some of the reflected waves traveling 
in either direction may have a negative amplitude, since TL or Tg (or both) may be 
negative. Second, except for an open circuit or a short circuit, TL and Tg are less 
than unity. Thus the magnitude of the successive reflected waves becomes smaller 
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and smaller, leading to a convergent process. The progression of the transient voltage 
waves on the lossless line in Fig. 9-15 for RL = 3R0 (TL = J) and Rg = 2R0 {Tg = J) is 
illustrated in Figs. 9-16(a), 9-16(b), and 9-16(c) for three different time intervals. The 
corresponding current waves are given in Figs. 9-16(d), 9-16(e), and 9-16(f), which 
are self-explanatory. The voltage and current at any particular location on the line in 
any particular time interval are just the algebraic sums (Vf + 7j" + 7 j + 7 J + . . . ) 
and (Jj" + IT + 12 + 12 + • • •)> respectively. 

It is interesting to check the ultimate value of the voltage across the load, Vh = V{£\ 
as t increases indefinitely. We have 

VL = Vf + VI + V\ + VI + F3
+ + 73~ + • • • 

= vl(\ + rL + r9rL + r9r2 + r2r2 + r'rj + • • •) 
= n[(i + r9rL + rjrj + •••) + rL(i + r9rL + rjrj + 

1 \ / rT 

•)] 

i - r9rL 
i + rL 

i - r,rL 

+ 1 - T T L 

(9-163) 

For the present case, 7+ = V0/3, TL = i and Tg = 1/3, Eq. (9-163) gives 

V - 9-V+ — 1 F 
Vh — 5 V 1 — 5 V0 

(9-163a) 

V{z) 

vt 

V® 

vt 

-+z 

^T3 
V(Z) 

-S- l 17 + 

-P-z 

U=L. T 
t+ 
U 

vt+vi 

(a)0<t<T 
V+ = V0/3 

(b) T<t<2T 
Vy = Vf/2 = V0/6 

(c)2T<t<3T 
F2+ = Ff /3 = F0/18 

Kz) m 

->z 
(d)0<t<T 

/+ = V+/RQ = v0/3R0 

ITT 

/(z) 

>u 
T 

■>z 

1 

0 C 0 
( e ) T < / < 2 r (f)2T<t<3T 

IT = - VTIRQ = - V0/6R0 1$ = VJ/RQ = V0/\SR0 

FIGURE 9-16 
Transient voltage and current waves on transmission line in Fig. 9-15 for RL = 3RQ 
and Rg = 2R0. 
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as t -*• GO. This result is obviously correct because, in the steady state, V0 is divided 
between RL and Rg in a ratio of 3 to 2. Similarly, we find 

which yields 

as expected. 

h = 
i - rgrL 

5Uoj 5R0 
' L = ^ ^ (9-164) 

9-5.1 REFLECTION DIAGRAMS 

The preceding step-by-step construction and calculation procedure of the voltage and 
current at a particular time and location on a transmission line with arbitrary resistive 
terminations tends to be tedious and difficult to visualize when it is necessary to 
consider many reflected waves. In such cases the graphical construction of a reflection 
diagram is very helpful. Let us first construct a voltage reflection diagram. A reflec
tion diagram plots the time elapsed after the change of circuit conditions versus the 
distance z from the source end. The voltage reflection diagram for the transmission-
line circuit in Fig. 9-15 is given in Fig. 9-17. It starts with a wave V^ at t = 0 travel
ing from the source end (z = 0) in the +z-direction with a velocity u = 1/yJLC. This 
wave is represented by the directed straight line marked V± from the origin. This 
line has a positive slope equal to 1/u. When the V± wave reaches the load at z = / , 
a reflected wave V± = TLV^ is created if Rh ^ R0. The V± wave travels in the - z -
direction and is represented by the directed line marked TLV^ with a negative slope 
equal to — 1/u. 

ti 

h 
4T 

h 
IT 

h 

h 

i 

- 5 l 

" fJt 

P3\ 

~V\ 

Pu 
. - ^ " l 

"""^v^V 

jj^> 
^ ^ 7 

vO> 

3T 

T 

0 zi 

FIGURE 9-17 
Voltage reflection diagram for transmission-line circuit in 
Fig. 9-15. 
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The VI wave returns to the source end at t = IT and gives rise to a reflected wave 
F+ = TgVi = TgTjVi, which is represented by a second directed line with a posi
tive slope. This process continues back and forth indefinitely. The voltage reflection 
diagram can be used conveniently to determine the voltage distribution along the 
transmission line at a given time as well as the variation of the voltage as a function 
of time at an arbitrary point on the line. 

Suppose we wish to know the voltage distribution along the line at t = tA 
(3T <t4< AT). We proceed as follows: 

1. Mark t4 on the vertical (-axis of the voltage reflection diagram. 
2. Draw a horizontal line from t4, intersecting the directed line marked TflV^ at 

P4. (All directed lines above P4 are irrelevant to our problem because they pertain 
to t > t4.) 

3. Draw a vertical line through P4, intersecting the horizontal z-axis at zv The sig
nificance of zy is that in the range 0 < z < zt (to the left of the vertical line) the 
voltage has a value equal to V$ + VI + F2

+ = Fx
+(1 + TL + TgTL); and in the 

range zx < z < £ (to the right of the vertical line) the voltage is V\ + V± + 
y+ + 7 j = 7+(i + rL + TgTL + r ^ ) . There is a voltage discontinuity equal 
to TgTlVt at z = zv 

4. The voltage distribution along the line at t = t4, V(z, tA), is then as shown in 
Fig. 9-18(a), plotted for RL = 3R0 (TL = i) and Rg - 2R0 (Tg = J). 

Next let us find the variation of the voltage as a function of time at the point 
z = zv We use the following procedure: 

1. Draw a vertical line at zl5 intersecting the directed lines at points P l5 P2, P3, P4, 
P5, and so on. (There would be an infinite number of such intersection points 
if RL i- R0 and Rg =£ R0, as there would be an infinite number of directed lines if 
TL ^ 0 and Tg ^ 0.) 

2. From these intersection points, draw horizontal lines intersecting the vertical 
t-axis at tlt t2, t3, t4, t5, and so on. These are the instants at which a new voltage 
wave arrives and abruptly changes the voltage at z = zv 

3. The voltage at z = z1 as a function of t can be read from the voltage reflection 
diagram as follows: 

Voltage 
Time Range Voltage Discontinuity 

0<t<tl{tl= zju) 0 0 
h ^ * < h (h = 2T- r j Vt V£ at tx 
t2<t<t3 (t3 = 2T + tj Vt(l + TL) TLVt at t2 

t3<t<u(u = 4 r - t j vt(i + rL + rgrL) v^vt att3 
u<t<t5(t5 = AT + tl) vf(i + rL + r9rL + rgrl) TgT2

Lvt atu 
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V{z, tfr 

vfa + rL + T/L) 
*?u + rL) n 

l 

T r / ^ i + 

►z 
0 zi 
(a) V(z, fy) versus z; 

rL - f r, = I, F+ = F0/3. 

3F0/5 

F0/3 T— 8 r* r i7l+ 

^ 
i I i 

0 h 
I I I 

T hlTh 3T U4Tt5 

(b) V{Zl,f) versus t\ V(Zl, °°) = 3F0/5. 

-W 

FIGURE 9-18 
Transient voltage on lossless transmission line for RL = 3R0 and R = 2/?0. 
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FIGURE 9-19 
Current reflection diagram for transmission-line circuit in 
Fig. 9-15. 
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F0/3i?o 

V0/5R0 

4. The graph of V{zu t) is plotted in Fig. 9-18(b) for TL = i and Tg = f When t 
increases indefinitely, the voltage at z1 (and at all other points along the lossless 
line) will assume the value 3V0/5, as given in Eq. (9-163a). 

Similar to the voltage reflection diagram in Fig. 9-17, a current reflection dia
gram for the transmission-line circuit of Fig. 9-15 can be constructed. This is shown 
in Fig. 9-19. Here we draw directed lines representing current waves. The essential 
difference between the voltage and current reflection diagrams is in the negative sign 
associated with the current waves traveling in the — z-direction on account of Eq. 
(9-94). The current reflection diagram can be used to determine the current distribu
tion along the transmission line at a given time as well as the variation of the current 
as a function of time at a particular point on the line, following the same procedures 
outlined previously for voltage. For example, we can determine the current at z = z1 
by drawing a vertical line through zx in Fig. 9-19, intersecting the directed lines at 
points P1? P2 , P 3 , P 4 , P 5 , and so on, and by finding the corresponding times tl9 t2, 
t3, t4, t5, and so on, as before. Figure 9-20 is a plot of I(zu t) versus t, which 
accompanies the 7(zl91) graph in Fig. 9-18(b). We see that they are quite dissimilar. 
The current along the line oscillates around the steady-state value of V0/5R0 (see Eq. 
9-164) with successively smaller discontinuous jumps at tu t2, t3, tA, t5, etc. 

We note two special cases here. 

1. When RL = R0 (matched load, TL = 0), the voltage and current reflection dia
grams will each have only a single directed line, existing in the interval 0 < t < T, 
irrespective of what Rg is. 

2. When Rg = R0 (matched source, Tg = 0) and RL^ R0, the voltage and current 
reflection diagrams will each have only two directed lines, existing in the intervals 
0 < t < T and T < t < IT. 

In both cases the determination of the transient behavior on the transmission line 
is much simplified. 

1 
I? 

•L'I 
~1I 

'L'l 

J : 

o 'i 
i i i 

t22Tt2 3T k AT ts 
-¥t 

rL = y> Tg = 1 . /+ = V0/3R0, I{zx, oo) = V0/5R0. 

FIGURE 9-20 
Transient current on lossless transmission line for RL = 3R0 and R = 2R0. 
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( ) 1 0 
FIGURE 9-21 
A rectangular pulse. 

9-5.2 PULSE EXCITATION 

So far, we have discussed the transient behavior of lossless transmission lines when 
the source is a sudden voltage surge in the form of a step function; that is, 

vg(t) = V0U(t), (9-165) 

where U(t) denotes the unit step function 

("0, t < 0, 
1/(0 = l, t > o. (9-166) 

In many instances, such as in computer networks and pulse-modulation systems, the 
excitation may be in the form of pulses. The analysis of the transient behavior of a 
line with pulse excitation, however, does not present special difficulties because a 
rectangular pulse can be decomposed into two step functions. For example, the pulse 
of an amplitude V0 lasting from t = 0 to t = TQ shown in Fig. 9-21 can be written 
as 

vg(t) = V0[U(t) - U(t - T0)]. (9-166a) 

If vg(t) in Eq. (9-166a) is applied to a transmission line, the transient response is 
simply the superposition of the result obtained from a d-c voltage V0 applied at 
t = 0 and that obtained from another d-c voltage - V0 applied at t = T0. We will 
illustrate this process by an example. 

EXAMPLE 9-11 A rectangular pulse of an amplitude 15 (V) and a duration 1 (fxs) is 
applied through a series resistance of 25 (fi) to the input terminals of a 50 (Q) lossless 
coaxial transmission line. The line is 400 (m) long and is short-circuited at the far 
end. Determine the voltage response at the midpoint of the line as a fuction of time 
up to 8 (fis). The dielectric constant of the insulating material in the cable is 2.25. 

R0 = 50 (Q) 

200 (m) 400 (m) 

FIGURE 9-22 
A pulse applied to a short-circuited 
line. 
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tins) 

FIGURE 9-23 
, , Voltage reflection diagram for Example 

Z l ; 9-11. 

Solution 
Also, 

We have a situation as given in Fig. 9-22, where R = 25 (Q) and RL = 0. 

rL=-i , r = 
25-50 1 

9 25 + 50 3 
vg(t) = 10[U(t)-U(t-10-% 

r 3 x 108 

u = -^= = ^ = " = 2 x 108 (m/s), 
Ver V 2 - 2 5 

T = - = - ^ = 2 x l 0 - 6 ( s ) = 2 (pis), 

vt = 
u 2 x 10* 

15£n 15 x 50 
R0 + Rq 50 + 25 

= 10 (V). 

A voltage reflection diagram is constructed in Fig. 9-23 for this problem. There are 
two sets of directed lines: The solid lines are for +15 (V) applied at t = 0, and the 
dashed lines are for —15 (V) applied at t = 1 (jus). Along each directed line is marked 
the amplitude of the wave (with the appropriate sign) normalized with respect to 
V\ = 10 (V). The markings for the applied voltage — \5U{t — 10~6) are enclosed in 
brackets for easy reference. To obtain the voltage variation at the line's midpoint 
for the interval 0 < t < 8 (jus), we draw a vertical line at z = 200 (m) and a horizontal 
line at t = 8 (^s). The voltage function due to 1517(f) can be read from the inter
sections of the vertical line with the solid directed lines. This is sketched as va in 
Fig. 9-24(a). Similarly, the voltage function due to - 15U(t - 10~6) is read from the 
intersections of the vertical line with the dashed directed lines; it is sketched as vb 
in Fig. 9-24(b). The required response u(200, t) for 0 < t < 8 (pis) is then the sum of 
the responses, va + vb, and is given in Fig. 9-24(c). mm 
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(a) 

0 -> t (MS) 

(b) 0 
vt 

i ->t OiS) 

T 
Kf/3 

(c) 

g 10h 
'.5 10/3 
^ 0 
g-10/3 
* - lOh 

i. 

v~ 
1 2 3 4 n^j 

FIGURE 9-24 
Voltage responses at the midpoint of the short-circuited line in Fig. 9-22 
(Example 9-11). 

-> t (MS) 

9-5.3 INITIALLY CHARGED LINE 

In our discussion of transients on transmission lines we have assumed that the lines 
themselves have no initial voltages or currents when an external source is applied. 
Actually, any disturbance or change in a transmission-line circuit will start transients 
along the line even without an external source if initial voltages and/or currents exist. 
We examine in this subsection a situation involving an initially charged line and 
develop a method of analysis. 

Consider the following example. 

EXAMPLE 9-12 A lossless, air-dielectric, open-circuited transmission line of charac
teristic resistance R0 and length £ is initially charged to a voltage V0. At t = 0 the line 
is connected to a resistance R. Determine the voltage across and the current in R as 
functions of time. Assume that R = R0. 

Solution This problem, as depicted in Fig. 9-25(a), can be analyzed by examining 
the circuits in Figs. 9-25(b), 9-25(c), and 9-25(d). The circuit in Fig. 9-25(b) is 
equivalent to that in Fig. 9-25(a). After the switch is closed, the conditions in the 
circuit in Fig. 9-25(b) are the same as the superposition of those shown in Figs. 
9-25(c) and 9-25(d). But the circuit in Fig. 9-25(c) does not give rise to transients 
because of the opposing voltages; hence we use the circuit in Fig. 9-25(d) to study 
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the transient behavior of the original circuit in Fig. 9-25(a). The line in the circuit 
in Fig. 9-25(d) is uncharged, and our problem has then been reduced to one with 
which we are already familiar. 

When the switch is closed, a voltage wave of amplitude Vf will be sent down 
the line in the + z-direction, where 

At t = / /c, the Vf wave reaches the open end, having reduced the voltage along the 
whole line from V0 to V0/2. At the open end, T = 1, and a reflected VI wave is sent 
back in the —z-direction with V\ — V\ — — V0/2. This reflected wave returns to the 
sending end at t = 2J/c, reducing the voltage on the line to zero. 

From Fig. 9-25(d), 
where IR = —Ilt 

/, =/,♦ _ H =-2S_ 
R0 2R0 

for 0<t<2t/c. 

z = 0 
(a) 

VJ2 

lllc 
(e) 

VQHRQ 

2(1 c 
(f) 

FIGURE 9-25 
Transient problem of an open-circuited, initially charged line, R = R0 (Example 
9-12). 
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F n ^ 

At t = f/c, If reaches the open end, and the reflected I± must make the total current 
there zero. Hence, 

+ v0 

which reaches the sending end at t = 2//c and reduces both Ix and IR to zero. Since 
R = R0, there is no further reflection, and the transient state ends. As shown in Figs. 
9-25(e) and 9-25(f), both FR and IK are a pulse of duration It jo. We then have a 
way of generating a pulse by discharging a charged open-circuited transmission line, 
the width of the pulse being adjustable by changing / . mm 

9-5.4 LINE WITH REACTIVE LOAD 

When the termination on a transmission line is a resistance different from the char
acteristic resistance, an incident voltage or current wave will produce a reflected wave 
of the same time dependence. The ratio of the amplitudes of the reflected and incident 
waves is a constant, which is defined as the reflection coefficient. If, however, the 
termination is a reactive element such as an inductance or a capacitance, the reflected 
wave will no longer have the same time dependence (no longer be of the same shape) 
as the incident wave. The use of a constant reflection coefficient is not feasible in 
such cases, and it is necessary to solve a differential equation at the termination in 
order to study the transient behavior. We shall consider the effect on the reflected 
wave of an inductive termination and a capacitive termination separately in this 
subsection. 

Figure 9-26(a) shows a lossless line with a characteristic resistance R0, terminated 
at z = £ with an inductance LL. A d-c voltage V0 is applied to the line at z = 0 
through a series resistance R0. When the switch is closed at t = 0, a voltage wave 
of an amplitude 

Vt = y (9-167) 

travels toward the load. Upon reaching the load at t = t/u = T, a reflected wave 
Vi(t) is produced because of mismatch. It is the relation between V±{t) and V± 
that we wish to find. At z = / , the following relations hold for all t > T: 

vL(t) = Vt + V;(t), (9-168) 

'L 

«.——„—,—___o_J_L- L 
z = 0 z = ( z = (' 

(a) Transmission-line circuit with inductive termination (b) Equivalent circuit for the load end, t > T 

FIGURE 9-26 
Transient calculations for a lossless line with an inductive termination. 
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k(t) = i-[yl-v;(t)i (9-169) 

*dt) = LL*&. (9-170) 

Eliminating V7(t) from Eqs. (9-168) and (9-169), we obtain 

vL(t) = 27+ ~ R0k(t). (9-171) 
It is seen that Eq. (9-171) describes the application of Kirchhoff's voltage law to the 
circuit in Fig. 9-26(b), which is then the equivalent circuit at the load end for t > T. 
In view of Eq. (9-170), Eq, (9-171) leads to a first-order differential equation with 
constant coefficients: 

LL ^ + Rohjt) = 2Vf, t > T. (9-172) 

The solution of Eq. (9-172) is 

iL(t) = = £ - [1 - g-C-TOo/^], t > T, (9-173) 

which correctly gives iL(T) = 0 and iL(oo) = 2V^/R0. The voltage across the induc
tive load is 

vL(t) = L L ^ = 2Vt g-C-^o/^, t > T. (9-174) 
at 

The amplitude of the reflected wave, V^(t), can be found from Eq. (9-168): 

V7(t) = vL(t) - Vt I w u ) i (9-175) 
= 2F1

+[>- ( t-T)*0 /LL-i], t>T. 
This reflected wave travels in the — z-direction. The voltage at any point z — z^ along 
the line is VX before the reflected wave from the load end reaches that point, (t — T) < 
(/ - zj/u, and equals Vf + V7{t - T) after that. 

In Figs. 9-27(a), 9-27(b), and 9-27(c) are plotted iL(t), vh{t), and V7(t) at z = £ 
using Eqs. (9-173), (9-174), and (9-175). The voltage distribution along the 
line for T < tx < IT is shown in Fig. 9-27(d). Obviously, the transient behavior on a 
transmission line with a reactive termination is more complicated than that with a 
resistive termination. 

We follow a similar procedure in examining the transient behavior of a lossless 
line with a capacitive termination, shown in Fig. 9-28(a). The same Eqs. (9-167), 
(9-168), (9-169), and (9-171) apply at z = /, but Eq. (9-170) relating the load current 
iL(t) and load voltage vL(t) must now be changed to 

iM = CL^f. (9-176)t 

1 The subscript roman L denotes load; it has nothing to do with inductance. 
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V\((, t) 

(c) 

vLtf, 0 

FIGURE 9-27 
Transient responses of a lossless line with an inductive termination. 

tx-T= {2=zx)/u, 
or tx=2T - zxlu 

>z 

The differential equation to be solved at the load end is, by substituting Eq. (9-176) 
in Eq. (9-171), 

dvjJLt) 1 2 

iL(0 = ^ ^ ( ' " r , / , l o C S t > 7\ 

(9-177) 

where KJ1" = V0/2, as given in Eq. (9-167). The solution of Eq. (9-177) is 

vL(t) = 2VX [1 - e-{t-T)IRoC^, t > T. (9-178) 

The current in the load capacitance is obtained from Eq. (9-176): 

(9-179) 

+ R, C i v 
-o—i 

T+ -*V 
T 

C, =±= v 
T+ 

z = 0 z= t z= f 
(a) Transmission-line circuit with capacitive termination. (b) Equivalent circuit for the load end, t > T. 

FIGURE 9-28 
Transient calculations for a lossless line with a capacitive termination. 
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vL(C 0 

2VpRQ 

v(z, h) 

n \tx-T={t- zi)/u, 
or ^ = 27 - z\lu 

Z\ 
■ > z 

(b) (d) 

FIGURE 9-29 
Transient responses of a lossless line with a capacitive termination. 

Using Eq. (9-178) in Eq. (9-168), we find the amplitude of the reflected wave as a 
function of t: 

Vl{t) = 2VX\_\ - e^-T)IR^l t > T. (9-180) 

The graphs of vL(t), iL(t), and V^(t) at z = «f are plotted in Figs. 9-29(a), 9-29(b), and 
9-29(c) using Eqs. (9-178), (9-179), and (9-180), respectively. The voltage distribution 
along the line for T < t1 < IT is shown in Fig. 9-29(d). 

In this section we have discussed the transient behavior of only lossless transmis
sion lines. For lossy lines, both the voltage and the current waves traveling in either 
direction will be attenuated as they proceed. This situation introduces additional 
complication in numerical computation, but the basic concept remains the same. 

9 - 6 The Smith Chart 

Transmission-line calculations—such as the determination of input impedance by 
Eq. (9-109), reflection coefficient by Eq. (9-134), and load impedance by Eq. 
(9-148)—often involve tedious manipulations of complex numbers. This tedium can 
be alleviated by using a graphical method of solution. The best known and most 
widely used graphical chart is the Smith chart devised by P. H. Smiths Stated 

+ P H. Smith, "Transmission-line calculator," Electronics, vol. 12, p. 29, January 1939; and "An improved 
transmission-line calculator," Electronics, vol. 17, p. 130, January 1944. 
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succinctly, a Smith chart is a graphical plot of normalized resistance and reactance 
functions in the reflection-coefficient plane. 

To understand how the Smith chart for a lossless transmission line is constructed, 
let us examine the voltage reflection coefficient of the load impedance defined in Eq. 
(9-134): 

Let the load impedance ZL be normalized with respect to the characteristic imped
ance R0 = yjL/C of the line. 

Z R X 
zh = - ^ = - ^ + ; —- = r + jx (Dimensionless), (9-182) 

where r and x are the normalized resistance and normalized reactance, respectively. 
Equation (9-181) can be rewritten as 

r = r r + ; T £ = ^ - , (9-183) 
zL + 1 

where Tr and Tt are the real and imaginary parts, respectively, of the voltage reflec
tion coefficient T. The inverse relation of Eq. (9-183) is 

i + r i + |ryer 

or 

'+» = \i-rr)-jrt- (9-185) 

Multiplying both the numerator and the denominator of Eq. (9-185) by the complex 
conjugate of the denominator and separating the real and imaginary parts, we obtain 

i - r,2 - rt
2 

(i - rr)2 + n 
and 

(i - rr)2 + r? 

r = r, J,2 , ' 2 (9-186) 

x = ^J , w . (9-187) 

If Eq. (9-186) is plotted in the Tr — T{ plane for a given value of r, the resulting 
graph is the locus for this r. The locus can be recognized when the equation is rear
ranged as 

" V + r? = ( V ^ - ) . (9-188) 
' 1 + rj l V1 + r , 

It is the equation for a circle having a radius 1/(1 + r) and centered at Tr = r/(l + r) 
and T£ = 0. Different values of r yield circles of different radii with centers at different 
positions on the Tr-axis. A family of r-circles are shown in solid lines in Fig. 9-30. 
Since |r| < 1 for a lossless line, only that part of the graph lying within the unit circle 
on the Tr — Tt plane is meaningful; everything outside can be disregarded. 
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Several salient properties of the r-circles are noted as follows: 

1. The centers of all r-circles lie on the r>axis. 
2. The r = 0 circle, having a unity radius and centered at the origin, is the largest. 
3. The r-circles become progressively smaller as r increases from 0 toward oo, end

ing at the (Tr = 1, r{ = 0) point for open-circuit. 
4. All r-circles pass through the (Tr = 1, T£ = 0) point. 

Similarly, Eq. (9-187) may be rearranged as 
' ! \ 2 

(rP - 1 ) 2 + r.-lY-
x 

(9-189) 

This is the equation for a circle having a radius 1/|JC| and centered at Tr = 1 and T; = 
1/x. Different values of x yield circles of different radii with centers at different posi
tions on the Tr = 1 line. A family of the portions of x-circles lying inside the |r| = 1 
boundary are shown in dashed lines in Fig. 9-30. The following is a list of several 
salient properties of the x-circles. 

1. The centers of all x-circles lie on the Tr = 1 line; those for x> 0 (inductive react
ance) lie above the Tr-axis, and those for x < 0 (capacitive reactance) lie below 
the rr-axis. 

2. The x = 0 circle becomes the Tr-axis. 

IV = 1 line FIGURE 9-30 
Smith chart with rectangular 
coordinates. 
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3. The x-circle becomes progressively smaller as |x| increases from 0 toward oo, 
ending at the (rr = 1, r\ = 0) point for open-circuit. 

4. All x-circles pass through the (rr = 1, rf = 0) point. 

A Smith chart is a chart of r- and x-circles in the Tr - r£ plane for |r| < 1. It 
can be proved that the r- and x-circles are everywhere orthogonal to one another. 
The intersection of an r-circle and an x-circle defines a point that represents a 
normalized load impedance zL = r + jx. The actual load impedance is ZL = R0(r + jx). 
Since a Simith chart plots the normalized impedance, it can be used for calculations 
concerning a lossless transmission line with an arbitrary characteristic impedance 
(resistance). 

As an illustration, point P in Fig. 9-30 is the intersection of the r = 1.7 circle 
and the x = 0.6 circle. Hence it represents zL = 1.7 +;'0.6. The point Psc at (rr = - 1 , 
r£ = 0) corresponds to r = 0 and x = 0 and therefore represents a short-circuit. The 
point Poc at (rr = 1, Tt = 0) corresponds to an infinite impedance and represents an 
open-circuit. 

The Smith chart in Fig. 9-30 is marked with Tr and r{ rectangular coordinates. 
The same chart can be marked with polar coordinates, such that every point in the 
T-plane is specified by a magnitude |r| and a phase angle 0r. This is illustrated in 
Fig. 9-31, where several |r|-circles are shown in dashed lines and some #r-angles are 
marked around the |r| = 1 circle. The |r|-circles are normally not shown on com
mercially available Smith charts; but once the point representing a certain zL = r + jx 
is located, it is a simple matter to draw a circle centered at the origin through the 

2io°\ in = - ' v ' 
|r| = \ /xJ-o.5 

/ 
240° 

270° 
FIGURE 9-31 
Smith chart with polar coordinates. 
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point. The fractional distance from the center to the point (compared with the unity 
radius to the edge of the chart) is equal to the magnitude | r | of the load reflection 
coefficient; and the angle that the line to the point makes with the real axis is 9r. 
This graphical determination circumvents the need for computing T by Eq. (9-183). 

Each |r|-circle intersects the real axis at two points. In Fig. 9-31 we designate 
the point on the positive-real axis {OPoc) as PM and the point on the negative-real 
axis (OPsc) as Pm. Since x = 0 along the real axis, PM and Pm both represent situations 
with a purely resistive load, ZL = RL. Obviously, RL > R0 at PM , where r > 1; and 
RL < R0 at Pm, where r < 1. In Eq. (9-145) we found that S = RJR0 = r for RL > R0. 
This relation enables us to say immediately, without using Eq. (9-138), that the value 
of the r-circle passing through the point PM is numerically equal to the standing-wave 
ratio. Similarly, we conclude from Eq. (9-146) that the value of the r-circle passing 
through the point Pm on the negative-real axis is numerically equal to i/S. For the 
zh = 1.7 +J0.6 point, marked P in Fig. 9-31, we find |r | = J and 9r = 28°. At PM, 
r = S = 2.0. These results can be verified analytically. 

In summary, we note the following: 

1. All |r|-circles are centered at the origin, and their radii vary uniformly from 0 
to 1. 

2. The angle, measured from the positive real axis, of the line drawn from the origin 
through the point representing zL equals 0 r . 

3. The value of the r-circle passing through the intersection of the |r|-circle and the 
positive-real axis equals the standing-wave ratio S. 

So far we have based the construction of the Smith chart on the definition of the 
voltage reflection coefficient of the load impedance, as given in Eq. (9-134). The input 
impedance looking toward the load at a distance z' from the load is the ratio of V(z') 
and I{z'). From Eqs. (9-133a) and (9—133b) we have, by writing;'/? for y for a lossless 
line, 

A<z)- Hz')--z* 
The normalized input impedance is 

where 

We note that Eq. (9-191) relating zt and Te~j2pz' = \T\eJ4> is of exactly the same form 
as Eq. (9-184) relating zL and T = \T\ejer. In fact, the latter is a special case of the 
former for z' = 0 (<£ = 0r). The magnitude, |r | , of the reflection coefficient and there
fore the standing-wave ratio S, are not changed by the additional line length z'. Thus, 

'I + Ye~j2l}z" 
1 _ Te-j2l}z' 

(9-190) 

1 + Te-j2liz' 
1 _ Ye-j2Pz' 
i + |ry* 
i - | r | e » ' 

= 9r - 2pz'. 

(9-191) 

(9-192) 
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just as we can use the Smith chart to find |r| and 0r for a given zL at the load, we 
can keep |r| constant and subtract (rotate in the clockwise direction) from 6r an angle 
equal to 2j8z' = 4nz'/L This will locate the point for \r\ej<t>, which determines zit the 
normalized input impedance looking into a lossless line of characteristic impedance 
R0, length z', and a normalized load impedance zL. Two additional scales in Az'/A 
are usually provided along the perimeter of the |r| = 1 circle for easy reading of the 

FIGURE 9-32 
The Smith chart. 
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phase change 2/?(Az') due to a change in line length Az': The outer scale is marked 
"wavelengths toward generator" in the clockwise direction (increasing z'); and the 
inner scale is marked "wavelengths toward load" in the counterclockwise direction 
(decreasing z'). Figure 9-32 is a typical Smith chart, which is commercially avail
able^ It has a complicated appearance, but it actually consists merely of constant-r 
and constant-x circles. We note that a change of half a wavelength in line length 
(Az' = X/2) corresponds to a 2/?(Az') = 2n change in </>. A complete revolution around 
a |r|-circle returns to the same point and results in no change in impedance, as was 
asserted in Eq. (9-115). 

We shall illustrate the use of the Smith chart for solving some typical transmis
sion-line problems by several examples. 

EXAMPLE 9-13 Use the Smith chart to find the input impedance of a section of a 
50(O) lossless transmission line that is 0.1 wavelength long and is terminated in a 
short-circuit. 

Solution Given 

#o = 50 (O), 
z' = 0.11 

1. Enter the Smith chart at the intersection of r = 0 and x = 0 (point Psc on the 
extreme left of chart; see Fig. 9-33). 

2. Move along the perimeter of the chart (|r| = 1) by 0.1 "wavelengths toward 
generator" in a clockwise direction to Pv 

3. At P l s read r = 0 and x ^ 0.725, or zt = j0.725. Thus, Zt = R0Zi = 50(j0,725) = 
j'36.3 (Q). (The input impedance is purely inductive.) 

This result can be checked readily by using Eq. (9-112): 

Zt =jR0 tan #f =j50 tan ( y jO.U 

= j50tan36°=j36.3 (O). « 

EXAMPLE 9-14 A lossless transmission line of length 0.4342 and characteristic im
pedance 100 (Q) is terminated in an impedance 260 +7I8O (O). Find (a) the voltage 
reflection coefficient, (b) the standing-wave ratio, (c) the input impedance, and (d) the 
location of a voltage maximum on the line. 

+ All of the Smith charts used in this book are reprinted with permission of Emeloid Industries, Inc., New 
Jersey. 
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FIGURE 9-33 
Smith-chart calculations for Examples 9-13 and 9-14. 

Solution Given 
z' = 0.434A, 

R0 = 100 (Q), 
ZL = 260+;180 (Q). 

a) We find the voltage reflection coefficient in several steps: 
1. Enter the Smith chart at zL = ZJR0 = 2.6 +;1.8 (point P2 in Fig. -33). 
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2. With the center at the origin, draw a circle of radius OP2 = \T\ = 0.60. (The 
radius of the chart OPsc equals unity.) 

3. Draw the straight line OP2 and extend it to P'2 on the periphery. Read 0.220 
on "wavelengths toward generator" scale. The phase angle dr of the reflection 
coefficient is (0 .250-0 .220) x 4n = 0.12TT (rad) or 21°. (We multiply the 
change in wavelengths by 4n because angles on the Smith chart are measured 
in 2/?z' or Anz'/X. A half-wavelength change in line length corresponds to a 
complete revolution on the Smith chart.) The answer to part (a) is then 

T = |r|e*>r = 0.60/21°. 

b) The |T| = 0.60 circle intersects with the positive-real axis OPoc at r = S = 4. Thus 
the voltage standing-wave ratio is 4. 

c) To find the input impedance, we proceed as follows: 

1. Move P'2 at 0.220 by a total of 0.434 "wavelengths toward generator," first to 
0.500 (same as 0.000) and then further to 0.154[(0.500 - 0.220) + 0.154 = 0.434] 
to P'3. 

2. Join O and P 3 by a straight line which intersects the |T| = 0.60 circle at P 3 . 
3. Read r = 0.69 and x = 1.2 at P 3 . Hence, 

Z( = RoZi = 100(0.69 + ;1.2) = 69 + ; 120 (Q). 

d) In going from P 2 to P 3 , the |T| = 0.60 circle intersects the positive-real axis OPoc 

at P M where the voltage is a maximum. Thus a voltage maximum appears at 
(0.250 - 0.220)A or 0.030A from the load. BBH 

EXAMPLE 9-15 Solve Example 9 - 9 by using the Smith chart. Given 

Ko = 50 (Q), 
S = 3.0, 
2 = 2 x 0 . 2 = 0.4 (m), 

First voltage minimum at z'm = 0.05 (m), 

find (a) T, (b) Z L , (c) C and Rm (Fig. 9-12). 

Solution 

a) On the positive-real axis OPoc, locate the point PM at which r = S = 3.0 (see Fig. 
9-34). Then OPM = |T| = 0.5 (OPoc = 1.0). We cannot find 6r until we have lo
cated the point that represents the normalized load impedance. 

b) We use the following procedure to find the load impedance on the Smith chart: 

1. Draw a circle centered at the origin with radius UPM, which intersects with 
the negative-real axis OPsc at P m where there will be a voltage minimum. 

2. Since z'JX = 0.05/0.4 = 0.125, move from P s c 0.125 "wavelengths to ward load" 
in the counterclockwise direction to P'L. 

3. Join 0 and P'h by a straight line, intersecting the |T| = 0.5 circle at P L . This 
is the point representing the normalized load impedance. 
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FIGURE 9-34 
Smith-chart calculations for Example 9-15. 

4. Read the angle LPocOP'h = 90° = n/2 (rad). There is no need to use a pro
tractor because LPocOP'h = 4TT(0.250 - 0.125) = n/2. Hence 6r = -n/2 (rad), 
or T = 0.5/-90° = - ;0 .5 . 

5. Read at PL, zL = 0.60 - ;0 .80, which gives 
ZL = 50(0.60 - ;0.80) = 30 - ;40 (Q). 
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c) The equivalent line length and the terminating resistance can be found easily: 

4 = ^ - z'm = 0.2 - 0.05 = 0.15 (m), 

All the above results are the same as those obtained in Example 9-9, but no 
calculations with complex numbers are needed in using the Smith chart. m 

9-6.1 SMITH-CHART CALCULATIONS FOR LOSSY LINES 

In discussing the use of the Smith chart for transmission-line calculations we have 
assumed the line to be lossless. This is normally a satisfactory approximation, since 
we generally deal with relatively short sections of low-loss lines. The lossless assump
tion enables us to say, following Eq. (9-191), that the magnitude of the Te~j2,}z' term 
does not change with line length z' and that we can find z{ from zL, and vice versa, 
by moving along the |r|-circle by an angle equal to 2/?z'. 

For a lossy line of a sufficient length / , such that 2a/ is not negligible in com
parison to unity, Eq. (9-191) must be amended to read 

_ l + Te-2az'e-j2lSz' 
1 £ e (9-193) 

1 + \T\e~2!XZ'ej<t, 

= 1 + e d> = 6T- 2Bz'. 
1 - \T\e'2az eJf * T P 

Hence, to find zt from zL, we cannot simply move along the |r|-circle; auxiliary cal
culations are necessary to account for the e~2az' factor. The following example illus
trates what has to be done. 

EXAMPLE 9-16 The input impedance of a short-circuited lossy transmission line of 
length 2 (m) and characteristic impedance 75 (Q) (approximately real) is 45 + j225 (Q). 
(a) Find a and /? of the line, (b) Determine the input impedance if the short-circuit is 
replaced by a load impedance ZL = 67.5 — j"45 (Q). 

Solution 

a) The short-circuit load is represented by the point Psc on the extreme left of the 
Smith impedance chart. 

1. Enter zn = (45 +;225)/75 = 0.60 +;3.0 in the chart as P1 (Fig. 9-35). 
2. Draw a straight line from the origin 0 through P1 to P\. 
3. Measure aPJOP\ = 0.89 = e~2ae. It follows that 

a = 27ln(oi9) = ̂ lnL124 = a{)29 (NpM 
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FIGURE 9-35 
Smith-chart calculations for a lossy transmission line (Example 9-16). 

4. Record that the arc PSCP\ is 0.20 "wavelengths toward generator." We have 
//A = 0.20 and 2/?/ = 4nS/A = 0.8TL Thus, 

, = <£[ = 5*1 = 02* (rad/m, 

b) To find the input impedance for ZL = 67.5 — y'45 (fi): 
1. Enter zL = ZJZ0 = (67.5 -y'45)/75 = 0.9 -y'0.6 on the Smith chart as P2. 
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2. Draw a straight line from 0 through P 2 to P 2 where the "wavelengths toward 
generator" reading is 0.364. 

3. Draw a |r|-circle centered at 0 with radius OP2. 
4. Move P'2 along the perimeter by 0.20 "wavelengths toward generator" to 

P'3 at 0.364 + 0.20 = 0.564 or 0.064. 
5. Join P'3 and O by a straight line, intersecting the |r|-circle at P 3 . 
6. Mark on line OP3 a point Pt such that OPJOP3 = e'la{ = 0.89. 
7. At Pt, read zt = 0.64 +j021. Hence, 

Z; = 75(0.64 + yO.27) = 48.0 + /20.3 (Q). — 

9—7 Transmission-Line Impedance Matching 

Transmission lines are used for the transmission of power and information. For radio-
frequency power transmission it is highly desirable that as much power as possible is 
transmitted from the generator to the load and as little power as possible is lost on 
the line itself. This will require that the load be matched to the characteristic imped
ance of the line so that the standing-wave ratio on the line is as close to unity as 
possible. For information transmission it is essential that the lines be matched because 
reflections from mismatched loads and junctions will result in echoes and will distort 
the information-carrying signal. In this section we discuss several methods for im
pedance-matching on lossless transmission lines. We note parenthetically that the 
methods we develop will be of little consequence to power transmission by 60 (Hz) 
lines inasmuch as these lines are generally very short in comparison to the 5 (Mm) 
wavelength and the line losses are appreciable. Sixty-hertz power-line circuits are 
usually analyzed in terms of equivalent lumped electrical networks. 

9-7.1 IMPEDANCE MATCHING BY QUARTER-WAVE TRANSFORMER 

A simple method for matching a resistive load RL to a lossless transmission line of 
a characteristic impedance R0 is to insert a quarter-wave transformer with a charac
teristic impedance R'0 such that 

R'0 = JR0RL- (9-194) 

Since the length of the quarter-wave line depends on wavelength, this matching 
method is frequency-sensitive, as are all the other methods to be discussed. 

EXAMPLE 9-17 A signal generator is to feed equal power through a lossless air 
transmission line with a characteristic impedance 50 (Q) to two separate resistive 
loads, 64 (Q) and 25 (Q). Quarter-wave transformers are used to match the loads to 
the 50 (Q) line, as shown in Fig. 9-36. (a) Determine the required characteristic im
pedances of the quarter-wave lines, (b) Find the standing-wave ratios on the matching 
line sections. 
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R0 = 50 (0) 

*L1 = 64(B) 

RL2 = 25 (Q) 
FIGURE 9-36 
Impedance matching by quarter-
wave lines (Example 9-17). 

Solution 

a) To feed equal power to the two loads, the input resistance at the junction with 
the main line looking toward each load must be equal to 2R0. Rn = Ri2 = 
2R0 = 100 (Q): 

R'01 = jRnRL1 = VlOO x 64 = 80 (Q), 
R'02 = y/Rt'2RL2 = Vl00 x 25 = 50 (Q). 

b) Under matched conditions there are no standing waves on the main transmis
sion line (S = 1). The standing-wave ratios on the two matching line sections 
are as follows. 
Matching section No. 1: 

Matching section No. 2: 

r, = 

So = 

RL1 - R'01 = 64 - 80 
RL1 + R'01 64 + 80 
i + | r 1 [ _ l + o.ii 
l - r\ ~ i -o .n 

= -o.n, 

= 1.25. 

R,, - R'm 25 - 50 4 ,2 ■̂02 

Rj, + K'n, 25 + 50 
= -0.33, 

i - l r , 
1 + 0.33 
1 - 0.33 

= 1.99. 

Ordinarily, the main transmission line and the matching line sections are essen
tially lossless. In that case, both R0 and R'0 are purely real, and Eq. (9-194) will have 
no solution if RL is replaced by a complex ZL. Hence quarter-wave transformers are 
not useful for matching a complex load impedance to a low-loss line. 

In the following subsection we will discuss a method for matching an arbitrary 
load impedance to a line by using a single open- or short-circuited line section (a 
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single stub) in parallel with the main line and at an appropriate distance from the 
load. Since it is more convenient to use admittances instead of impedances for parallel 
connections, we first examine how the Smith chart can be used to make admittance 
calculations. 

Let YL = 1/ZL denote the load admittance. The normalized load impedance is 

where 
*L = YJY0 = YJG0 

= R0Yh = g + jb (Dimensionless) 

is the normalized load admittance having normalized conductance g and normalized 
susceptance b as its real and imaginary parts, respectively. Equation (9-195) suggests 
that a quarter-wave line with a unity normalized characteristic impedance will trans
form zL to yh, and vice versa. On the Smith chart we need only move the point repre
senting zL along the |r|-circle by a quarter-wavelength to locate the point representing 
yh. Since a A/4-change in line length (Az'/X = i) corresponds to a change of n radians 
(2/? Az' = 7i) on the Smith chart, the points representing zL and >>L are then diamet
rically opposite to each other on the \T\-circle. This observation enables us to find 
yh from zL, and zL from yL, on the Smith chart in a very simple manner. 

EXAMPLE 9-18 Given ZL = 95 +j20 (Q), find YL. 

Solution This problem has nothing to do with any transmission line. In order to 
use the Smith chart we can choose an arbitrary normalizing constant; for instance, 
R0 = 50 (Q). Thus, 

zL = 1^(95 +720) =1.9+70.4. 

Enter zL as point P1 on the Smith chart in Fig. 9-37. The point P 2 on the other side 
of the line joining Px and 0 represents yh: UP2 = OP^ 

IrL = ^ 3 ' L = ^ ( 0 . 5 - j 0 . 1 ) = 1 0 - j 2 (mS). ^ 

EXAMPLE 9-19 Find the input admittance of an open-circuited line of character
istic impedance 300 (Q) and length 0.041 

Solution 

1. For an open-circuited line we start from the point Poc on the extreme right of 
the impedance Smith chart, at 0.25 in Fig. 9-38. 

2. Move along the perimeter of the chart by 0.04 "wavelengths toward generator" 
to P 3 (at 0.29). 

3. Draw a straight line from P 3 through O, intersecting at P'3 on the opposite side. 

(9-195) 

(9-196) 

file:///T/-circle
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FIGURE 9-37 
Finding admittance from impedance (Example 9-18). 

4. Read at P'3 

Thus, 
tt = 0+./0.26. 

^ = 3QQ(0+70.26) =7U87 (mS). 

In the preceding two examples we have made admittance calculations by using 
the Smith chart as an impedance chart. The Smith chart can also be used as an 
admittance chart, in which case the r- and x-circles would be g- and fr-circles. The 
points representing an open- and a short-circuit termination would be the points on 
the extreme left and the extreme right, respectively, on an admittance chart. For 
Example 9-19, we could then start from extreme left point on the chart, at 0.00 in 
Fig. 9-38, and move 0.04 "wavelengths toward generator" to P 3 directly. 

Wavelengths 
toward generator. r = 0 

(0.04)Pi; 

(0.00)i 

x = 0.26 
1(0.25) 

»P3(0.29) 
FIGURE 9-38 
Finding input admittance of open-circuited line 
(Example 9-19). 
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9-7.2 SINGLE-STUB MATCHING 

We now tackle the problem of matching a load impedance ZL to a lossless line that 
has a characteristic impedance R0 by placing a single short-circuited stub in parallel 
with the line, as shown in Fig. 9-39. This is the single-stub method for impedance 
matching. We need to determine the length of the stub, / , and the distance from the 
load, d, such that the impedance of the parallel combination to the right of points 
B-B' equals R0. Short-circuited stubs are usually used in preference to open-cir
cuited stubs because an infinite terminating impedance is more difficult to realize 
than a zero terminating impedance for reasons of radiation from an open end and 
coupling effects with neighboring objects. Moreover, a short-circuited stub of an ad
justable length and a constant characteristic resistance is much easier to construct 
than an open-circuited one. Of course, the difference in the required length for an 
open-circuited stub and that for a short-circuited stub is an odd multiple of a quarter-
wavelength. 

The parallel combination of a line terminated in ZL and a stub at points B-B' 
in Fig. 9-39 suggest that it is advantageous to analyze the matching requirements 
in terms of admittances. The basic requirement is 

Yt = YB + Ys 
(9-197) 

In terms of normalized admittances, Eq. (9-197) becomes 

l = yB + y„ (9-198) 

where yB = R0YB is for the load section and ys = R0YS is for the short-circuited stub. 
However, since the input admittance of a short-circuited stub is purely susceptive, ys 
is purely imaginary. As a consequence, Eq. (9-198) can be satisfied only if 

yB=l+jbB (9-199) 

yr 

RQ 

FIGURE 9-39 
Impedance matching by single-stub method. 
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and 
ys = -JbB, (9-200) 

where bB can be either positive or negative. Our objectives, then, are to find the 
length d such that the admittance, yB, of the load section looking to the right of ter
minals B-B' has a unity real part and to find the length /B of the stub required to 
cancel the imaginary part. 

FIGURE 9-40 
Construction for single-stub matching on Smith admittance chart (Example 9-20). 
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Using the Smith chart as an admittance chart, we proceed as follows for single-
stub matching: 

1. Enter the point representing the normalized load admittance yh. 
2. Draw the |r|-circle for yh, which will intersect the g = 1 circle at two points. At 

these points, yBX = 1 + jbB1 and yB2 = 1 + jbB2. Both are possible solutions. 
3. Determine load-section lengths dt and d2 from the angles between the point rep

resenting yL and the points representing yB1 and yB2. 
4. Determine stub lengths /B1 and /B2 from the angles between the short-circuit 

point on the extreme right of the chart to the points representing — jbB1 and 
—jbB2, respectively. 

The following example will illustrate the necessary steps. 

EXAMPLE 9-20 A 50 (Q) transmission line is connected to a load impedance ZL = 
35 — ;'47.5 (O). Find the position and length of a short-circuited stub required to 
match the line. 

Solution Given 
*o = 50(Q) 
ZL = 35-;47.5(Q) 
zL = ZL/i?o = 0.70-;0.95. 

1. Enter zL on the Smith chart as Pt (Fig. 9-40). 
2. Draw a |r|-circle centered at 0 with radius OPv 

3. Draw a straight line from Pt through 0 to point P'2 on the perimeter, intersecting 
the |r|-circle at P 2 , which represents j / L . Note 0.109 at P'2 on the "wavelengths 
toward generator" scale. 

4. Note the two points of intersection of the |r|-circle with the g = 1 circle. 

A tP 3 : yBl = 1 + jl.2 = 1 + jbB1; 
AtP 4 : yB2 = l-jl.2 = l+jbB2. 

5. Solutions for the position of the stub: 

For P 3 (from P'2 to P'3): dx = (0.168 - 0.109)1 = 0.0591; 
For P 4 (from P'2 to P'4): d2 = (0.332 - 0.109)1 = 0.2231. 

6. Solutions for the length of short-circuited stub to provide j ; s = — jbB. 
For P 3 (from Psc on the extreme right of chart to P3 , which represents -jbBl = 

/ B 1 = (0.361-0.250)1 = 0.1111; 

For P 4 (from Psc to P 4 , which represents -jbB2 = jl.2): 

tB2 = (0.139 + 0.250)1 = 0.3891. 
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In general, the solution with the shorter lengths is preferred unless there are other 
practical constraints. The exact length, tB, of the short-circuited stub may require 
fine adjustments in the actual matching procedure; hence the shorted matching sec
tions are sometimes called stub tuners. mm 

The use of Smith chart in solving impedance-matching problems avoids the ma
nipulation of complex numbers and the computation of tangent and arc-tangent func
tions; but graphical constructions are needed, and graphical methods have limited 
accuracy. Actually, the analytical solutions of impedance-matching problems are rela
tively simple, and easy access to a computer may diminish the reliance on the Smith 
chart and, at the same time, yield more accurate results. 

For the single-stub matching problem illustrated in Fig. 9-39 we have, from 
Eq. (9-109). 

(rL + jxL) + jt 
za = 

where 
1 +j(rL+JxL)t 

t = tan fid. 

The normalized input admittance to the right of points B-B' is 

yB = — = 9 B + JbB, 
ZR 

where 

and 

9B = 

bB = 

rL(l - xLt) + rLt{xL + t) 
rl + (xL + t)2 

rjt-jl- xLt)(xL + t) 

(9-201) 

(9-202) 

(9-203) 

(9-204) 

(9-205) 

A perfect match requires the simultaneous satisfaction of Eqs. (9-199) and (9-200). 
Equating gB in Eq. (9-204) to unity, we have 

(rL - \)t2 - 2xLt + (rL - r l - x2
L) = 0. 

Solving Eq. (9-206), we obtain 

1 

t =< 
r L - l 

K + ^LlfT-Tj^+x^]}, rL#l, 

-f. ,-, 

(9-206) 

(9-207a) 

(9-207b) 

The required length d can be found from Eqs. (9-202), (9-207a), and (9-207b): 
r i 
^ t a n 
2n 

- l t, t>0, 

I = < 
_1_ 
IK 

(n + tan 1 t), t < 0. 

(9-208a) 

(9-208b) 
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Similarly, from Eqs. (9-200) and (9-205), we obtain 

s 
l=i 

' 1 
~2K 

1 
2K 

- - ( s > 
K + t a n - 1 

b 

\M. 

B > 0 , 

bB < 0. 

(9-209a) 

(9-209b) 

For a given load impedance, both d/X and *?/2 can be determined easily on a 
scientific calculator. It is also a simple matter to write a general computer program 
for the single-stub matching problem. More accurate answers to the problem in Ex
ample 9-20 (rL = 0.70 and xL = -0.95) are 

dt = 0.058944692, SB1 = 0.11117792/1, 
d2 = 0.223477302, £B2 = 0.388822081 

Of course, such accuracies are seldom needed in an actual problem; but these answers 
have been obtained easily without a Smith chart. 

9-7.3 DOUBLE-STUB MATCHING 

The method of impedance matching by means of a single stub described in the pre
ceding subsection can be used to match any arbitrary, nonzero, finite load impedance 
to the characteristic resistance of a line. However, the single-stub method requires 
that the stub be attached to the main line at a specific point, which varies as the 
load impedance or the operating frequency is changed. This requirement often pre
sents practical difficulties because the specified junction point may occur at an un
desirable location from a mechanical viewpoint. Furthermore, it is very difficult to 
build a variable-length coaxial line with a constant characteristic impedance. In such 
cases an alternative method for impedance-matching is to use two short-circuited 
stubs attached to the main line at fixed positions, as shown in Fig. 9-41. Here, the 
distance d0 is fixed and arbitrarily chosen (such as 2/16, 2/8, 32/16, 32/8, etc.), and 
the lengths of the two stub tuners are adjusted to match a given load impedance ZL 
to the main line. This scheme is the double-stub method for impedance matching. 

In the arrangement in Fig. 9-41 a stub of length £A is connected directly in 
parallel with the load impedance ZL at terminals A-A', and a second stub of length 
SB is attached at terminals B-B' at a fixed distance d0 away. For impedance matching 
with a main line that has a characteristic resistance R0, we demand the total input 
admittance at terminals B-B', looking toward the load, to equal the characteristic 
conductance of the line; that is, 

Yt = YB + YsB 

1 (9-210) 

In terms of normalized admittances, Eq. (9-210) becomes 

l=yB + ysB- ■ (9-211) 
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yr 

Ro 

FIGURE 9-41 
Impedance matching by double-stub method. 

Now, since the input admittance ysB of a short-circuited stub is purely imaginary, 
Eq. (9-211) can be satisfied only if 

and 
yB = i +JbB 

ysB = -jbB-

(9-212) 

(9-213) 

Note that these requirements are exactly the same as those for single-stub matching. 
On the Smith admittance chart the point representing yB must lie on the g = 1 

circle. This requirement must be translated by a distance dJX "wavelengths toward 
load"; that is, yA at terminals A-A' must lie on the g — 1 circle rotated by an angle 
AndJX in the counterclockwise direction. Again, since the input admittance ysA of 
the short-circuited stub is purely imaginary, the real part of yA must be solely con
tributed by the real part of the normalized load admittance, gL. The solution (or 
solutions) of the double-stub matching problem is then determined by the intersection 
(or intersections) of the 0L-circle with the rotated g = 1 circle. The procedure for 
solving a double-stub matching problem on the Smith admittance chart is as follows. 

1. Draw the g = 1 circle. This is where the point representing yB should be located. 
2. Draw this circle rotated in the counterclockwise direction by dJX "wavelengths 

toward load." This is where the point representing yA should be located. 
3. Enter the yL = gL+ jbL point. 
4. Draw the g = gL circle, intersecting the rotated g = 1 circle at one or two points 

where yA = gL+jbA. 
5. Mark the corresponding ^-points on the g = 1 circle: yB = 1 4- jbB. 
6. Determine stub length tA from the angle between the point representing yA and 

the point representing yL. 
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7. Determine stub length £B from the angle between the point representing — jbB 

and Psc on the extreme right. 

EXAMPLE 9-21 A 50 (ft) transmission line is connected to a load impedance ZL = 
60 + ;80 (O). A double-stub tuner spaced an eighth of a wavelength apart is used to 
match the load to the line, as shown in Fig. 9-41. Find the required lengths of the 
short-circuited stubs. 

Solution Given R0 = 50 (Q) and ZL = 60 +;80 (Q), it is easy to calculate 

J'L = - = — = 7 7 T ^ = 0-30 -./0.40. yL zL ZL 6 0 + ; 8 0 J 

(We could find yh on the Smith chart by locating the point diametrically opposite 
to zL = (60 +;'80)/50 = 1.20 + j'1.60, but this would clutter up the chart too much.) 
We follow the procedure outlined above, using a Smith admittance chart. 

1. Draw the g = 1 circle (Fig. 9-42). 
2. Rotate this g = 1 circle by £ "wavelengths toward load" in the counterclockwise 

direction. The angle of rotation is 47r/8 (rad) or 90°. 
3. Enter yL = 0.30 -jO.AO as PL. 
4. Mark the two points of intersection, PAl and PA2, of the gh = 0.30 circle with 

the rotated g = 1 circle. 
AtPAl, read yA1 = 0.30 + j0.29; 
At PA2, read yA2 = 0.30 + jl.75. 

5. Use a compass centered at the origin O to mark the points PB1 and PB2 on the 
g = 1 circle corresponding to the points PA1 and PA2, respectively. 

AtPB 1 ,read yB1 = 1 +;1.38; 
AtPB 2 , read yB2 = 1 -73.5. 

6. Determine the required stub lengths £Al and /^ 2 from 

(ysA)i =yAi~yL= ;'0.69, ^ x = (0.096 + 0.250)2 = 0.3462 (Point A,), 
(ysA)2 = yA2 - yL = A 1 5 , ^ 2 = (0.181 + 0.250)2 = 0.43U (Point A2). 

7. Determine the required stub lengths /B 1 and £B2 from 
y t = -j l-38, £Bl = (0.350 - 0.250)2 = 0.1002 (Point B,), 
(ysB)2 = ;'3.5, £B2 - (0.206 + 0.250)2 = 0.4562 (Point B2). « 

Examination of the construction in Fig. 9-42 reveals that if the point PL, repre
senting the normalized load admittance yL = gh + jbh, lies within the g = 2 circle (if 
gL > 2), then the g = gh circle does not intersect with the rotated g = 1 circle, and no 
solution exists for double-stub matching with d0 = 2/8. This region for no solution 
varies with the chosen distance d0 between the stubs (Problem P.9-52). In such cases, 
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FIGURE 9-42 
Construction for double-stub matching on Smith admittance chart. 

impedance matching by the double-stub method can be achieved by adding an ap
propriate line section between ZL and terminals A-A', as illustrated in Fig. 9-43 
(Problem P.9-51). 

An analytical solution of the double-stub impedance matching problem is, of 
course, also possible, albeit more involved than that of the single-stub problem devel-
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FIGURE 9-43 
Double-stub impedance matching with added load-line section. 

oped in the preceding subsection. The more ambitious reader may wish to obtain 
such an analytical solution and write a computer program for determining dJX, £A/X, 
and /B/X in terms of zL and d0/V 

Review Questions 

R.9-1 Discuss the similarities and dissimilarities of uniform plane waves in an unbounded. 
media and TEM waves along transmission lines. 
R.9-2 What are the three most common types of guiding structures that support TEM 
waves? 
R.9-3 Compare the advantages and disadvantages of coaxial cables and two-wire trans
mission lines. 
R.9-4 Write the transmission-line equations for a lossless parallel-plate line supporting 
TEM waves. 
R.9-5 What are striplinesl 
R.9-6 Describe how the characteristic impedance of a parallel-plate transmission line de
pends on plate width and dielectric thickness. 
R.9-7 Compare the velocity of TEM-wave propagation along a parallel-plate transmission 
line with that in an unbounded medium. 
R.9-8 Define surface impedance. How is surface impedance related to the power dissipated 
in a plate conductor? 

T D. K. Cheng and C. H. Liang, "Computer solution of double-stub impedance-matching problems," IEEE 
Transactions on Education, vol. E-25, pp. 120-123, November 1982. 
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R.9-9 State the difference between the surface resistance and the resistance per unit length 
of a parallel-plate transmission line. 
R.9-10 What is the essential difference between a transmission line and an ordinary electric 
network? 
R.9-11 Explain why waves along a lossy transmission line cannot be purely TEM. 
R.9-12 What is a triplate line! How does the characteristic impedance of a triplate line 
compare with that of a corresponding stripline? Explain. 
R.9-13 Write the general transmission-line equations for arbitrary time dependence and for 
time-harmonic time dependence. 
R.9-14 Define propagation constant and characteristic impedance of a transmission line. 
Write their general expressions in terms of R, L, G, and C for sinusoidal excitation. 
R.9-15 What is the phase relationship between the voltage and current waves on an infinitely 
long transmission line? 
R.9-16 What is meant by a "distortionless line"? What relation must the distributed 
parameters of a line satisfy in order for the line to be distortionless? 
R.9-17 Is a distortionless line lossless? Is a lossy transmission line dispersive? Explain. 
R.9-18 Outline a procedure for determining the distributed parameters of a transmission 
line. 
R.9-19 Show how the attenuation constant of a transmission line is determined from the 
propagated power and the power lost in the line per unit length. 
R.9-20 What does "matched transmission line" mean? 
R.9-21 On what factors does the input impedance of a transmission line depend? 
R.9-22 What is the input impedance of an open-circuited lossless transmission line if the 
length of the line is (a) A/4, (b) A/2, and (c) 3A/4? 
R.9-23 What is the input impedance of a short-circuited lossless transmission line if the 
length of the line is (a) A/4, (b) A/2, and (c) 3A/4? 
R.9-24 Is the input reactance of a transmission line A/8 long inductive or capacitive if it is 
(a) open-circuited, and (b) short-circuited? 
R.9-25 On a line of length t, what is the relation between the line's characteristic impe
dance and propagation constant and its open- and short-circuit input impedances? 
R.9-26 What is a "quarter-wave transformer"? Why is it not useful for matching a complex 
load impedance to a low-loss line? 
R.9-27 What is the input impedance of a lossless transmission line of length £ that is ter
minated in a load impedance ZL if (a) £ = A/2, and (b) t — A? 
R.9-28 Discuss how a section of an open-circuited or short-circuited low-loss transmission 
line can be used to provide a parallel-resonant circuit. 
R.9-29 Define the bandwidth and the quality factor, Q, of a parallel resonant circuit. 
R.9-30 Define voltage reflection coefficient. Is it the same as "current reflection coefficient"? 
Explain. 
R.9-31 Define standing-wave ratio. How is it related to voltage and current reflection 
coefficients? 
R.9-32 What are T and S for a line with an open-circuit termination? A short-circuit 
termination? 
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R.9-33 Where do the minima of the voltage standing wave on a lossless line with a resistive 
termination occur (a) if RL > R0 and (b) if RL < R01 
R.9-34 Explain how the value of a terminating resistance can be determined by measuring 
the standing-wave ratio on a lossless transmission line. 
R.9-35 Explain how the value of an arbitrary terminating impedance on a lossless trans
mission line can be determined by standing-wave measurements on the line. 
R.9-36 A voltage generator having an internal impedance Zg is connected at t = 0 to the 
input terminals of a lossless transmission line of length t. The line has a characteristic im
pedance Z0 and is terminated with a load impedance ZL. At what time will a steady state 
on the line be reached if (a) Zg = Z0 and ZL = ZQ, (b) ZL = Z0 but Zg^ Z0, (c) Zg = Z0 
but Z^^Z0, and (d) Zg # Z0 and ZL # Z0? 
R.9-37 A battery of voltage V0 is applied through a series resistance Rg to the input 
terminals of a lossless transmission line having a characteristic resistance R0 and a load 
resistance RL at the far end. What is the amplitude of the first transient voltage wave 
traveling from the battery to the load? What is the amplitude of the first reflected voltage 
wave from the load to the battery? 
R.9-38 In Question R.9-37, what are the amplitudes of the first current wave traveling 
from the battery to the load and the first reflected current wave from the load to the battery? 
R.9-39 What are reflection diagrams of transmission lines? For what purposes are they 
useful? 
R.9-40 How do the voltage and current reflection diagrams of a terminated line differ? 
R.9-41 A d-c voltage is applied to a lossless transmission line. Under what conditions will 
the transient voltage and current distributions along the line have different shapes? Under 
what conditions will they have the same shape? 
R.9-42 Why is the concept of reflection coefficients not useful in analyzing the transient 
behavior of a transmission line terminated in a reactive load? 
R.9-43 What is a Smith chart and why is it useful in making transmission-line calculations? 
R.9-44 Where is the point representing a matched load on a Smith chart? 
R.9-45 For a given load impedance ZL on a lossless line of characteristic impedance Z0, 
how do we use a Smith chart to determine (a) the reflection coefficient, and (b) the standing-
wave ratio? 
R.9-46 Why does a change of half a wavelength in line length correspond to a complete 
revolution on a Smith chart? 
R.9-47 Given an impedance Z = R +jX, what procedure do we follow to find the admit
tance Y = 1/Z on a Smith chart? 
R.9-48 Given an admittance Y = G + jB, how do we use a Smith chart to find the impe
dance Z = 1/7? 
R.9-49 Where is the point representing a short-circuit on a Smith admittance chart? 
R.9-50 Is the standing-wave ratio constant on a transmission line even when the line is 
lossy? Explain. 
R.9-51 Can a Smith chart be used for impedance calculations on a lossy transmission line? 
Explain. 
R.9-52 Why is it more convenient to use a Smith chart as an admittance chart for solving 
impedance-matching problems than to use it as an impedance chart? 
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R.9-53 Why is it desirable to achieve an impedance match in a transmission line? 
R.9-54 Explain the single-stub method for impedance matching on a transmission line. 
R.9-55 Explain the double-stub method for impedance matching on a transmission line. 
R.9-56 Compare the relative advantages and disadvantages of the single-stub and the 
double-stub methods of impedance matching. 
R.9-57 Why are the stubs used in impedance matching usually of the short-circuited type 
instead of the open-circuited type? 

Problems 

P.9-1 Neglecting fringe fields, prove analytically that a y-polarized TEM wave that prop
agates along a parallel-plate transmission line in + z-direction has the following properties: 
8Ey/dx = 0 and BHJdy = 0. 
P.9-2 The electric and magnetic fields of a general TEM wave traveling in the + z-direction 
along a transmission line may have both x- and y-components, and both components may 
be functions of the transverse dimensions. 

a) Find the relations among Ex(x, y), Ey(x, y), Hx(x, y), and Hr{x, y). 
b) Verify that all the four field components in part (a) satisfy the two-dimensional 

Laplace's equation for static fields. 
P.9-3 Consider lossless stripline designs for a given characteristic impedance. 

a) How should the dielectric thickness, d, be changed for a given plate width, w, if the 
dielectric constant, er, is doubled? 

b) How should w be changed for a given d if er is doubled? 
c) How should w be changed for a given er if d is doubled? 
d) Will the velocity of propagation remain the same as that for the original line after 

the changes specified in parts (a), (b), and (c)? Explain. 
P.9-4 Consider a transmission line made of two parallel brass strips—ac = 1.6 x 107 

(S/m)—of width 20 (mm) and separated by a lossy dielectric slab—^ = ^0 , er = 3, 
a = 10 " 3 (S/m)—of thickness 2.5 (mm). The operating frequency is 500 MHz. 

a) Calculate the R, L, G, and C per unit length. 
b) Compare the magnitudes of the axial and transverse components of the electric 

field. 
c) Find y and Z0 . 

P.9-5 Verify Eq. (9-39). 
P.9-6 Show that the attenuation and phase constants for a transmission line with perfect 
conductors separated by a lossy dielectric that has a complex permittivity e = e' - je" are, 
respectively, 

a = co l^-\ /1 + ( ̂  ) - 1 \'2 (Np/m), (9-214) 

(rad/m). (9-215) 

P.9-7 In the derivation of the approximate formulas^ y and Z0 for low-loss lines in 
Subsection 9-3.1, all terms containing the second and higher powers of (R/coL) and (G/coC) 
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were neglected in comparison with unity. At lower frequencies, better approximations than 
those given in Eqs. (9-54) and (9-58) may be required. Find new formulas for y and Z 0 for 
low-loss lines that retain terms containing (R/coL)2 and (G/aC)2. Obtain the corresponding 
expression for phase velocity. 
P.9-8 Obtain approximate expressions for y and Z 0 for a lossy transmission line at very 
low frequencies such that coL « R and coC « G. 
P.9-9 The following characteristics have been measured on a lossy transmission line at 
100 MHz: 

Zo = 5 0 + ; 0 (Q), 
a = 0.01 (dB/m), 
J3 = 0.8TT (rad/m). 

Determine R, L, G, and C for the line. 
P.9-10 It is desired to construct uniform transmission lines using polyethylene (er = 2.25) 
as the dielectric medium. Assuming negligible losses, (a) find the distance of separation for 
a 300 (fi) two-wire line, where the radius of the conducting wires is 0.6 (mm); and (b) find the 
inner radius of the outer conductor for a 75 (Q) coaxial line, where the radius of the center 
conductor is 0.6 (mm). 
P.9-11 Prove that a maximum power is transferred from a voltage source with an internal 
impedance Zg to a load impedance ZL over a lossless transmission line when Zt = Z*, 
where Z ; is the impedance looking into the loaded line. What is the maximum power-
transfer efficiency? 
P.9-12 Express V(z) and I(z) in terms of the voltage Vt and current It at the input end and 
y and Z 0 of a transmission line (a) in exponential form, and (b) in hyperbolic form. 
P.9-13 Consider a section of a uniform transmission line of length (, characteristic im
pedance Z0 , and propagation constant y between terminal pairs 1-1' and 2-2' shown in 
Fig. 9-44(a). Let (Vu IJ and (V2,12) be the phasor voltages and phasor currents at termi
nals 1-1' and 2-2', respectively. 

a) Use Eqs. (9-100a) and (9-100b) to write the equations relating {Vu / J and (V2,12) 
in the form 

GHc apj 
Determine A, B, C, and D, and note the following relations: 

A = D 

(9-216) 

(9-217) 

1 ' i 

vi 

i'L ,?-«-

(y, z0) 

h 2 1 h , , 

(a) A line section of length L 

J2' 
■ o - « -

y2 2 

T 
r 2' 

(b) An equivalent two-port symmetrical T-network. 

FIGURE 9-44 
Equivalence of a line section and a symmetrical two-port network. 
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and 
AD-BC = 1. (9-218) 

b) Because of Eqs. (9-216), (9-217), and (9-218), the line section in Fig. 9-44(a) can be 
replaced by an equivalent two-port symmetrical T-network shown in Fig. 9-44(b). Prove 
that 

Zl=^(A-l) = 2Z0tmh1j (9-219) 

and 

Y2 = C = — sinh yf. (9-220) 

P.9-14 A d-c generator of voltage Vg and internal resistance Rg is connected to a lossy 
transmission line characterized by a resistance per unit length R and a conductance per 
unit length G. 

a) Write the governing voltage and current transmission-line equations. 
b) Find the general solutions for V(z) and I(z). 
c) Specialize the solutions in part (b) to those for an infinite line. 
d) Specialize the solutions in part (b) to those for a finite line of length £ that is 

terminated in a load resistance RL. 
P.9-15 A generator with an open-circuit voltage vg{t) = 10 sin 80007rt (V) and internal im
pedance Zg — 40 + ;30 (Q) is connected to a 50 (Q) distortionless line. The line has a resis
tance of 0.5 (Q/m), and its lossy dielectric medium has a loss tangent of 0.18%. The line is 
50 (m) long and is terminated in a matched load. Find (a) the instantaneous expressions for 
the voltage and current at an arbitrary location on the line, (b) the instantaneous expres
sions for the voltage and current at the load, and (c) the average power transmitted to 
the load. 
P.9-16 The input impedance of an open- or short-circuited lossy transmission line has both 
a resistive and a reactive component. Prove that the input impedance of a very short 
section ( of a slightly lossy line (a/ « 1 and /?/ « 1) is approximately 

a) Zin = (R + jeoLY with a short-circuit termination. 
b) Zin = (G —jcoC)/[G2 + {coC)2y with an open-circuit termination. 

P.9-17 Find the input impedance of a low-loss quarter-wavelength line (od « 1) 
a) terminated in a short circuit. 
b) terminated in an open circuit. 

P.9-18 A 2 (m) lossless air-spaced transmission line having a characteristic impedance 
50 (Q) is terminated with an impedance 40 + ;30 {Q) at an operating frequency of 200 (MHz). 
Find the input impedance. 
P.9-19 The open-circuit and short-circuit impedances measured at the input terminals of an 
air-spaced transmission line 4 (m) long are 250/-50° (Q) and 360/20^ (Q), respectively. 

a) Determine Z0, a, and /? of the line. 
b) Determine R, L, G, and C. 

P.9-20 Measurements on a 0.6 (m) lossless coaxial cable at 100 (kHz) show a capacitance 
of 54 (pF) when the cable is open-circuited and an inductance of 0.30 (juH) when it is 
short-circuited. 

a) Determine Z0 and the dielectric constant of its insulating medium. 
b) Calculate the Xi0 and Xis at 10 (MHz). 
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P.9-21 Starting from the input impedance of an open-circuited lossy transmission line in 
Eq. (9-116), find the expressions for the half-power bandwidth and the Q of a low-loss line 
with ( = nX/2. 
P.9-22 A lossless quarter-wave line section of characteristic impedance R0 is terminated 
with an inductive load impedance ZL = RL +jXL. 

a) Prove that the input impedance is effectively a resistance Rt in parallel with a 
capacitive reactance Xt. Determine .R; and X{ in terms of R0, RL, and XL. 

b) Find the ratio of the magnitude of the voltage at the input to that at the load 
(voltage transformation ratio, \Vin\/\VL\) in terms of RQ and ZL. 

P.9-23 A 75 (Q) lossless line is terminated in a load impedance ZL = RL +jXL. 
a) What must be the relation between RL and XL in order that the standing-wave ratio 

on the line be 3? 
b) FindZL, if£L=150(Q). 
c) Where does the voltage minimum nearest to the load occur on the line for part (b)? 

P.9-24 Consider a lossless transmission line. 
a) Determine the line's characteristic resistance so that it will have a minimum possible 

standing-wave ratio for a load impedance 40 + ;*30 (Q). 
b) Find this minimum standing-wave ratio and the corresponding voltage reflection 

coefficient. 
c) Find the location of the voltage minimum nearest to the load. 

P.9-25 A lossy transmission line with characteristic impedance Z0 is terminated in an 
arbitrary load impedance ZL. 

a) Express the standing-wave ratio S on the line in terms of Z0 and ZL. 
b) Find in terms of S and Z0 the impedance looking toward the load at the location of 

a voltage maximum. 
c) Find the impedance looking toward the load at a location of a voltage minimum. 

P.9-26 A transmission line of characteristic impedance R0 = 50 (Q) is to be matched to a 
load impedance ZL = 40 + ;10 (Q) through a length {' of another transmission line of 
characteristic impedance R'0. Find the required (' and R'0 for matching. 
P.9-27 The standing-wave ratio on a lossless 300 (Q) transmission line terminated in an 
unknown load impedance is 2.0, and the nearest voltage minimum is at a distance 0.3A from 
the load. Determine (a) the reflection coefficient T of the load, (b) the unknown load 
impedance ZL, and (c) the equivalent length and terminating resistance of a line, such that 
the input impedance is equal to ZL. 
P.9-28 Obtain from Eq. (9-147) the formulas for finding the length im and the terminating 
resistance Rm of a lossless line having a characteristic impedance R0 such that the input 
impedance equals Z{ = R{ +jXt. 
P.9-29 Obtain an analytical expression for the load impedance ZL connected to a line of 
characteristic impedance Z0 in terms of standing-wave ratio S and the distance, z'JX, of the 
voltage minimum closest to the load. 
P.9-30 A sinusoidal voltage generator with Vg = 0.1/(T (V) and internal impedance Zg = R0 
is connected to a lossless transmission line having a characteristic impedance R0 = 50 (Q). 
The line is ( meters long and is terminated in a load resistance RL = 25 (Q). Find (a) Vt, 
Ih VL, and IL; (b) the standing-wave ratio on the line; and (c) the average power delivered 
to the load. Compare the result in part (c) with the case where RL = 50 (Q). 
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P.9-31 Consider a lossless transmission line of a characteristic impedance R0. A time-
harmonic voltage source of an amplitude Vg and an internal impedance Rg = RQ is 
connected to the input terminals of the line, which is terminated with a load impedance 
ZL = RL +jXL. Let P inc be the average incident power associated with the wave traveling 
in the + z-direction. 

a) Find the expression for P inc in terms of Vg and R0. 
b) Find the expression for the average power PL delivered to the load in terms of Vg 

and the reflection coefficient T. 
c) Express the ratio PJPiae in terms of the standing-wave ratio S. 
d) For Vg = 100 (V), Rg = R0 = 50 (ft), ZL = 50 -j25 (ft) determine P inc, T, S, PL, 

\Vh\, and |/L|. 
P.9-32 A sinusoidal voltage generator vg = 110 sin cot (V) and internal impedance Zg = 50 
(ft) is connected to a quarter-wave lossless line having a characteristic impedance R0 = 50 
(Q) that is terminated in a purely reactive load ZL = ;50 (Q). 

a) Obtain the voltage and current phasor expressions V(z') and I(z'). 
b) Write the instantaneous voltage and current expressions v(z', t) and i(z', t). 
c) Obtain the instantaneous power and the average power delivered to the load. 

P.9-33 A d-c voltage V0 is applied at t = 0 directly to the input terminals of an 
open-circuited lossless transmission line of length ( as in Fig. 9-45. Sketch the" 
voltage and current waves on the line (in the manner of Fig. 9-16) for the following 
time intervals: 

a) 0<t<T( = f/u) 
b) T<t<2T 
c) 2T<t<3T 
d) 3T<t<4T 

What happens after t = 4T? 

o 

{y' Z o ) FIGURE 9-45 
r° T~~ Q „_«______„__„__„ A d-c voltage applied to an open-circuited 

z = 0 z = C line (Problem P.9-33). 

P.9-34 A 100 (V) d-c voltage is applied at t = 0 to the input terminals of a lossless 
coaxial cable (R01 = 50 (Q), dielectric constant of insulation er l = 2.25) through an 
internal resistance Rg = R01. The cable is 200 (m) long and is connected to a loss
less two-wire line (R02 = 200 (ft), er2 = 1), which is 400 (m) long and is terminated 
in its characteristic resistance. 

a) Describe the transient behavior of the system and find the_ amplitudes of 
all reflected and transmitted voltage and current waves. 

b) Sketch the voltage and current as functions of t at the midpoint of the 
coaxial cable. 

c) Repeat part (b) at the midpoint of the two-wire line. 
P.9-35 A d-c voltage V0 is applied at t = 0 to the input terminals of an open-
circuited air-dielectric line of a length ( through a series resistance equal to R0/2, 
where R0 is the characteristic resistance of the line. 

IT 
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a) Draw the voltage and current reflection diagrams. 
b) Sketch V(0, t) and and 7(0, t). 
c) Sketch 7(^/2, t) and I(t/2, t). 

P.9-36 A d-c voltage V0 is applied at t = 0 directly to the input terminals of a 
lossless air-dielectric transmission line of a length t. The line has a characteristic 
resistance R0 and is terminated in a load resistance #L = 2R0. 

a) Draw the voltage and currrent reflection diagrams. 
b) Sketch V(t, t) and I(f, t). 
c) Sketch V{z, 2.5T) and /(z, 2.5T), where T = (ju. 

P.9-37 For the problem in Example 9-11, determine and sketch i(200, t). 
P.9-38 A lossless, air-dielectric, open-circuited transmission line of characteristic 
resistance R0 and length t is initially charged to a voltage V0. At t = 0 the line 
is connected to a resistance R, as shown in Fig. 9-46. Determine VR{t) and IR{t) for 
0 < t < 5tjc. 

a) if R = 2R0, 
b) if R = R0/2. 

0 

0 

* 0 

+ ?~ 
^0 

— «"0-

M i?| ^ FIGURE 9-46 
1- An initially charged line connected to a 

z = o z = P resistance (Problem 9-38). 

P.9-39 Refer to Fig. 9-26(a) but change the load from a pure inductance to a 
series combination of RL = 10 (Q) and LL = 48 {/M). Assume that V0 = 100 (V), 
R0 = 50 (Q), t = 900 (m), and u = c. 

a) Find the expressions for the current in and the voltage across the load as 
functions of t. 

b) Sketch the current and voltage distributions along the transmission line at 
11 = 4 (/is). 

P.9-40 Refer to Fig. 9-28(a) but change the load from a pure capacitance to a 
parallel combination of CL = 14 (nF) and RL = 1000 (Q). Assume that V0 = 100 (V), 
R0 = 50 (Q), t = 900 (m), and u = c. 

a) Find the expressions for the current in and the voltage across the load as 
functions of t. 

b) Sketch the current and voltage distributions along the transmission line at 

P.9-41 The Smith chart, constructed on the basis of Eqs. (9-188) and (9-189) for 
a lossless transmission line, is restricted to a unit circle because |r| < 1. In the case 
of a lossy line, Z0 is a complex quantity, and so, in general, is the normalized load 
impedance zL = ZL/Z0. 

a) Show that the phase angle of zL, 0L, lies between ±3n/4. 
b) Show that |r| may be greater than .unity. 
c) Prove that max. |r| = 2.414. 

P.9-42 The characteristic impedance of a given lossless transmission line is 75 (Q). Use a 
Smith chart to find the input impedance at 200 (MHz) of such a line that is (a) 1 (m) long 



9 Theory and Applications of Transmission Lines 

and open-circuited, and (b) 0.8 (m) long and short-circuited. Then (c) determine the corres
ponding input admittances for the lines in parts (a) and (b). 
P.9-43 A load impedance 30 +y'10 (Q) is connected to a lossless transmission line of length 
0.101 A and characteristic impedance 50 (Q). Use a Smith chart to find (a) the standing-wave 
ratio, (b) the voltage reflection coefficient, (c) the input impedance, (d) the input admittance, 
and (e) the location of the voltage minimum on the line. 
P.9-44 Repeat Problem P.9-43 for a load impedance 30 - jlO (O). 
P.9-45 In a laboratory experiment conducted on a 50 (Q) lossless transmission line ter
minated in an unknown load impedance, it is found that the standing-wave ratio is 2.0. The 
successive voltage minima are 25 (cm) apart, and the first minimum occurs at 5 (cm) from 
the load. Find (a) the load impedance, and (b) the reflection coefficient of the load, (c) Where 
would the first voltage minimum be located if the load were replaced by a short-circuit? 
P.9-46 The input impedance of a short-circuited lossy transmission line of length 1.5 (m) 
(< A/2) and characteristic impedance 100 (Q) (approximately real) is 40 -;280 (Q). 

a) Find a and /? of the line. 
b) Determine the input impedance if the short-circuit is replaced by a load impedance 

ZL = 50+;50(Q). 
c) Find the input impedance of the short-circuited line for a line length 0.15A. 

P.9-47 A dipole antenna having an input impedance of 73 (Q.) is fed by a 200 (MHz) source 
through a 300 (£2) two-wire transmission line. Design a quarter-wave two-wire air line with a 
2 (cm) spacing to match the antenna to the 300 (Q.) line. 
P.9-48 The single-stub method is used to match a load impedance 25 + j25 (Q) to a 50 (Q) 
transmission line. 

a) Find the required length and position of a short-circuited stub made of a section 
of the same 50 (Q) line. 

b) Repeat part (a) assuming that the short-circuited stub is made of a section of a line 
that has a characteristic impedance of 75 (Q). 

P.9-49 A load impedance can be matched to a transmission line also by using a single stub 
placed in series with the load at an appropriate location, as shown in Fig. 9-47. Assuming 
that ZL - 25 +;25 (Q), R0 = 50 (fi), and R'Q = 35 (Q), find d and t required for matching. 

Ro 

RQ ZL 

FIGURE 9-47 
Impedance matching by a series stub (Problem P.9-49). 

P.9-50 The double-stub method is used to match a load impedance 100 + jlOO (Q) to a lossless 
transmission line of characteristic impedance 300 (Q). The spacing between the stubs is 3A/8, 
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with one stub connected directly in parallel with the load. Determine the lengths of the stub 
tuners (a) if they are both short-circuited, and (b) if they are both open-circuited. 
P.9-51 If the load impedance in Problem P.9-50 is changed to 100 + j50 (Q), one discovers 
that a perfect match using the double-stub method with dQ = 3/1/8 and one stub connected 
directly across the load is not possible. However, the modified arrangement shown in Fig. 
9-43 can be used to match this load with the line. 

a) Find the minimum required additional line length dL. 
b) Find the required lengths of the short-circuited stub tuners, using the minimum dL 

found in part (a). 
P.9-52 The double-stub method shown in Fig. 9-41 cannot be used to match certain loads 
to a line with a given characteristic impedance. Determine the regions of load admittances 
on a Smith admittance chart for which the double-stub arrangement in Fig. 9-41 cannot 
lead to a match for d0 = A/16, X/4, 3A/8, and 7A/16. 



ID 
Waveguides and 
Cavity Resonators 

1 0 - 1 Introduction 

In the preceding chapter we studied the characteristic properties of transverse elec
tromagnetic (TEM) waves guided by transmission lines. The TEM mode of guided 
waves is one in which the electric and magnetic fields are perpendicular to each other 
and both are transverse to the direction of propagation along the guiding line. One 
of the salient properties of TEM waves guided by conducting lines of negligible 
resistance is that the velocity of propagation of a wave of any frequency is the same 
as that in an unbounded dielectric medium. This was pointed out in connection with 
Eq. (9-21) and was reinforced by Eq. (9-72). 

TEM waves, however, are not the only mode of guided waves that can propagate 
on transmission lines; nor are the three types of transmission lines (parallel-plate, 
two-wire, and coaxial) mentioned in Section 9-1 the only possible wave-guiding 
structures. As a matter of fact, we see from Eqs. (9-55) and (9-63) that the attenuation 
constant resulting from the finite conductivity of the lines increases with R, the 
resistance per unit line length, which, in turn, is proportional to yff in accordance 
with Tables 9-1 and 9-2. Hence the attenuation of TEM waves tends to increase 
monotonically with frequency and would be prohibitively high in the microwave 
range. 

In this chapter we first present a general analysis of the characteristics of the 
waves propagating along uniform guiding structures. Waveguiding structures are 
called waveguides, of which the three types of transmission lines are special cases. 
The basic governing equations will be examined. We will see that, in addition to 
transverse electromagnetic (TEM) waves, which have no field components in the 
direction of propagation, both transverse magnetic (TM) waves with a longitudinal 
electric-field component and transverse electric (TE) waves with a longitudinal 
magnetic-field component can also exist. Both TM and TE modes have characteristic 
cutoff frequencies. Waves of frequencies below the cutoff frequency of a particular 
mode cannot propagate, and power and signal transmission at that mode is possible 

520 
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only for frequencies higher than the cutoff frequency. Thus waveguides operating in 
TM and TE modes are like high-pass filters. 

Also in this chapter we will reexamine the field and wave characteristics of 
parallel-plate waveguides with emphasis on TM and TE modes and show that all 
transverse field components can be expressed in terms of Ez (z being the direction of 
propagation) for TM waves and in terms of Hz for TE waves. The attenuation 
constants resulting from imperfectly conducting walls will be determined for TM and 
TE waves, and we will find that the attenuation constant depends, in a complicated 
way, on the mode of the propagating wave, as well as on frequency. For some modes 
the attenuation may decrease as the frequency increases; for other modes the atten
uation may reach a minimum as the frequency exceeds the cutoff frequency by a 
certain amount. 

Electromagnetic waves can propagate through hollow metal pipes of an arbitrary 
cross section. Without electromagnetic theory it would not be possible to explain 
the properties of hollow waveguides. We will see that single-conductor waveguides 
cannot support TEM waves. We will examine in detail the fields, the current and 
charge distributions, and the propagation and attenuation characteristics of rectan
gular and circular cylindrical waveguides. Both TM and TE modes will be discussed. 

Electromagnetic waves can also be guided by an open dielectric-slab waveguide. 
The fields are essentially confined within the dielectric region and decay rapidly away 
from the slab surface in the transverse plane. For this reason the waves supported 
by a dielectric-slab waveguide are called surface waves. Both TM and TE modes are 
possible. We will examine the field characteristics and cutoff frequencies of those 
surface waves. Cylindrical optical fibers will also be discussed. 

At microwave frequencies, ordinary lumped-parameter elements (such as induc
tances and capacitances) connected by wires are no longer practical as circuit elements 
or as resonant circuits because the dimensions of the elements would have to be 
extremely small, because the resistance of the wire circuits becomes very high as a 
result of the skin effect, and because of radiation. We will briefly discuss irises and 
posts as waveguide reactive elements. A hollow conducting box with proper dimen
sions can be used as a resonant device. The box walls provide large areas for current 
flow, and losses are extremely small. Consequently, an enclosed conducting box can 
be a resonator of a very high Q. Such a box, which is essentially a segment of a 
waveguide with closed end faces, is called a cavity resonator. We will discuss the 
different mode patterns of the fields inside rectangular as well as circular cylindrical 
cavity resonators. 

1 0 - 2 General Wave Behaviors along Uniform Guiding Structures 

In this section we examine some general characteristics for waves propagating along 
straight guiding structures with a uniform cross section. We will assume that the 
waves propagate in the + z-direction with a propagation constant y = a + jfi that is 
yet to be determined. For harmonic time dependence with an angular frequency co, 
the dependence on z and t for all field components can be described by the exponential 
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FIGURE 10-1 
A uniform waveguide with an arbitrary 
cross section. 

factor 
e-yzeJcot __ e(j(ot-yz) _ £-az£j(mt-0z)^ (10-1) 

As an example, for a cosine reference we may write the instantaneous expression for 
the E field in Cartesian coordinates as 

E(x, y, z-1) = ̂ [ E ° ( x , y)eUcot-yz)l (10-2) 

where E°(x, j;) is a two-dimensional vector phasor that depends only on the cross-
sectional coordinates. The instantaneous expression for the H field can be written in 
a similar way. Hence, in using a phasor representation in equations relating field 
quantities we may replace partial derivatives with respect to t and z simply by prod
ucts with (joj) and ( —y), respectively; the common factor e

Umt~yz) can be dropped. 
We consider a straight waveguide in the form of a dielectric-filled metal tube 

having an arbitrary cross section and lying along the z-axis, as shown in Fig. 10-1. 
According to Eqs. (7-105) and (7-106), the electric and magnetic field intensities in 
the charge-free dielectric region inside satisfy the following homogeneous vector 
Helmholtz's equations: 

V2E + k2E = 0 (10-3) 
and 

V2H + /c2H = 0, (10-4) 

where E and H are three-dimensional vector phasors, and k is the wavenumber: 

k = (Dy/Jie. (10-5) 

The three-dimensional Laplacian operator V2 may be broken into two parts: 
V2

1U2 for the cross-sectional coordinates and V2 for the longitudinal coordinate. For 
waveguides with a rectangular cross section we use Cartesian coordinates: 

(10-6) 

(10-7) 

V2E = (V2
y + V2)E = (V2 , + ^ | E 

= V2,E + y2E. 

Combination of Eqs. (10-3) and (10-6) gives 

V2,E + (y2 + k2)E = 0. 
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Similarly, from Eq. (10-4) we have 

V^H + (y2 + k2)U = 0. (10-8) 

We note that each of Eqs. (10-7) and (10-8) is really three second-order partial 
differential equations, one for each component of E and H. The exact solution of 
these component equations depends on the cross-sectional geometry and the bound
ary conditions that a particular field component must satisfy at conductor-dielectric 
interfaces. We note further that by writing V^ for the transversal operator V^, Eqs. 
(10-7) and (10-8) become the governing equations for waveguides with a circular 
cross section. 

Of course, the various components of E and H are not all independent, and it 
is not necessary to solve all six second-order partial differential equations for the six 
components of E and H. Let us examine the interrelationships among the six com
ponents in Cartesian coordinates by expanding the two source-free curl equations, 
Eqs. (7-104a) and (7-104b): 

From V x E = -jcofM: 

dE° 
-^ + yE°y = -jcofiHx (10-9a) 

dE° 
-y&x—£=-ja>nH° (10-9b) 
a pO a pO 

i t ii=-j(0tiH° (10~9c) 

From V x H = jcoeE: 

dH° —± + yH°y= jcoeE°x (10-10a) dy 
arrO 

-iK--— =;»€£? (io-iob) 

f 2 - ^ - > « E ; (lo-ioc) 
ox oy 

Note that partial derivatives with respect to z have been replaced by multiplications 
by (— y). All the component field quantities in the equations above are phasors that 
depend only on x and y, the common e~yz factor for z-dependence having been 
omitted. By manipulating these equations we can express the transverse field com
ponents H°, Hy, and £°, and E® in terms of the two longitudinal components Ez 
and Hz. For instance, Eqs. (10-9a) and (10-10b) can be combined to eliminate E® 
and obtain H° in terms of E°z and Hz. We have 

1 / dE°z . 8H°Z\ 

(10-11) 

(10-12) 

(10-13) 

(10-14) 
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where 
h2 = y2 + k2. (10-15) 

The wave behavior in a waveguide can be analyzed by solving Eqs. (10-7) and (10-8) 
for the longitudinal components, E°z and H°, respectively, subject to the required 
boundary conditions, and then by using Eqs. (10-11) through (10-14) to determine 
the other components. 

It is convenient to classify the propagating waves in a uniform waveguide into 
three types according to whether Ez or Hz exists. 

1. Transverse electromagnetic (TEM) waves. These are waves that contain neither 
Ez nor Hz. We encountered TEM waves in Chapter 8 when we discussed plane 
waves and in Chapter 9 on waves along transmission lines. 

2. Transverse magnetic (TM) waves. These are waves that contain a nonzero Ez but 
Hz = 0. 

3. Transverse electric (TE) waves. These are waves that contain a nonzero H but 
Ez = 0. 

The propagation characteristics of the various types of waves are different; they will 
be discussed in subsequent subsections. 

10-2.1 TRANSVERSE ELECTROMAGNETIC WAVES 

Since Ez = 0 and Hz = 0 for TEM waves within a guide, we see that Eqs. (10-11) 
through (10-14) constitute a set of trivial solutions (all field components vanish) 
unless the denominator h2 also equals zero. In other words, TEM waves exist only 
when 

TTCM + k2 = 0 (10-16) 
or 

TTEM = jk = jojyfjie, (10-17) 

which is exactly the same expression for the propagation constant of a uniform plane 
wave in an unbounded medium characterized by constitutive parameters e and fi. 
We recall that Eq. (10-17) also holds for a TEM wave on a lossless transmission 
line. It follows that the velocity of propagation (phase velocity) for TEM waves is 

(10-18) 

We can obtain the ratio between £° and H°y from Eqs. (10-9b) and (10-10a) by 
setting Ez and Hz to zero. This ratio is called the wave impedance. We have 
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which becomes, in view of Eq. (10-17), 

(10-20) 

We note that ZTEM is the same as the intrinsic impedance of the dielectric medium, 
as given in Eq. (8-30). Equations (10-18) and (10-20) assert that the phase velocity 
and the wave impedance for TEM waves are independent of the frequency of the 
waves. 

Letting £° = 0 in Eq. (10-9a) and H°z = 0 in Eq. (10-10b), we obtain 

- * - - - 7 TEM (10-21) 

Equations (10-19) and (10-21) can be combined to obtain the following formula for 
a TEM wave propagating in the + z-direction: 

(10-22) 

which again reminds us of a similar relation for a uniform plane wave in an un
bounded medium—see Eq. (8-29). 

Single-conductor waveguides cannot support TEM waves. In Section 6-2 we 
pointed out that magnetic flux lines always close upon themselves. Hence if a TEM 
wave were to exist in a waveguide, the field lines of B and H would form closed loops 
in a transverse plane. However, the generalized Ampere's circuital law, Eq. (7-54b), 
requires that the line integral of the magnetic field (the magnetomotive force) around 
any closed loop in a transverse plane must equal the sum of the longitudinal conduc
tion and displacement currents through the loop. Without an inner conductor there 
is no longitudinal conduction current inside the waveguide. By definition, a TEM 
wave does not have an £z-component; consequently, there is no longitudinal dis
placement current. The total absence of a longitudinal current inside a waveguide 
leads to the conclusion that there can be no closed loops of magnetic field lines 
in any transverse plane. Therefore, we conclude that TEM waves cannot exist in a 
single-conductor hollow (or dielectric-filled) waveguide of any shape. On the other 
hand, assuming perfect conductors, a. coaxial transmission line having an inner con
ductor can support TEM waves; so can a two-conductor stripline and a two-wire 
transmission line. When the conductors have losses, waves along transmission lines 
are strictly no longer TEM, as noted in Section 9-2. 

10-2.2 TRANSVERSE MAGNETIC WAVES 

Transverse magnetic (TM) waves do not have a component of the magnetic field in 
the direction of propagation, Hz = 0. The behavior of TM waves can be analyzed 
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by solving Eq. (10-7) for Ez subject to the boundary conditions of the guide and 
using Eqs. (10-11) through (10-14) to determine the other components. Writing Eq. 
(10-7) for Ez, we have 

V2
xyE°z + (y2 + k2)E°z = 0 (10-23) 

or 

V2
xyE°z + h2E°z = 0. (10-24) 

Equation (10-24) is a second-order partial differential equation, which can be solved 
for E°z. In this section we wish to discuss only the general properties of the various 
wave types. The actual solution of Eq. (10-24) will wait until subsequent sections 
when we examine particular waveguides. 

For TM waves we set Hz = 0 in Eqs. (10-11) through (10-14) to obtain 

H° = 
jcoe dE°z 

E°=~ 

Hy ~ h2 "aT 
y dE°z 

Fo=_JLdEl 
h2 dy ' 

It is convenient to combine Eqs. (10-27) and (10-28) and write 

(10-25) 

(10-26) 

(10-27) 

(10-28) 

(E°)TM = axE°x + ay£y° = - £ \TE°Z (V/m), 

where 

\TE« = '•^+'4'S 

(10-29) 

(10-30) 

denotes the gradient of Ez in the transverse plane. Equation (10-29) is a concise 
formula for finding E°x and E°y from E°z. 

The transverse components of magnetic field intensity, H® and Hy, can be deter
mined simply from Ex and E°y on the introduction of the wave impedance for the 
TM mode. We have, from Eqs. (10-25) through (10-28), 

(10-31) 

It is important to note that ZTM is not equal to jco/n/y, because y for TM waves, unlike 
yTEM, is not equal to jco-sf/M. The following relation between the electric and magnetic 
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field intensities holds for TM waves: 
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(10-32) 

Equation (10-32) is seen to be of the same form as Eq. (10-22) for TEM waves. 
When we undertake to solve the two-dimensional homogeneous Helmholtz equa

tion, Eq. (10-24), subject to the boundary conditions of a given waveguide, we will 
discover that solutions are possible only for discrete values of h. There may be an 
infinity of these discrete values, but solutions are not possible for all values of h. The 
values of h for which a solution of Eq. (10-24) exists are called the characteristic 
values or eigenvalues of the boundary-value problem. Each of the eigenvalues deter
mines the characteristic properties of a particular TM mode of the given waveguide. 

In the following sections we will also discover that the eigenvalues of the various 
waveguide problems are real numbers. From Eq. (10-15) we have 

=v? 
= yjk2 — (ti2H€. 

(10-33) 

Two distinct ranges of the values for the propagation constant are noted, the dividing 
point being y = 0, where 

CQ2fi€ = h2 (10-34) 
or 

(10-35) 

The frequency, f, at which y = 0 is called a cutoff frequency. The value off for a 
particular mode in a waveguide depends on the eigenvalue of this mode. Using Eq. 
(10-35), we can write Eq. (10-33) as 

r-.h-iff. (10-36) 

The two distinct ranges of y can be defined in terms of the ratio {f/fc)2 as compared 
to unity. 

a) I — 1 > 1, or / > fc. In this range, a>2fie > h2 and y is imaginary. We have, from 

Eq. (10-33), 

T-^-^/i-(J)a-^i-(fY- (10-37) 
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It is a propagating mode with a phase constant /?: 

(10-38) 

The corresponding wavelength in the guide is 

. _2n _ X 

^ P ~Vl~(/c//)2 >K 
where 

lit 1 u 

(10-39) 

(10-40) 

is the wavelength of a plane wave with a frequency / in an unbounded dielectric 
medium characterized by \i and e, and u = 1/yffJJe is the velocity of light in the 
medium. Equation (10-39) can be rearranged to give a simple relation connecting 
X, the guide wavelength X and the cutoff wavelength Xc = u/fc: 

J__J_ J_ 
X Xg X,. 

The phase velocity of the propagating wave in the guide is 

(O Xn 

P Vi-(/c//)2 x = ^u> u. 

(10-41) 

(10-42) 

We see from Eq. (10-42) that the phase velocity within a waveguide is always 
higher than that in an unbounded medium and is frequency-dependent. Hence 
single-conductor waveguides are dispersive transmission systems, although an 
unbounded lossless dielectric medium is nondispersive. The group velocity for a 
propagating wave in a waveguide can be determined by using Eq. (8-72): 

1 
un — 

Thus, 
dp/dco 

= u 1 -
2 X = Yu<u. (10-43) 

UMn = U2. *g"P (10-44) 

For air dielectric, u = c, Eq. (10-44) becomes ugup = c2. In a lossless waveguide 
the velocity of signal propagation (the velocity of energy transport) is equal to the 
group velocity. An illustration of this statement can be found later, in Subsection 
10-3.3. 

Substitution of Eq. (10-37) in Eq. (10-31) yields 

(10-45) 
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FIGURE 10-2 
"► Normalized wave impedances for propagating 

TM and TE waves. 

The wave impedance of propagating TM modes in a waveguide with a lossless 
dielectric is purely resistive and is always less than the intrinsic impedance of the 
dielectric medium. The variation of ZTM versus f/fc for / > fc is sketched in Fig. 
10-2. 
ff\2 

b) I — 1 < 1, or f< fc. When the operating frequency is lower than the cutoff fre

quency, y is real and Eq. (10-36) can be written as 

y = a = h / l - PT-r2 
fc 

f<fc, (10-46) 

which is, in fact, an attenuation constant. Since all field components contain the 
propagation factor e~yz = e~az, the wave diminishes rapidly with z and is said 
to be evanescent. Therefore, a waveguide exhibits the property of a high-pass 
filter. For a given mode, only waves with a frequency higher than the cutoff fre
quency of the mode can propagate in the guide. 

Substitution of Eq. (10-46) in Eq. (10-31) gives the wave impedance of TM 
modes for f < fc: 

ZTu = - J ~ h - (Q\, f <L- (10-47) 
W€ 

Thus, the wave impedance of evanescent TM modes at frequencies below cutoff is 
purely reactive, indicating that there is no power flow associated with evanescent 
waves. 

10-2.3 TRANSVERSE ELECTRIC WAVES 

Transverse electric (TE) waves do not have a component of the electric field in the 
direction of propagation, Ez = 0. The behavior of TE waves can be analyzed by first 
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solving Eq. (10-8) for Hz: 

\2
xyHz + h2Hz = 0. (10-48) 

Proper boundary conditions at the guide walls must be satisfied. The transverse field 
components can then be found by substituting Hz into the reduced Eqs. (10-11) 
through (10-14) with Ez set to zero. We have 

E°=-

7 dH°z 

h2 dx ' 

h2 dy ' 
jcofi dH°z 

h2 dy ' 
jcoiidHj 

y h2 dx 

(10-49) 

(10-50) 

(10-51) 

(10-52) 

Combining Eqs. (10-49) and (10-50), we obtain 

(H°T)r£ = a A 0 + ayH°y = - £ \TH°Z (A/m). (10-53) 

We note that Eq. (10-53) is entirely similar to Eq. (10-29) for TM modes. 
The transverse components of electric field intensity, E°x and £J, are related to 

those of magnetic field intensity through the wave impedance. We have, from Eqs. 
(10-49) through (10-52), 

(10-54) 

Note that ZTE in Eq. (10-54) is quite different from ZTM in Eq. (10-31) because y 
for TE waves, unlike yTEM, is not equal to jcoyfjie. Equations (10-51), (10-52), and 
(10-54) can now be combined to give the following vector formula: 

E = - Z T E ( a z x H ) (V/m). (10-55) 

Inasmuch as we have not changed the relation between y and h, Eqs. (10-33) 
through (10-44) pertaining to TM waves also apply to TE waves. There are also 
two distinct ranges of y, depending on whether the operating frequency is higher or 
lower than the cutoff frequency, fc, given in Eq. (10-35). 
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a) I — ] > 1, or / > fc. In this range, y is imaginary, and we have a propagating 

mode. The expression for y is the same as that given in Eq. (10-37): 

y=jP=jkJl-(^j. (10-56) 

Consequently, the formulas for jg, Xg, up, and ug in Eqs. (10-38), (10-39), (10-42), 
and (10-43), respectively, also hold for TE waves. Using Eq. (10-56) in Eq. 
(10-54), we obtain 

(10-57) 

which is obviously different from the expression for ZTM in Eq. (10-45). Equation 
(10-57) indicates that the wave impedance of propagating TE modes in a 
waveguide with a lossless dielectric is purely resistive and is always larger than 
the intrinsic impedance of the dielectric medium. The variation of ZTE versus f/fc 
for / > fc is also sketched in Fig. 10-2. 
ffY 

b) I — I < 1, or / < fc. In this case, y is real and we have an evanescent or non-

propagating mode: y = * = hjl~(Yj> f<f- (10"58) 

Substitution of Eq. (10-58) in Eq. (10-54) gives the wave impedance of TE modes 
f o r / < / c : 

Z T E = ; /^kr f<L (10-59) 
which is purely reactive, indicating again that there is no power flow for evane
scent waves at / < fc. 

EXAMPLE 10-1 (a) Determine the wave impedance and guide wavelength at a fre
quency equal to twice the cutoff frequency in a waveguide for TM and TE modes. 
(b) Repeat part (a) for a frequency equal to one-half of the cutoff frequency, (c) What 
are the wave impedance and guide wavelength for the TEM mode? 
Solution 
a) A t / = 2/, which is above the cutoff frequency, we have propagating modes. The 

appropriate formulas are Eqs. (10-45), (10-57), and (10-39). 

For / = 2/, ( / / /)2 = | , Vl - (fJf)2 = V3/2 = 0.866. Thus, 
ZTM = O.86677 < t], XTM = 1.155/1 > /l, 
ZTE = 1.155?/ > rj, ATE - 1.155A > X, 
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TABLE 10-1 
Wave Impedances and Guide Wavelengths for f > fc 

Mode 

TEM 

TM 

TE 

Wave Impedance, Z 

n=(i 

n 
Vi-(/c//)2 

Guide Wavelength, Xg 

X 

Vi-(X//)2 

X 

Vi-(X//)2 

where r\ is the intrinsic impedance of the guide medium. These results are sum
marized in Table 10-1. 

b) At / = fc/2 < fc, the waveguide modes are evanescent, and guide wavelength has 
no significance. We now have 

ZTM — J 
h 

we 

'TE —J 
(D\i 

hy/1 ~ {flfcf 

j j = -j0216h/fce, 

= j3.63fcn/h. 

We note that both ZTM and ZTE become imaginary (reactive) for evanescent 
modes at / < fc; their values depend on the eigenvalue h, which is a characteristic 
of the particular TM or TE mode. 

c) The TEM mode does not exhibit a cutoff property and h = 0. The wave impedance 
and guide wavelength are independent of frequency. From Eqs. (10-20) and 
(10-18) we have 

and 
■^TEM — Y\ 

^TEM — h. 

For propagating modes, y = jfi and the variation of jS versus frequency determines 
the characteristics of a wave along a guide. It is therefore useful to plot and examine 
an w-fi diagram.f Figure 10-3 is such a diagram in which the dashed line through 
the origin represents the ai-fl relationship for TEM mode. The constant slope of this 
straight line is co/P = u= 1/y/jJie, which is the same as the velocity of light in an un
bounded dielectric medium with constitutive parameters \x and e. 

f Also referred to as a Brillouin diagram. 
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Propagating yf/ 
TM and TE m o d e s / / 

/ TEM mode 

FIGURE 10-3 
^ co-P diagram for waveguide. 

The solid curve above the dashed line depicts a typical co-/? relation for either 
a TM or a TE propagating mode, given by Eq. (10-38). We can write 

Bu w = . H (10-60) 
Vl-(a>»2 

The (0-/3 curve intersects the co-axis (jS = 0) at a> = a>c. The slope of the line joining 
the origin and any point, such as P, on the curve is equal to the phase velocity, up, 
for a particular mode having a cutoff frequency fc and operating at a particular 
frequency. The local slope of the co-fS curve at P is the group velocity, ug. We note 
that, for propagating TM and TE waves in a waveguide, up > u, ug < u, and Eq. 
(10-44) holds. As the operating frequency increases much above the cutoff frequency, 
both up and ug approach u asymptotically. The exact value of a>c depends on the 
eigenvalue h in Eq. (10-35)—that is, on the particular TM or TE mode in a waveguide 
of a given cross section. Methods for determining h will be discussed when we examine 
different types of waveguides. We recall that the eo-jB graph for wave propagation 
in an ionized medium (Fig. 8-7) was quite similar to the eo-j8 diagram for a waveguide 
shown in Fig. 10-3. 

EXAMPLE 10-2 Obtain a graph showing the relation between the attenuation con
stant a and the operating frequency / for evanescent modes in a waveguide. 

Solution For evanescent TM or TE modes, f <fc and Eq. (10-46) or (10-58) 
applies. We have 

j-aj +f2=fl (10-61) 

Hence the graph of (fca/h) plotted versus / is a circle centered at the origin and 
having a radius fc. This is shown in Fig. 10-4. The value of a for any f <fc can be 
found from this quarter of a circle. ®m 
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FIGURE 10-4 
Relation between attenuation constant and operating frequency for 
evanescent modes (Example 10-2). 

1 0 - 3 Parallel-Plate Waveguide 

In Section 9-2 we discussed the characteristics of TEM waves propagating along a 
parallel-plate transmission line. It was then pointed out, and again emphasized in 
Subsection 10-2.1, that the field behavior for TEM modes bears a very close re
semblance to that for uniform plane waves in an unbounded dielectric medium. 
However, TEM modes are not the only type of waves that can propagate along 
perfectly conducting parallel-plates separated by a dielectric. A parallel-plate wave
guide can also support TM and TE waves. The characteristics of these waves are 
examined separately in following subsections. 

10-3.1 TM WAVES BETWEEN PARALLEL PLATES 

Consider the parallel-plate waveguide of two perfectly conducting plates separated 
by a dielectric medium with constitutive parameters e and //, as shown in Fig. 10-5. 
The plates are assumed to be infinite in extent in the x-direction. This is tantamount 
to assuming that the fields do not vary in the x-direction and that edge effects are 
negligible. Let us suppose that TM waves (Hz = 0) propagate in the + z-direction. 
For harmonic time dependence it is expedient to work with equations relating field 

FIGURE 10-5 
An infinite parallel-plate waveguide. 
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quantities with the common factor e(j(0t yz) omitted. We write the phasor Ez(y, z) as 
E°z{y)e~yz. Equation (10-24) then becomes 

d ^ ) - + h2E°(y) = 0. (10-62) 
dy2 

The solution of Eq. (10-62) must satisfy the boundary conditions 

E°z{y) = 0 aty = 0 and y = b. 
From Section 4-5 we conclude that E°z{y) must be of the following form (h = nn/b): 

Ez>(y) = Ansm(^f)j, (10-63) 

where the amplitude An depends on the strength of excitation of the particular TM 
wave. The only other nonzero field components are obtained from Eqs. (10-25) and 
(10-28). Keeping in mind that dEJdx = 0 and omitting the e~yz factor, we have 

H^y)=J^Ancos^fJ, (10-64) 

E ° 0 0 = - j ^ c o s ^ ) . (10-65) 

The y in Eq. (10-65) is the propagation constant that can be determined from 
Eq. (10-33): 

y = j ( y Y - <» V- (10-66) 

The cutoff frequency is the frequency that makes y = 0. We have 

(10-67) 

which, of course, checks with Eq. (10-35). Waves with/ > fc propagate with a phase 
constant j5, given in Eq. (10-38); and waves with / < fc are evanescent. 

Depending on the values of n, there are different possible propagating TM modes 
(eigenmodes) corresponding to the different eigenvalues h. Thus there are the TMj 
mode (n = 1) with cutoff frequency (f^ = i/lbyf}^, the TM2 mode (n = 2) with 
(fc)2 = \/b-s/Ji€, and so on. Each mode has its own characteristic phase constant, 
guide wavelength, phase velocity, group velocity, and wave impedance; they can be 
determined from Eqs. (10-38), (10-39), (10-42), (10-43), and (10-45), respectively. 
When n = 0, Ez = 0 and only the transverse components Hx and Ey exist. Hence 
TM0 mode is the TEM mode, for which fc = 0. The mode having the lowest cutoff 
frequency is called the dominant mode of the waveguide. For parallel-plate wave
guides the dominant mode is the TEM mode. 
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EXAMPLE 10-3 (a) Write the instantaneous field expressions for TM1 mode in a 
parallel-plate waveguide, (b) Sketch the electric and magnetic field lines in the yz-
plane. 

Solution 

a) The instantaneous field expressions for the TMj mode are obtained by multi
plying the phasor expressions in Eqs. (10-63), (10-64), and (10-65) with e

j(wt~pz) 

and taking the real part of the product. We have, for n = 1, 

Ez(y, z; t) = Ay sin ( ~-J cos (cot - fiz), (10-68) 

Pb , (ny Ey(y, z;t) = !-rAlcos[-f) sin (cot - fiz), (10-69) 

Hx(y, z; t) = - — Ax cos ( ~- ] sin (cot - /?z), (10-70) 

where 

P = L V - (H • (10-71) 

b) In the yz-plane, E has both a y- and a z-component, and the equation of the 
electric field lines at a given t can be found from the relation 

dy dz 
Ey = E- <10-72> 

For example, at t = 0, Eq. (10-72) can be written as 
dy _ Ey(y, z; 0) fib _ (ny 
A vi m = - c o t ir t a n Pz> (10"73) 

dz Ez(y, x; 0) n \b J 
which gives the slope of the electric field lines. Equation (10-73) can be integrated 
to give 

cos ( ^ ] cos /?z = Constant, 0 < y < b. (10-74)t 

f Equation (10-73) can be rearranged as 
dy (Pb\ cos (ny/b) sin /?z 
dz \ n J sin (ny/b) cos jSz 

or 
(n/b) sin (ny/b)dy _ -jS sin fizdz 

cos (ny/b) cos j3z 
or 

d[cos (ny/b)'] _ d(cos /Jz) 
cos (7ry/b) cos /?z 

Integration gives 
— In [cos (ny/b)] = In (cos /?z) + cx 

or 
cos (ny/fr) cos jSz = c2, 

which is Eq. (10-74). cx and c2 are constants. 
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Electric field lines, 
0 <8> Magnetic field lines (x-axis into the paper). 

FIGURE 10-6 
Field lines for TM^ mode in parallel-plate waveguide. 

Several such electric field lines are drawn in Fig. 10-6. The field lines repeat 
themselves for every change of In (rad) in /?z and reverse their directions for 
every change of n (rad). 

Since H has only an x-component, the magnetic field lines are everywhere 
perpendicular to the yz-plane. For the TMi mode at t = 0, Eq. (10-70) becomes 

b 
Hx(y, z; 0) = Ay cos 

n 
sin fiz. (10-75) 

The density of Hx lines varies as cos (ny/b) in the y-direction and as sin pz in 
the z-direction. This is also sketched in Fig. 10-6. At the conducting plates (y = 0 
and y = b) there are surface currents because of a discontinuity in the tangential 
magnetic field, and surface charges because of the presence of a normal electric 
field. (Problem P. 10-4). mm 

EXAMPLE 10-4 Show that the field solution of a propagating TMj wave in a 
parallel-plate waveguide can be interpreted as the superposition of two plane waves 
bouncing back and forth obliquely between the two conducting plates. 

Solution This can be seen readily by writing the phasor expression of E°z{y) from 
Eq. (10-63) for n = 1 and with the factor e~m restored. We have 

E2{y, z) = Ax sin ( ~ \ e ~ j p z = ^ (ejny/b - e-jnylb)e~jpz 

A 

_ i l l re-Mz-"y/b) _ e-JU»z + *y/»n 
(10-76) 

From Chapter 8 we recognize that the first term on the right side of Eq. (10-76) 
represents a plane wave propagating obliquely in the +z and ~y directions with 
phase constants (3 and n/b, respectively. Similarly, the second term represents a plane 
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FIGURE 10-7 
Propagating wave in parallel-plate 
waveguide as superposition of two 
plane waves. 

wave propagating obliquely in the + z and + j ; directions with the same phase con
stants /? and n/b as those of the first plane wave. Thus, a propagating TMX wave in 
a parallel-plate waveguide can be regarded as the superposition of two plane waves, 
as depicted in Fig. 10-7. mm 

In Subsection 8-7.2 on reflection of a parallelly polarized (TM) plane wave inci
dent obliquely at a conducting boundary plane, we obtained an expression for the 
longitudinal component of the total Ex field that is the sum of the longitudinal 
components of the incident E4 and the reflected Er, To adapt the coordinate desig
nations of Fig. 8-13 to those of Fig. 10-5, x and z must be changed to z and — y , 
respectively. We rewrite Ex of Eq. (8-128) as 

EJiy, z) = Ei0 cos 9i(ejPiycos6i - e-J0iy «>s0,)e-;/>.*sine,_ 

Comparing the exponents of the terms in this equation with those in Eq. (10-76), 
we obtain two equations: 

ft sin 0t = jff, (10-77) 

& cos et = r- (10-78) 
b 

(The field amplitudes involved in these equations are of no importance in the present 
consideration.) Solution of Eqs. (10-77) and (10-78) gives 

which is the same as Eq. (10-71), and 

«»e<-tb~w (10-79) 
where X = 2%/^ is the wavelength in the unbounded dielectric medium. 

We observe that a solution of Eq. (10-79) for 6t exists only when X/2b < 1. At 
X/2b = 1, or / = u/1 = l/2byfjle, which is the cutoff frequency in Eq. (10-67) for 
n = 1, cos 0, = 1, and 9t = 0. This corresponds to the case in which the waves bounce 
back and forth in the y-direction, normal to the parallel plates, and there is no propa
gation in the z-direction (fi = pi sin 6t = 0). Propagation of TMi mode is possible 
only when X < Xc = 2b or / > fc. Both cos 9t and sin 0t can be expressed in terms of 
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cutoff frequency fc. From Eqs. (10-79) and (10-77) we have 

X_JS 

K f 
and 

X f 
cos0,. = — = -j (10-80) 

-•■-H-v1-®1- (io-8i) 
Equation (10-81) is in agreement with Eqs. (10-39) and (10-42). 

We studied traveling waves in a parallel-plate waveguide in terms of bouncing 
plane waves in Section 8-7 with the aid of Fig. 8-12. We note here that Eqs. (10-79) 
and (10-81) are consistent respectively with Eqs. (8-119) and (8-120), which hold 
for both perpendicular and parallel polarizations. 

10-3.2 TE WAVES BETWEEN PARALLEL PLATES 

For transverse electric waves, Ez = 0, we solve the following equation for Hz(y), which 
is a simplified version of Eq. (10-48) with no x-dependence: 

d-1^- + h2H°z(y) = 0. (10-82) 

We note that Hz(y, z) = Hz(y)e~yz. The boundary conditions to be satisfied by Hz(y) 
are obtained from Eq. (10-51). Since Ex must vanish at the surfaces of the conducting 
plates, we require 

^ M = 0 a t y = 0 and y = b. 
dy 

Therefore the proper solution of Eq. (10-82) is of the form 

H°z(y) = Bn cos (^-\ (10-83) 

where the amplitude Bn depends on the strength of excitation of the particular TE 
wave. We obtain the only other nonzero field components from Eqs. (10-50) and 
(10-51), keeping in mind that dHJdx = 0: 

H°(y) = y-B„ sin (^fj, (10-84) 

J ^ ) - ^ B . , m ( ^ ) . (10-85) 

The propagation constant y in Eq. (10-84) is the same as that for TM waves given 
in Eq. (10-66). Inasmuch as cutoff frequency is the frequency that makes y = 0, the 
cutoff frequency for the TEn mode in a parallel-plate waveguide is exactly the same 
as that for the TMn mode given in Eq. (10-67). For n = 0, both Hy and Ex vanish; 
hence the TE0 mode does not exist in a parallel-plate waveguide. 
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in EXAMPLE 10-5 (a) Write the instantaneous field expressions for the TEX mode in a 
parallel-plate waveguide, (b) Sketch the electric and magnetic field lines in the yz-plane. 

Solution 
a) The instantaneous field expressions for the TEX mode are obtained by taking 

the real part of the products of the phasor expressions in Eqs. (10-83), (10-84), 
and (10-85) with e ^ ' ^ \ We have, for n = 1, 

Hz{y, z; t) = B1 cos ( y j cos {cot - /?z), (10-86) 

Hy{y, z; t) = —— B1 sin i y J sin (cot - pz), (10-87) 

Ex(y, 2; 0 = — — B1 sin f y j sin (cot - pz), (10-88) 

where the phase constant /? is given by Eq. (10-71), same as that for the TMX 
mode. 

b) The electric field has only an x-component. At t = 0, Eq. (10-88) becomes 
coub . fny\ , 

Ex(y, z;0) = — B1sml-£-\ sin £z. (10-89) 

Thus the density of Ex lines varies as sin (ny/b) in the j ; direction and as sin /?z 
in the z direction; Ex lines are sketched as dots and crosses in Fig. 10-8. 

The magnetic field has both a y- and a z-component. The equation of the 
magnetic field lines at t = 0 can be found from the following relation: 

dy HJy,z;0) fib (ny\ 

y/b-

1.0 

0.5 

y / W / W / / / , w / / V / / y A W / W / w ^ 

i>///////////,'/////////////)//////^U////////////////////////////M///////////}/////////////////M/////M >&Z 
0 TT/2 -K 3TT/2 2TT 

Magnetic field lines, 
0 ® Electric field lines (x-axis into the paper). 

FIGURE 10-8 
Field lines for TE± mode in parallel-plate waveguide. 
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Using the procedure illustrated in Example 10-3, we can integrate Eq. 
(10-90) to obtain 

sin ( ^ H cos fiz = Constant, 0 < y < b, (10-91) 

which is the equation for magnetic field lines in the yz-plane at t = 0. The 
constant in Eq. (10-91) lies between - 1 and + 1 . According to Eq. (10-86), 
the density of the Hz line varies as |cos (ny/b)\. Several magnetic field lines are 
drawn in Fig. 10-8. The lines repeat themselves for every change of 2% (rad) 
in fiz. mm 

10-3.3 ENERGY-TRANSPORT VELOCITY 

In Subsections 10-2.2 and 10-2.3 we noted that signals having a frequency higher 
than the cutoff frequency will propagate in a waveguide with a phase velocity up given 
by Eq. (10-42) and a group velocity ug given by Eq. (10-43). When the concept of 
group velocity was introduced in Section 8-4, it was defined as the velocity of the 
envelope of a narrow-band signal. For signals with a broad frequency spectrum, such 
as pulses of short durations, group velocity loses its significance because the low-
frequency components may be below cutoff (therefore cannot propagate) and the 
high-frequency components will travel with widely different velocities. These wide
band signals will then be badly distorted, and no single group velocity can represent 
the signal-propagation velocity. In such cases we examine the velocity at which energy 
propagates along a waveguide, or energy-transport velocity. 

For signal transmission in a lossless waveguide we define energy-transport veloc
ity, uen, as the ratio of the time-average propagated power to the time-average stored 
energy per unit guide length: 

(10-92) 

where the time-average power {Pz)av is equal to the time-average Poynting vector &m 
integrated over the guide cross section: 

{PXv = j s »m ' ds, (10-93) 

and the time-average stored energy per unit length W'av is the sum of the time-average 
stored electric energy density (we)m

 a n d t n e time-average stored magnetic energy 
density {wm)av integrated over the guide cross section: 

W'm = I [(weL + (wJJ ds. (10-94) 

For a particular mode of propagation in a waveguide we calculate (Pz)av
 a n d ^ 

from Eqs. (10-93) and (10-94), respectively, and substitute into Eq. (10-92) to find 
energy-transport velocity. 
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EXAMPLE 10-6 Determine the energy-transport velocity of the TM„ mode in a 
lossless parallel-plate waveguide. 

Solution We first obtain the time-average Poynting vector by using Eqs. (8-96), 
(10-63), (10-64), and (10-65): 

&av = i ^ ( E x H*) 
= ±<M4-azE0

yH0
x* + ayE°zH°x*). 

Thus, 
&m ' *z = -iP4E$H°x*) 

(10-95) 

^ A2 cos2 h y \ ( 1 0" 9 6 ) 

lh2 An COS ^ — j , 
where we have replaced y by jp. For a unit width of the parallel-plate waveguide, 
substitution of Eq. (10-96) in Eq. (10-93) yields 

(Pz)av = jb
o0>av-azdy 

A2. 
mepb . (10-97) 

Ah 2
 J±n-

Following the procedure leading to Eq. (8-96) from Eq. (8-83), we can readily 
prove from Eqs. (8-85) and (8-86) that 

and 

(WeL = - a « ( E - E * ) , 

(wmL = £a«(H • H*). 
Substituting Eqs. (10-63) and (10-65) in Eq. (10-98), we have 

_£ AI[^2 (n%y\ L $2 _ 2 (n%y Mav = 4An smn^) + ¥C0S 

and 
eb 

eb 

1+¥ 

(10-98) 

(10-99) 

(10-100) 

(10-101) 

Sh7 k An, 

where Eq. (10-15) has been used to replace /?2 + h2 by k2. Similarly, using Eq. (10-64) 
in Eq. (10-99), we obtain 

nny 
V 

and 

(wJ™ = ^ ( ^ W„2 cos2 

j:Mavdy^(^2)A2 = ^k2A2, 

(10-102) 

(10-103) 
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which is seen to be equal to the time-average stored electric energy per unit guide 
width obtained in Eq. (10-101). 

We are now ready to find uen from Eq. (10-92) by dividing (Pz)av
 m Ecl- (10-97) 

by the sum of the stored energies in Eqs. (10-101) and (10-103): 

Uen ~ k2 ~ k U , 

where we have made use of Eqs. (10-5) and (10-38). We recognize that the energy-
transport velocity in Eq. (10-104) is equal to the group velocity given in Eq. (10-43). 

10-3.4 ATTENUATION IN PARALLEL-PLATE WAVEGUIDES 
Attenuation in any waveguide (not just the parallel-plate waveguide) arises from two 
sources: lossy dielectric and imperfectly conducting walls. Losses modify the electric 
and magnetic fields within the guide, making exact solutions difficult to obtain. How
ever, in practical waveguides the losses are usually very small, and we will assume 
that the transverse field patterns of the propagating modes are not affected by them. 
A real part of the propagation constant now appears as the attenuation constant, 
which accounts for power losses. The attenuation constant consists of two parts: 

a = ad + ac, (10-105) 

where ad is the attenuation constant due to losses in the dielectric and <xc is that due 
to ohmic power loss in the imperfectly conducting walls. 

We will now consider the attenuation constants for TEM, TM, and TE modes 
separately. 

TEM Modes The attenuation constant for TEM modes on a parallel-plate trans
mission line has been discussed in Subsection 9-3.4. From Eq. (9-90) and Table 9-1 
we have approximately 

a" = f Ko = 2 V 7 = fn (Np/m)' (10_106) 

where €, n, and a are the permittivity, permeability, and conductivity, respectively, 
of the dielectric medium. In Eq. (10-106), r\ = 7i"/e is the intrinsic impedance of the 
dielectric if the dielectric is lossless. If the losses in the dielectric are represented by 
the imaginary part, - c" , of a complex permittivity as in Eq. (7-111), we may replace 
a by coe" and write Eq. (10-106) alternatively as 

CD€" 

ad £ —- n (Np/m). (10-107) 
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Also from Eq. (9-90) and Table 9-1 we have 

R X We rw / * 
1K0 b v oc 

(10-108) 

where ac is the conductivity of the metal plates. We note that, for TEM modes, ocd is 
independent of frequency, and ac is proportional to yjf. We note further that ocd -> 0 
as a -> 0 and that ac -> 0 as crc -» oo, as expected. 

TM Modes The attenuation constant due to losses in the dielectric at frequencies 
above fc can be found from Eq. (10-66) by substituting ed = e + (ff/jco) for e. We have 

y=j ^ii-a-ff 1/2 

nrc = i . / ^ f - | y l i 1 - 7 ^ 0 " 

s / o , V - - i -nrc 7W/iC7 
t» /X€ — 

H7T 

- 1 1 1 / 2 

- 1 

(10-109) 

Only the first two terms in the binomial expansion for the second line in Eq. (10-109) 
are retained in the third line under the assumption that 

.2 
nn 

From Eq. (10-67) we see that 

which enables us to write 

— = Infant, 

nn ' ^ V - l y J = wV^Vl - (w»2 

With the above relation, Eq. (10-109) becomes 

y-n+JP^.fc 2v^Vi-(/«//)2 

from which we obtain 

and 

0O = 
an 

2 /1 - (fjf)2 

+ )<0yfayl\-{fjf)\ 

(Np/m) 

P = w V W l - (fJf)2 (rad/m). 

Thus, ad for TM modes decreases when frequency increases. 

(10-110) 

(10-111) 
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To find the attenuation constant due to losses in the imperfectly conducting 
plates, we use Eq. (9-88), which was derived from the law of conservation of energy. 
Thus, 

~-=wy <10"112) 

where P(z) is the time-average power flowing through a cross section (say, of width w) 
of the waveguide, and PL{z) is the time-average power lost in the two plates per unit 
length. For TM modes we use Eqs. (10-64) and (10-65): 

P(z) = wjb
o-UE°y)(H°xrdy 

wcoeB (bAn\2 rb . fnny\ , -V(-^)J.° M ( - / / n (io-n3) 
fbA.Y 

= wwefibi , . 

The surface current densities on the upper and lower plates have the same magnitude. 
On the lower plate where } = 0we have 

K 1 = ̂  = 0 ) 1 - ^ . 
mi 

The total power loss per unit length in two plates of width w is 

' 1ITOI2T,\ fcoebAn
X2 

PL(z) = 2w( - \Jl\2Rs\ = M-^j R.. (10-114) 

Substitution of Eqs. (10-113) and (10-114) in Eq. (10-112) yields 

20)€RS 2RS r.T , ^ 

where, from Eq. (9-26b), 
Rs = J~^ (")• (10-H6) 

The use of Eq. (10-116) in Eq. (10-115) gives the explicit dependence of ac on / for 
TM modes: 

J*CJC_ (10-117) 
^V °< Mim-Ucim 

A sketch of the normalized ac is shown in Fig. 10-9, which reveals the existence of a 
minimum. 

TE Modes In Subsection 10-3.2 we noted that the expression for the propagation 
constant for TE waves between parallel plates is the same as that for TM waves. It 
follows that the formula for ad in Eq. (10-110) holds for TE modes as well. 
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>f/fc 

FIGURE 10-9 
Normalized attenuation constant due to 
finite conductivity of the plates in 
parallel-plate waveguide. 

In order to determine the attenuation constant ac due to losses in the imperfectly 
conducting plates, we again apply Eq. (10-112). Of course, the field expressions in 
Eqs. (10-83), (10-84), and (10-85) for TE modes must now be used. We have 

and 

Consequently, 

P(z) = wpJ(E0
x)(H°rdy 

wcojuj? fbBn 

— WCDjlfib 
bB 

nny\ 
v)dy (10-118) 

2wr 

PL(z) = 2w£\J°x\2Rs) 
= w\H°z(y = 0)\2RZ = wB2

nRs. 

^ PL(z) = 2RS (nnV 
a° 2P(z) (Ofifib \b ) 

2Rsn 

(10-119) 

(10-120) 

ribpy/l - (fjf)2' 

A normalized ac curve based on Eq. (10-120) is also sketched in Fig. 10-9. Unlike 
ac for TM modes, ac for TE modes does not have a minimum but decreases mono-
tonically as / increases. 
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10—4 Rectangular Waveguides 

The analysis of parallel-plate waveguides in Section 10-3 assumed the plates to be 
of an infinite extent in the transverse x direction; that is, the fields do not vary with 
x. In practice, these plates are always finite in width, with fringing fields at the edges. 
Electromagnetic energy will leak through the sides of the guide and create undesirable 
stray couplings to other circuits and systems. Thus practical waveguides are usually 
uniform structures of a cross section of the enclosed variety. The simplest of such 
cross sections, in terms of ease both in analysis and in manufacture, are rectangular 
and circular. In this section we will analyze the wave behavior in hollow rectangu
lar waveguides. Circular waveguides will be treated in the next section. Rectangular 
waveguides are more commonly used in practice than circular waveguides. 

In the following discussion we draw on the material in Section 10-2 concern
ing general wave behaviors along uniform guiding structures. Propagation of time-
harmonic waves in the +z direction with a propagation constant y is considered. 
TM and TE modes will be discussed separately. As we have noted previously, TEM 
waves cannot exist in a single-conductor hollow or dielectric-filled waveguide. 

10-4.1 TM WAVES IN RECTANGULAR WAVEGUIDES 

Consider the waveguide sketched in Fig. 10-10, with its rectangular cross section 
of sides a and b. The enclosed dielectric medium is assumed to have constitutive 
parameters e and p. For TM waves, Hz = 0 and Ez is to be solved from Eq. (10-24). 
Writing Ez(x, y, z) as 

Ez(x,y,z) = E°z(x,y)e-?z, (10-121) 

we solve the following second-order partial differential equation: 

/ d2 d2 \ 

FIGURE 10-10 
A rectangular waveguide. 
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Here we use the method of separation of variables discussed in Section 4-5 by letting 

E°z(x,y) = X(x)Y(y). (10-123) 

Substituting Eq. (10-123) in Eq. (10-122) and dividing the resulting equation by 
X(x)Y(y), we have 

1 d2X(x) 1 d2Y(y) 7 / 
w v ' ' ' z (10-124) X(x) dx2 Y(y) dy2 + h2 

Now we argue that, since the left side of Eq. (10-124) is a function of x only and the 
right side is a function of y only, both sides must equal a constant in order for the 
equation to hold for all values of x and y. Calling this constant (separation constant) 
kx, we obtain two separate ordinary differential equations: 

d2X(x) 
dx2 

d2Y(y) 
dy2 

+ k2
xX{x) = 0, 

+ k2Y(y) = 0, 

where 
k2 = h2 

(10-125) 

(10-126) 

(10-127) 

The possible solutions of Eqs. (10-125) and (10-126) are listed in Table 4 -1 , 
Section 4-5. The appropriate forms to be chosen must satisfy the following boundary 
conditions. 

1. In the x-direction: 

2. In the 

Obviously, 

X(x) in 

Y(y) in 

y-direction: 

then, we must choose: 

the form of 

the form of 

sin kxx, 

K = 
sin kyy, 

K = 

E°z(0,y)-
E°z(a 

E°z(x 
E°z(x 

a 

nn 

y)-

0) 
b): 

m 

n = 

= 0, 
= 0. 

- o , 
= 0. 

= 1,2,3, 

1, 2, 3, . 

(10-128) 
(10-129) 

(10-130) 
(10-131) 

and the proper solution for E°(x, y) is 

(10-132) 
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From Eq. (10-127) we have 

549 

h2 = 
mn\2 

— + \a 
nn\2 

-r) ■ 
W 

(10-133) 

The other field components are obtained from Eqs. (10-25) through (10-28): 

(10-134) _, x y mn\^ mn \ . nn 

E°y(x,y)=-^[-)E0sm 
a 

x cos 

T,n/ x J & K / H M T - , . (mn \ (nn H°x(x,y)=J-Tr( — )£ 0s in( — xjcosl — y 

T,n/ x jcoe (mn\^ (mn \ . (nn 

where 

y=jP=jJco2iie-[—j -

(10-135) 

(10-136) 

(10-137) 

(10-138) 

Every combination of the integers m and n defines a possible mode that may be 
designated as the TMm„ mode; thus there are a double infinite number of TM modes. 
The first subscript denotes the number of half-cycle variations of the fields in the 
x-direction, and the second subscript denotes the number of half-cycle variations of 
the fields in the ^-direction. The cutoff of a particular mode is the condition that 
makes y vanish. For the TMm„ mode the cutoff frequency is 

(10-139) 

which checks with Eq. (10-35). Alternatively, we may write 

(10-140) 

where Xc is the cutoff wavelength. 
For TM modes in rectangular waveguides, neither m nor n can be zero. (Do you 

know why?) Hence, the TN^ x mode has the lowest cutoff frequency of all TM modes 
in a rectangular waveguide. The expressions for the phase constant p and the wave 
impedance ZTM for propagating modes in Eqs. (10-38) and (10-45), respectively, 
apply here directly. 
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EXAMPLE 10-7 (a) Write the instantaneous field expressions for the TMii mode in 
a rectangular waveguide of sides a and b. (b) Sketch the electric and magnetic field 
lines in a typical xy-plane and in a typical yz-plane. 

Solution 

a) The instantaneous field expressions for the T M n mode are obtained by multi
plying the phasor expressions in Eqs. (10-132) and (10-134) through (10-137) 
with ejimt~pz) and then taking the real part of the product. We have, for m = n = 1, 

Ex(x, y, z; t) = -j I - j E0 cos f - x ) sin ( ̂  y j sin {cot - pz), (10-141) 

Ey(x, y, z; t) = -j I ̂ j E0 sin I - x j cos ( ̂  y J sin {cot - (3z), (10-142) 

Ez{x, y, z; t) = E0 sin f - x J sin I - y \ cos {cot - pz), (10-143) 

#x(x, y, z; 0 = - ^ - f ^ j £ 0 sin ( - x J cos f ̂  y J sin (cot - Pz), (10-144) 

H/x, y, z; 0 = - j - f - J E0 cos I - x J sin ( ^ y J sin (cot - jgz), (10-145) 

#z(x, y, z; t) = 0, (10-146) 
where 

P = ̂ ^¥ = Jco^e - (^J - (£j. (10-147) 
b) In a typical xy-plane, the slopes of the electric field and magnetic field lines are 

£l=-«cot^)tan(^)-
(10-148) 

(10-149) 

x/a 

■ Electric field lines 
(b) 

Magnetic field lines 

FIGURE 10-11 
Field lines for T M U mode in rectangular waveguide. 
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These equations are quite similar to Eq. (10-73) and can be used to sketch the 
E and H lines shown in Fig. 10-11(a). Note that from Eqs. (10-148) and (10-149), 

/dy\ (dy 
dxJAdxJu 

= - 1 , (10-150) 

indicating that E and H lines are everywhere perpendicular to one another. Note 
also that E lines are normal and that H lines are parallel to conducting guide 
walls. 

Similarly, in a typical yz-plane, say, for x = a/2 or sin (nx/a) = 1 and 
cos (nx/a) = 0, we have 

SW(F)- ,IF')'"<«"-» (10-151) 

and H has only an x-component. Some typical E and H lines are drawn in 
Fig. 10-11(b) for t = 0. ■■ 

10-4.2 TE WAVES IN RECTANGULAR WAVEGUIDES 
For transverse electric waves, Ez = 0, we solve Eq. (10-48) for Hz. We write 

Hz(x,y,Z) = H°z(x,y)e-y\ (10-152) 

where H°z(x, z) satisfies the following second-order partial differential equation: 

£ + $ + ^V,yH0. (10-153) 

Equation (10-153) is seen to be of exactly the same form as Eq. (10-122). The solution 
for Hz(x, y) must satisfy the following boundary conditions. 

1. In the ^-direction: 

2. In the ^-direction: 

dH°z 

dx 
dH°z 

dx 

8H°Z 

dy 
dH°z 

dy 

= 0(Ey = 0) 

= 0(£, = 0) 

= 0(£x = 0) 

= 0 ( ^ = 0) 

at x — 0, 

at x = a. 

at y = 0, 

at y = b. 

(10-154) 

(10-155) 

(10-156) 

(10-157) 

It is readily verified that the appropriate solution for Hz{x, y) is 

H°z{x, y) = H0 cos ( — x j cos I y y ) (A/m). (10-158) 
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The relation between the eigenvalue h and (mn/a) and (nn/b) is the same as that given 
in Eq. (10-133) for TM modes. 

The other field components are obtained from Eqs. (10-49) through (10-52): 

_ft. , jatfi nn\TT mn \ . Inn i 
^ > y ) = ; - / ( y J H 0 c o s ^ - x j s 1 n ^ y j , 
_n/ . joj/i /mn\TV . (mn \ fnn 

*>> y) - -'-/ (vJH°sin ( T XJ COS ( T y 
rrO/ x V (mn\rr • / W 7 1 \ / W 7 t \ H°(x> » = /? ( v j H » s m ( T xjcos U 7 

W7T 
H,V, y) = f, y H0 cos — x 1 sin I y y ], mn nn 

(10-159) 

(10-160) 

(10-161) 

(10-162) 

where y has the same expression as that given in Eq. (10-138) for TM modes. 
Equation (10-139) for cutoff frequency also applies here. For TE modes, either 

m or n (but not both) can be zero. If a > b, the cutoff frequency is the lowest when 
m = 1 and n = 0: 

(10-163) (/c)T - l - u ( U r / i 

^~2a^ 2a ( ' ^ 

' wavelength is 

(4)TE,„ = 2a (m). (10-164) 

Hence the TE1 0 mode is the dominant mode of a rectangular waveguide with a > b. 
Because the TE10 mode has the lowest attenuation of all modes in a rectangular 
waveguide and its electric field is definitely polarized in one direction everywhere, it 
is of particular practical importance (see Subsection 10-4.3). 

EXAMPLE 10-8 (a) Write the instantaneous field expressions for the TE1 0 mode in 
a rectangular waveguide having sides a and b. (b) Sketch the electric and magnetic 
field lines in typical xy-, yz-, and xz-planes. (c) Sketch the surface currents on the 
guide walls. 

Solution 

a) The instantaneous field expressions for the dominant TE1 0 mode are obtained 
by multiplying the phasor expressions in Eqs. (10-158) through (10-162) with 
eKcat-pZ) a n ( j fam taking the real part of the product. We have, for m = 1 and 
n = 0, 

Ex(x,y,z;t) = 0, (10-165) 
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where 

can (n 

Ez(x, y, z; t) = 0, 

Ey(x, yiz;t) = ~r(- )H0 sin ( - x ) sin (cot - $z\ 

Hx{x, y, z; t) = - ^ ( H # O sin I - x j sin {cot - fiz), 

Hy(x, y, z; t) = 0, 

Hz(x, y, z; t) = H0 cos ( - x ) cos (cot - fiz), 

(10-166) 

(10-167) 

(10-168) 

(10-169) 

(10-170) 

(10-171) 

b) We see from Eqs. (10-165) through (10-170) that the TE1 0 mode has only three 
nonzero field components—namely, Ey, Hx, and Hz. In a typical xy-plane, say, 
when sin (cot - fiz) = 1, both Ey and Hx vary as sin (nx/a) and are independent 
of ^ as shown in Fig. 10-12(a). 

In a typical yz-plane, for example at x = a/2 or sin (nx/a) = 1 and 
cos (nx/a) = 0, we only have Ey and Hx, both of which vary sinusoidally with 
/fe. A sketch of Ey and Hx at t = 0 is given in Fig. 10-12(b). 

y/b 
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1 
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FIGURE 10-12 
Field lines for TE10 mode in rectangular waveguide. 



554 10 Waveguides and Cavity Resonators 

x/a = 

x/a = 0 

FIGURE 10-13 
Surface currents on guide walls 
for TE10 mode in rectangular 
waveguide. 

The sketch in an xz-plane will show all three nonzero field components— 
Ey, Hx, and Hz. The slope of the H lines at t = 0 is governed by the following 
equation: 

S) H
= F© t a n G x | t a n f e (1(M72) 

which can be used to draw the H lines in Fig. 10-12(c). These lines are indepen
dent of v. 

c) The surface current density on guide walls, Js, is related to the magnetic field 
intensity by Eq. (7-66b): 

J s = a„ x H, (10-173) 

where a„ is the outward normal from the wall surface and H is the magnetic field 
intensity at the wall. We have, at t = 0, 
Js(x = 0) = -ayHz(0, y, z; 0) = -ayH0 cos 0z, (10-174) 
Js(x = a) = ayHz(a, v, z; 0) = Js(x = 0), (10-175) 
Js(y = 0) = zxHz(x, 0, z; 0) - azHx(x, 0, z; 0) 

71 \ B f 71 
= axH0 cos ( — x ) cos /?z — a . - ) J J o s i n ( T x ) s i n 0 z , (10-176) 

(10-177) Js(v = b)= - Js(v = 0). 
The surface currents on the inside walls at x = 0 and at v = b are sketched in 
Fig. 10-13. N mm 

EXAMPLE 10-9 Standard air-filled waveguides have been designed for the radar 
bands listed in Subsection 7-7.4. One type, designated WG-16, is suitable for X-band 
applications. Its dimensions are: a = 2.29 cm (0.90 in.) and b = 1.02 cm (0.40 in.). If 
it is desired that a WG-16 waveguide operate only in the dominant TE10 mode and 
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that the operating frequency be at least 25% above the cutoff frequency of the TE10 
mode but no higher than 95% of the next higher cutoff frequency, what is the allow
able operating-frequency range? 
Solution For a = 2.29 x 10"2 (m) and b = 1.02 x 10"2 (m), the two modes having 
the lowest cutoff frequencies are TE10 and TE20- Using Eq. (10-139), we find 

^ ^ - 2 x L V x 0 1 0 - ^ 6 - 5 5 x l ° 9 (HZ)' 
(D20 = - = 13.10 xlO9 (Hz).* a 

Thus the allowable operating-frequency range under the specified conditions is 

1.25(X)TElo</<0.95(/c)TE2O 
or 

8.19 (GHz) <f< 12.45 (GHz). « B 

10-4.3 ATTENUATION IN RECTANGULAR WAVEGUIDES 

Attenuation for propagating modes results when there are losses in the dielectric and 
in the imperfectly conducting guide walls. Because these losses are usually very small, 
we will assume, as in the case of parallel-plate waveguides, that the transverse field 
patterns are not appreciably affected by the losses. The attenuation constant due 
to losses in the dielectric can be obtained by substituting ed = e + (o/joo) for e in 
Eq. (10-138). The result is exactly the same as that given in Eq. (10-110), which is 
repeated below: 

an ' 
ad = — ' (10-178) 

2Vl- ( /c / / ) 2 

where a and n are the equivalent conductivity (see Eq. 7-112) and intrinsic impedance 
of the dielectric medium, respectively, and/c is given by Eq. (10-139). It is easy to see 
from Eq. (10-178) that the attenuation constant of propagating waves due to losses 
in the dielectric decreases monotonically from an infinitely large value toward the 
value 077/2 as the frequency increases from the cutoff frequency. 

To determine the attenuation constant due to wall losses, we make use of Eq. 
(10-112). The derivations of ac for the general TMm„ and TEm„ modes tend to be 
tedious. Below we obtain the formula for the dominant TE10 mode, which is the most 
important of all propagating modes in a rectangular waveguide. 

For the TE10 mode the only nonzero field components are Ey, Hx, and Hz. 
Letting m = 1, n = 0, and h = (n/a) in Eqs. (10-160) and (10-161), we calculate the 

Note that (/c)01 = (c/2b) > (fc)20 and (/ c)n = (c/2a)y/l + (a/b)2 > (fc)2 
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time-average power flowing through a cross section of the waveguide: 

P(z) = jb
0ja

0-m)(n°x)*dxdy 

= i CO^JHI | ; £ sin2 ( J x ) dx dy (10-179) 

In order to calculate the time-average power lost in the conducting walls per 
unit length, we must consider all four walls. From Eqs. (10-173), (10-158), and 
(10-161) we see that 

and 
Js°(x = 0) = Js°(x = a) = -ayH°z(x = 0) = ~ayH0 

Wy = 0) = -fty = b) = axH°z(y = 0) - azH°x(y = 0) 

(10-180) 

= SLXH0 cos ( - x ) - a z — i f 0 s i n f - x ) . (10-181) 

The total power loss is then double the sum off the losses in the walls at x = 0 and 
at y = 0. We have 

PL(z) = 2[PL(z)]x=0 + 2[PL(z)l=0, 
where 

and 
[AMUo = £ \ I * = v\2R'dy = \ HoR* 

[pL(z)],=0 = J; 2 □■to = o)l2 + K(y = o)|2]Rs^ 
> X 2 ~ 

1 + 

(10-182) 

(10-183) 

(10-184) 
H0RS. 

I _L_L 
10 15 20 25 

FIGURE 10-14 
Attenuation due to wall losses in 
rectangular copper waveguide for 
TE10 and T M n modes. 

35 40 / (GHz) a = 2.29 (cm), b = 1.02 (cm). 
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Substitution of Eqs. (10-183) and (10-184) in Eq. (10-182) yields 

P^) = {b + - l + l ^ ?)TK 
b + aJjr)2'\HiR, 

The last expression is the result of recognizing that 

P= / f f l V - l - l =o>V^ / l - ( 4 l ■ 

Inserting Eqs. (10-179) and (10-185) in Eq. (10-112), we obtain 

(10-185) 

(10-186) 

Rs[l + (2b/a)(fc/fn 

1 / nj)xc 

nb^cc\\-{fjff-] Hffl (Np/m). 
(10-187) 

Equation (10-187) reveals a rather complicated dependence of (ac)TEl0 on the 
ratio (fc/f). It tends to infinity when / is close to the cutoff frequency, decreases 
toward a minimum as / increases, and increases again steadily for further increases 
in / . 

For a given guide width a, the attenuation decreases as b increases. However, 
increasing b also decreases the cutoff frequency of the next higher-order mode TE n 
(or TMn), with the consequence that the available bandwidth for the dominant TE10 
mode (the range of frequencies over which TE10 is the only possible propagating 
mode) is reduced. The usual compromise is to choose the ratio b/a in the neighbor
hood of \. 

If we follow a similar procedure that led to Eq. (10-187), the attenuation constant 
due to wall losses for TM modes can be derived. For the TMU mode we obtain 

foWi = 
2Rs(b/a2 + a/b2) 

riaby/l-ifjfftl/a2 + 1/b2) 
(10-188) 

In Fig. 10-14 are plotted the graphs of (ac)TEl0 and (ac)TMli for a standard air-filled 
WR-16 rectangular copper waveguide with a = 2.29 (cm) and b = 1.02 (cm). From 
Eq. (10-139) we find (/c)10 = 6.55 (GHz) and (/c)n = 16.10 (GHz). The curves show 
that the attenuation constant increases rapidly toward infinity as the operating fre
quency approaches the cutoff frequency. In the operating range (/ > fc), both curves 
possess a broad minimum. The attenuation constant of the TE10 mode is everywhere 
lower than that of the T M n mode. These facts have direct relevance in the choice 
of operating modes and frequencies. 
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EXAMPLE 10-10 A TE10 wave at 10 (GHz) propagates in a brass—oc = 1.57 x 
107 (S/m)—rectangular waveguide with inner dimensions a = 1.5 (cm) and b = 
0.6 (cm), which is filled with polyethylene—er = 2.25, \ir = 1, loss tangent = 4 x 10 ~4. 
Determine (a) the phase constant, (b) the guide wavelength, (c) the phase velocity, 
(d) the wave impedance, (e) the attenuation constant due to loss in the dielectric, and 
(f) the attenuation constant due to loss in the guide walls. 

Solution At / = 1010 (Hz) the wavelength in unbounded polyethylene is 
u _ 3 x 108 _ 2 x 108 

f~j225x l O 1 0 " ^ 1 

The cutoff frequency for the TE10 mode is, from Eq. (10-163), 

u _ 2 x 108 

2 A " 2 x(1.5 x 10"2) 

a) The phase contant is, from Eq. (10-186), 

* = T = - ^ . ^ = - ^ 1 0 - = 0.02 (m). 

fc = — = ^ ^ g i n_ = 0,667 x 1010 (Hz). 

P u\l \f) 2x l0 8 V 

= 74.5TT = 234 (rad/m). 
b) The guide wavelength is, from Eq. (10-39), 

K = - T = = = = T ^ = o-0268 M-9 Vi-(/c//)2 °-745 

c) The phase velocity is, from Eq. (10-42), 
u 9 y in 8 

up = . = ^ - i f - = 2.68 x 108 (m/s). 
P Vi -UJff o-745 

d) The wave impedance is, from Eq. (10-57), 

(Z ) J * 3 7 ? / 7 ^ 3371 (O) 

e) The attenuation constant due to loss in dielectric is obtained from Eq. (10-178). 
The effective conductivity for polyethylene at 10 (GHz) can be determined from 
the given loss tangent by using Eq. (7-115): 

a = 4 x 10"4coe = 4 x 10~4 x (2n x 1010) x (-— x 10~9 

\307l 
= 5 x 10"4 (S/m). 

Thus, 

ad = °- ZTE = -5 X
 2

10 4 x 337.4 = 0.084 (Np/m) 

= 0.73 (dB/m). 

file:///307l
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f) The attenuation constant due to loss in the guide walls is found from Eq. (10-187). 
We have, from Eq. (9-26b), 

R.= W c 7rl0 lo(47il0~7) = 0.0501 (Q), 
1.57 x 107 

= *J1 + (Tb/aWm = a0501[l + (1.2/1.5)(0.667)2] = 

ribjl-(fjf)2 251 x 0.006 x 0.745 
= 0.526 (dB/m). 

10-4.4 DISCONTINUITIES IN RECTANGULAR WAVEGUIDES 

Just as in the case of transmission lines, it is desirable to have impedance match for 
wave propagation in waveguides in order to achieve maximum power transfer and 
to reduce local power loss due to a high standing-wave ratio. There is a need to in
troduce shunt susceptances at appropriate points along a waveguide. These shunt 
susceptances often take the form of a thin metal diaphragm with an iris such as those 
shown in Figs. 10-15(a) and 10-15(b). When a diaphragm with an iris is in place, 
the electric and magnetic fields must satisfy the additional boundary conditions on 
the metal surface. If the waveguide operates in the dominant TE10 mode, the addi
tional boundary conditions require the presence of all higher-order modes, and the 
situation is vastly more complicated. However, the waveguide is usually designed so 
that only the dominant mode can propagate. The higher-order modes are then all 
cutoff modes; they are evanescent and are localized near the iris. An analytical deter
mination of the effective shunt susceptance of an iris would necessitate the solution 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i 

^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ^ 

JBC 

(a) Capacitive iris and equivalent susceptance 

K\\\\\\\\\\\\\\\\\\N 

tN\\\\\\\\\\\\\V 

Pi 

(b) Inductive iris and equivalent susceptance. 
FIGURE 10-15 
Irises in waveguide as susceptances. 
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(a) A protruding post. (b) A tuning screw. 
FIGURE 10-16 
Post or screw in a waveguide. 

of a difficult electromagnetics problem. We will offer only a qualitative discussion 
here and give the approximate formulas* for the irises in Figs. 10-15(a) and 10-15(b). 

The iris in Fig. 10-15(a) is made of thin conducting diaphragms extending from 
one narrow wall to the other. As seen in Fig. 10-12(a), the electric field lines of the 
dominant TE10 mode in a cross section are in the y-direction, going across the nar
row dimension. Reducing this dimension from b to d may be expected to have the 
effect of increasing this field as well as the stored electric energy locally. Consequently, 
the equivalent shunt susceptance is expected to be capacitive. An approximate ex
pression for the normalized capacitive susceptance is 

MO Aq 
csc (10-189) 

where Y10 is the reciprocal of ZTEl0 from Eq. (10-57) and Xg is the guide wavelength 
given in Eq. (10-39). As we have indicated before, the actual situation is much more 
complicated, owing to the presence of the evanescent higher-order modes near the 
iris. A more accurate analysis will show that bc is not strictly proportional to (b/Ag). 
The approximate formula in Eq. (10-189) is accurate to within 5% in the normal 
range of operating frequencies. 

The iris in Fig. 10—15(b) provides additional current paths through the conducting 
diaphragms in the y-direction, causing new longitudinal magnetic field to exist in the 
iris opening and increasing the stored mangetic energy locally. Hence the equivalent 
shunt susceptance is expected to be inductive. An approximate expression for the 
normalized inductive susceptance of the iris is 

u Bi K .2 (nd 

bi = T~= — - cot2 — Y10 a \2a 
(10-190) 

Another type of discontinuity that provides a shunt susceptance is a conducting 
post protruding into the waveguide on a broad face, as in Fig. 10-16(a). If the post 
length d is small, the shunt susceptance is capacitive. When d becomes an appreciable 
fraction of b, considerable current can flow along the post, causing an inductive effect. 
A resonance occurs when d is in the neighborhood of (3/4)fc. Still longer d will result 

f For more details, see R. E. Collin, Field Theory of Guided Waves, McGraw-Hill, New York, 1960, 
Chapter 8; C. C. Johnson, Field and Wave Electrodynamics, McGraw-Hill, New York, 1965, Chapter 5. 
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in an inductive susceptance. In practical usage the post usually takes the form of a 
metal screw, as shown in Fig. 10-16(b). The screw could be inserted in a slit cut 
axially in the center of the broad face. The center slit does not appreciably disturb 
the field pattern in the waveguide, and the sliding screw with a variable d can be 
used for tuning and matching a given load to the waveguide. This is a technique 
similar to the single-stub matching scheme discussed in Subsection 9-7.2. 

EXAMPLE 10-11 Measurements on a WG-10 S-band waveguide (a = 7.21 cm, b = 
3.40 cm) feeding a horn antenna show a standing-wave ratio (SWR) of 2.00 at the 
3 (GHz) operating frequency, and the existence of a maximum electric field at 12 (cm) 
from the neck of the horn. Find the location and the dimensions of a symmetrical 
inductive iris necessary to achieve a perfect match. Assume the waveguide to be 
lossless. 

Solution With a = 7.21 x 10"2 (m) and b = 3.40 x 10"2 (m), the cutoff frequency 
for the dominant TE10 mode is 

Jc 2a 
3 x 108 

= , * ^ 2 = 2-08 x 109 (Hz). 
2 x 7.21 x 10"2 v } 

The guide wavelength is, from Eq. (10-39), 

1 - ^ - c 

9~\Ji-(fJff~\IF^PC 
3 x 108 

= 0.139 (m) = 13.9 (cm). 109V32 - 2.08: 

Thus, the measured maximum of the electric field is at a distance 12/13.9 = 0.863/lg 
from the neck of the horn. At that location the normalized effective load resistance 
is (see Eq. 9-145) 

R0 
rL = ^ = S. 

The corresponding normalized conductance is 

gL~Y0~s 
1 =0.50. 

2.00 

The rest of the problem is that of single-stub matching discussed in Subsection 9-7.2. 
We use the Smith admittance chart and proceed as follows (see Fig. 10-17): 

1. Enter gL = 0.50 on an Smith admittance chart as PM (point of maximum electric 
field). 
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P/(0.348) 

0.25 

FIGURE 10-17 
Construction on Smith admittance chart (Example 10-11). 

2. Draw a |r|-circle centered at 0 with radius OPM, intersecting the g = 1 circle at 
two points, Px and P2. Read 

a t P x : y i = 1 + j0.70, 
a t P 2 : 3̂ 2 = 1 —y0.70. 

Point P2 is not useful to us because it requires a capacitive (positive) susceptance 
to achieve matching. 

3. Draw a straight line from 0 through Px to point P\ on the perimeter. Read 0.348 
on the "wavelength toward load" scale at P\. This is (0.863 - 0.348)^ = 7.16 (cm) 
from the neck of the horn and is where an inductive iris of a normalized suscep
tance — 0.70 should be placed. 

4. Using Eq. (10-190), we determine the distance d of the required inductive iris 
shown in Fig. 10-15(b): 

n n 13-9 J nd \ - 0 . 7 0 = - — o o t ^ I 7 m j , 
from which we find d = 4.72 (cm). m 

10—5 Circular Waveguides 

Electromagnetic waves can also propagate inside round metal pipes. In this section 
we will study wave behaviors in circular waveguides—metal pipes having a uniform 
circular cross section and filled with a dielectric medium. 

The basic equations to be satisfied by time-harmonic electric and magnetic field 
intensities in the charge-free dielectric region inside a waveguide are Eqs. (10-3) and 
(10-4), which are repeated below: 

V2E + k2E = 0 (10-191) 
and 

V2H + /c2H = 0. (10-192) 

For a straight waveguide with a uniform circular cross section and having its axis 
in the z-direction, it is expedient to decompose the three-dimensional Laplacian op-



10-5 Circular Waveguides 563 

erator V2 into two parts: V2^ for the transverse coordinates, and V2 for the longi
tudinal z-component. Similarly, both E and H vectors can be written as the sum of 
a transverse component and an axial component: 

E = E r + azEz (10-193) 
a n d H = H r + azHz, (10-194) 

where the subscript T denotes the two-dimensional transverse component. We already 
know from Subsection 10-2.1 that TEM waves cannot exist in such a waveguide 
without an inner conductor. The propagating waves can be classified into two groups, 
as in rectangular waveguides: transverse magnetic (TM) and transverse electric (TE). 
For TM waves, Hz = 0, Ez ^ 0, and all field components can be expressed in terms 
of Ez = E°ze~yz, where E°z satisfies the homogeneous Helmholtz's equation 

V2^£z° + (y2 + k2)E°z = 0 (10-195) 
or 

\^E°Z + h2E°z = 0. (10-196) 

For TE waves, Ez = 0, Hz # 0, and all field components can be expressed in terms 
of Hz = H°ze~yz, where H°z satisfies exactly the same homogeneous Helmholtz's 
equation required of Ez above. 

Although Eq. (10-196) is similar in form to Eq. (10-24), their solutions are quite 
different. We will consider the solution of Eq. (10-196) in the following subsection. 

10-5.1 BESSEL'S DIFFERENTIAL EQUATION AND BESSEL FUNCTIONS 

In cylindrical coordinates the expansion of Eq. (10-196) gives (see Eq. 4-8) 

1 d ( dE°\ 1 d2E° 
ZrJr{r^) + SW + h2E° = °- (10"197) 

To solve Eq. (10-197), we apply the method of separation of variables by assuming 
a product solution. 

E°z(r, 0) = K(r)0((/>), (10-198) 

where R(r) and 0(0) are functions only of r and 0, respectively. Substituting solution 
(10-198) in Eq. (10-197) and dividing by the product #(r)O(0), we obtain 

d 
R(r) dr 

'rdR(rY 
dr 

1 rf2O(0) 
+ h r = ~^HX ill • (10-199) 

0(0) d(j)2 

Now the left side of Eq. (10-199) is a function of r only, and the right side is a 
function of 4> only. For Eq. (10-199) to hold for all values of r and 0, both sides 
must be equal to the same constant. Let this constant (separation constant) be n2. 
We can separate Eq. (10-199) into two ordinary differential equations: 

<PQ(0) 
# 2 + n2O(0) = 0 (10-200) 
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FIGURE 10-18 
Bessel functions of the first kind. 

and 

or 

r d 
R(r) dr 

dR{r) 
dr 

2,2 _ M2 + h2r2 = n 

(10-201) 

Equation (10-201) is known as BesseVs differential equation. 
A solution of Eq. (10-201) can be obtained by assuming R(r) to be a power series 

in r with unknown coefficients, 

R(r)= £ Cp(hry, 
P = o 

(10-202) 

substituting it into the equation, and equating the sum of the coefficients of each 
power of r to zero. The actual work is tedious. * The result is 

R(r) = CnJn(hr), 

where Cn is an arbitrary constant, and 

Jn(hr)= £ 
(-l)m(/ir)' n + 2m 

^o m\(n + m)\2 n + 2m 

(10-203) 

(10-204) 

is called the Bessel function of the first kind of nth order with an argument hr. 
Equation (10-204) holds only for integral values ofn, which is true for cases of our 
interest, as we shall see later. Jn(x) versus x curves of the first few orders have been 
plotted in Fig. 10-18. Several things are worth noting. First, J„(0) = 0 for all n except 
when n = 0; for the zeroth order, Jo(0) = 1. Second, J„{x) are alternating functions 

f N. W. MaLachlan, Bessel Functions for Engineers, 2d ed, Oxford University Press, New York, 1946. 
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TABLE 10-2 
Zeros of J„(x), xnp 

1 
2 

n = 0 

2.405 
5.520 

n = l 

3.832 
7.016 

n = 2 

5.136 
8.417 

of decreasing amplitudes that cross the zero level at progressively shorter intervals. 
As x becomes very large, all Jn(x) approach a sinusoidal form. Table 10-2 lists the 
values of the first several xnp, which denotes the pth zero of Jn{x): Jn(xnp) = 0. In the 
next subsection we will find that the values of xnp determine the eigenvalues of TM 
modes in a circular waveguide. The eigenvalues of TE modes, on the other hand, de
pend on the zeros of the derivative of Bessel functions of the first kind—that is, on 
the values of x'np, which make J'n{x'np) = 0 (see Subsection 10-5.3). The values of the 
first several x'np are tabulated in Table 10-3. 

So far, we have obtained only one solution—Bessel function of the first kind, 
Jn{hr)—for the Bessel's differential equation (10-201). But Bessel's equation is a 
second-order equation; there should be two linearly independent solutions for each 
value of n. In other words, there should be another solution that is not linearly 
dependent on Jn(hr). Such a solution exists. It is called Bessel function of the second kind 
or Neumann function and is usually denoted by NJhr): 

Nn(hr) = 
(cos nn)Jn(hr) — J-n(hr) 

sin nn 
The general solution of Eq. (10-201) can then be written as 

R(r) = CnJn(hr) + DnNn(hr), 

(10-205) 

(10-206) 

where C„ and Dn are arbitrary constants to be determined from boundary conditions. 
A distinctive property of Bessel function of the second kind of all orders is that 

they become infinite when the argument is zero. When we study wave propagation 
in a circular waveguide, our region of interest includes the axis where r = 0. Since 
an infinite field is a physical impossibility, the solution R{r) in Eq. (10-206) cannot 
contain a Nn(hr) term. This means that the coefficient Dn must be zero for all n. Thus, 

TABLE 10-3 
Zeros of J'„(x), x'np 

N. n 

1 
2 

n = 0 

3.832 
7.016 

n= 1 

1.841 
5.331 

n = 2 

3.054 
6.706 
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for wave-mode problems inside a circular waveguide there is no need to be concerned 
with the Nn(hr) term. 

In the study of circular waveguides that follows, the preceding short summary 
of Bessel's differential equation and Bessel functions should suffice. The rest of this 
subsection discusses some additional aspects for completeness. It may be skipped if 
the material on dielectric-rod waveguides in Subsection 10-6.3 is to be omitted. 

In case the region of interest of a problem in cylindrical coordinates does not 
include the axis where r = 0 (such as the problem of a coaxial waveguide with an 
inner conductor), the radial solution R(r) in Eq. (10-206) must consist of both Jn(hr) 
and Nn(hr) terms, and the coefficients C„ and Dn are to be determined from boundary 
conditions. Furthermore, if a problem does not involve the entire In range of cf) (such 
as the problem of a wedge-shaped waveguide), the constant n in Eq. (10-200) will 
not be an integer. Let it be denoted by v. We write the solution of the Bessel's dif
ferential equation as 

R(r) = CJv(hr) + DNv(hr). (10-207)* 

In some wave problems it is convenient to define linear combinations of the 
Bessel functions: 

H^ihr) = Jv(hr) + jNv(hr), (10-208) 
H(2\hr) = Jv{hr) - jNv(hr), (10-209) 

where H[1} and H{2) are called Hankel functions of the first and second kind, respec
tively. When the argument hr is very large, the asymptotic expressions for H[1} and 
H[2) are 

_gj(/ .»-*/4-v7c/2)} (10-210) 

nhr 

2~ 
_ e - j ( * r - 7 t / 4 - v W / 2 ) > (10-211) 

nhr 
These expressions with imaginary exponential coefficients and decreasing amplitudes 
place in evidence the wave character of the Hankel functions. They are useful in prob
lems of radiation. 

When h2 is negative (h =jQ, two other functions 7V(() and Kv((), related to Jv 

and H[l\ respectively, are defined: 
h(£r)=rvJv(j{r), (10-212) 

KMr) = ^r + lH^\jCr). (10-213) 

1 The expression for Jv(hr) for a nonintegral v is that given in Eq. (10-204) with (n + m)\ replaced by the 
gamma function T(v + m + 1). 
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Iv and Kv are called modified Bessel functions of the first and second kind, respec
tively. For large arguments the following asymptotic expressions are obtained: 

Iv{Cr)^J^Cre^ (10_214) 

Xv(W W^g_Cr- (10_215) 

It is seen that at large r, Kv(C,r) shows an exponential decay with distance, character
istic of an evenescent wave. It is useful in surface-wave problems such as dielectric-
rod waveguides and optical fibers. The choice of the appropriate form as a solution 
for the Bessel's differential equation depends on the type of the problem and on 
convenience. 

10-5.2 TM WAVES IN CIRCULAR WAVEGUIDES 

Figure 10-19 shows a circular waveguide of radius a. It consists of a metal pipe cen
tered around the z-axis. The enclosed dielectric medium is assumed to have constitu
tive parameters e and fi. For TM waves, Hz — 0. We write 

£z(r,<M) = £zV,</>)e~vz, (10-216) 

where E°z{r, </>) satisfies Eq. (10-196). The solution is written in the form of Eq. 
(10-198), in which 

R(r) = C„J„(hr), (10-217) 

and $(</>) is the solution of Eq. (10-200). Since all field components are periodic with 
respect to <j) (period = 2n), the only admissible solution for Eq. (10-200) is sin n<j) or 
cos n4>, or a linear combination of the two (see Table 4-1). It is because of this 
requirement of periodicity that we demand n to be an integer, as indicated previously. 
Whether sin n(j) or cos n<\> is chosen is immaterial; it changes only the location of the 

FIGURE 10-19 
A circular waveguide. 
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reference 0 = 0 angle. Customarily, we write Ez(r, (/>) for TM modes as 

(10-218) E°z = CnJn{hr) cos ncf). (TM modes) 

The transverse components E°r and £ j can be found from an adaptation of Eq. 
(10-29) to the cross-sectional polar coordinates (Problem P.10-26): 

where 

(E°T)TM = ar£r° + a ,£ j = - £ \TE°Z, (10-219) 

The magnetic field components can then be obtained by using Eq. (10-32). 
We have for TM modes, in addition to E°z in Eq. (10-218), 

(10-220) 

E? = Jl 
h 

CnJ'n(hr) cos ncf), 

£ ° = | ^ C „ J „ ( / z r ) s i n ^ , 

r o _ J™ 

CnJn(hr) sin n(f), 

Hi = -J— CnJ'n{hr) cos n<j>, 

H°z = 0, 

(10-221) 

(10-222) 

(10-223) 

(10-224) 

(10-225) 

where y has been replaced by;'/?, J'n is the derivative of Jn with respect to its argument 
(hr), and the coefficient Cn depends on the field strength of the excitation. 

The eigenvalues of TM modes (the admissible values of h) are determined from 
the boundary condition that E°z must vanish at r = a; that is, 

Jn(ha) = 0. (TM modes) (10-226) 

There are infinitely many zeros of J„(x), the first several of which have been tabulated 
in Table 10-2. The cutoff frequency is given by Eq. (10-35) as before. Hence the 
eigenvalue for the TM0 1 mode that corresponds to the first zero (x01 = 2.405) of 
J0{x) is 

WTM01 = ^ ' (10"227) 

which yields the lowest cutoff frequency for a TM mode: 

m _(h)TMoi _ 0.383 
iTt^l^ie ayj/j,€ 

(10-228) 
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The phase constant /? and the guide wavelength Xg can be found from Eqs. (10-38) 
and (10-39), respectively. 

For the TM01 mode (n = 0), E°z, E°r, and tfj are the only nonzero field components. 
A sketch of the electric and magnetic field lines in a typical transverse plane is given 
in Fig. 10-20. According to Eq. (10-224), H% varies with r as J'Q{hr\ which equals 
- J^hr). Thus the density of the magnetic field lines increases from r = 0 to r = a. 

Note that in rectangular waveguides the first and second numbers of the mode 
index denote the number of half-wave field variations in the x- and ^-directions, 
respectively, in a transverse xy-plane. By convention the first number of the mode 
index for circular waveguides always represents the number of half-wave field vari
ations in the ̂ -direction, and the second number represents the number of half-wave 
field variations in the r-direction. Hence the transverse field pattern of the TM01 
mode in a circular waveguide is analogous to the TMU mode (instead of the TM01 
mode, which does not exist) in a rectangular waveguide. 

10-5.3 TE WAVES IN CIRCULAR WAVEGUIDES 
For TE modes, Ez = 0, and 

//z(r,0,z) = //z°(r,0)e-^, 

where H°z satisfies the homogeneous Helmholtz's equation 

Analogously to the TM case, we write the solution as 

(10-229) 

(10-230) 

H°z = C„J„{hr) cos n0. (TE modes) (10-231) 

From H°z we find the transverse magnetic field components H? and Hj by using Eq. 
(10-53), and we find the electric field components £° and £$ by applying Eq. (10-55)— 
similar to Eq. (10-219). 

-Electric field lines 

■Magnetic field lines 

FIGURE 10-20 
Field lines for TMf mode in a 
transverse plane of circular 
waveguide. 
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We have for TE modes, in addition to H° in Eq. (10-229), 

H°r = - ^ CHJ'n(hr) cos n(j), h 

H°=J£-CnJn(hr) sin nfr 

E?J^CnJn{hr) sin n</>, 

El=J^~CnJ>n(hr) cos n0, 

£° = 0. 

(10-232) 

(10-233) 

(10-234) 

(10-235) 

(10-236) 
The required boundary condition for TE waves is that the normal derivative of 

H°z must vanish at r = a; that is, 

J'„(ha) = 0. (TE modes) (10-237) 

The first several zeros of J'n(x) are listed in Table 10-3, from which we see that the 
smallest x'np is x'lx = 1.841. This corresponds to the smallest eigenvalue 

1-841 

and the lowest cutoff frequency 

(10-239) 

which is lower than (/c)TMoi given in Eq. (10-228). Hence the TEX1 mode is the domi
nant mode in a circular waveguide. In an air-filled circular waveguide of radius a, the 
cutoff wavelength for the dominant mode is 

( A J T E - = 0293 = 3-41^ ( m ) ' 
(10-240) 

It is interesting to compare Eq. (10-240) with Eq. (10-164) for a rectangular 
waveguide. A sketch of the electric and magnetic field lines for the TEU mode in a 
typical transverse plane is shown in Fig. 10-21. 

The attenuation constant due to losses in the imperfectly conducting wall of a 
circular waveguide can be calculated by following the same procedure used in Sub
section 10-4.3 for a rectangular waveguide. However, integrals of Bessel's functions 
would be involved, and we shall not pursue this aspect further in this book. Suffice 
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■Electric field lines 

■ Magnetic field lines 

FIGURE 10-21 
Field lines for TEX1 mode in a 
transverse plane of a circular 
waveguide. 

it to say that the attenuation constants of the dominant-mode propagating waves in 
circular and rectangular waveguides having comparable dimensions are of the same 
order of magnitude. A point of special interest for circular waveguides is that the 
attenuation constant of TE0p waves decreases monotonically with frequency—the 
absence of a minimum point in ac ~ / curves. No other waves in circular or rectan
gular waveguides have this property. 

EXAMPLE 10-12 (a) A 10 (GHz) signal is to be transmitted inside a hollow circular 
conducting pipe. Determine the inside diameter of the pipe such that its lowest cutoff 
frequency is 20% below this signal frequency, (b) If the pipe is to operate at 15 (GHz), 
what waveguide modes can propagate in the pipe? 

Solution 

a) The cutoff frequency of the dominant mode in a circular waveguide of radius a 
is, from Eq. (10-239), 

( /C)TEU — 
0.293c 0.879 

a 
0.0879 

a 

x 108 (Hz) 

(GHz). 

This is to be equated to 0.80 x 10 = 8 (GHz). Hence the required inside diameter 
of the pipe is 2a = 2 x (0.0879/8) = 0.022 (m), or 2.2 (cm). 

b) Cutoff frequencies for waveguide modes in a hollow circular pipe of inner radius 
a = 0.011 (m) that are lower than 15 (GHz) are, from Tables 10-1 and 10-2, 

(/c)TEll = 8 (GHz), 

(/C)TM0I = 8 x 

(/C)TE21 = 8 x 

"11 

"21 

"11 

= 8 x 

= 8 x 

1.841 
3.054 
1.841 

= 10.45 (GHz), 

= 13.27 (GHz). 
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The fc of all other modes are higher than 15 (GHz); hence only T E n , TM01 , and 
TE21 modes can propagate in the pipe. um 

10—6 Dielectric Waveguides 

In previous sections we discussed the behavior of electromagnetic waves propagating 
along waveguides with conducting walls. We now show that dielectric slabs and rods 
without conducting walls can also support guided-wave modes that are confined es
sentially within the dielectric medium. 

Figure 10-22 shows a longitudinal cross section of a dielectric-slab waveguide 
of thickness d. For simplicity we consider this a problem with no dependence on the 
^-coordinate. Let ed and \id be the permittivity and permeability, respectively, of the 
dielectric slab, which is situated in free space (e0, fi0). We assume that the dielectric 
is lossless and that waves propagate in the + z-direction. The behavior of TM and 
TE modes will now be analyzed separately. 

10-6.1 TM WAVES ALONG A DIELECTRIC SLAB 

For transverse magnetic waves, Hz = 0. Since there is no ^-dependence, Eq. (10-62) 
applies. We have 

^ p ^ + h2E°z(y) = 0, (10-241) 

where 
h2 = y2 + co2fi€. (10-242) 

Solutions of Eq. (10-241) must be considered in both the slab and the free-space 
regions, and they must be matched at the boundaries. 

In the slab region we assume that the waves propagate in the + z-direction with
out attenuation (lossless dielectric); that is, we assume 

y=tf- (10-243) 

The solution of Eq. (10-241) in the dielectric slab may contain both a sine term and 
a cosine term, which are an odd and an even function, respectively, of y: 

E°z(y) = E0 sin kyy + Ee cos kyy, \y\ < - , (10-244) 

y+ 
eo, W) 

■>z 
<■</. M 

FIGURE 10-22 
eo, MO A longitudinal cross-section of a dielectric-slab waveguide. 
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where 

k2 = co2nded - P2 = hj. 

573 

(10-245) 

In the free-space regions (j; > d/2 and y < — d/2) the waves must decay exponentially 
so that they are guided along the slab and do not radiate away from it. We have 

E°z(y) = 

Cue-«(y-*l2\ y>-, 

c*> z*y + dl2) y<-2, 
where 

a2 = ft2 ~OJ2H0€0= - h i 

(10-246a) 

(10-246b) 

(10-247) 

Equations (10-245) and (10-247) are called dispersion relations because they show 
the nonlinear dependence of the phase constant /? on a>. 

At this stage we have not yet determined the values of ky and a; nor have we 
found the relationships among the amplitudes E0, Ee, Cu, and Cv In the following, 
we will consider the odd and even TM modes separately. 

a) Odd TM modes. For odd TM modes, E°z{y) is described by a sine function that 
is antisymmetric with respect to the y = 0 plane. The only other field components, 
E°y{y) and H°x(y), are obtained from Eqs. (10-28) and (10-25), respectively. 

i) In the dielectric region, |y| < d/2: 
E°z(y) = E0 sin kyy, 

E°y{y)=-Jf-E0coskyy, 
Ky 

H°x(y) = ~ E 0 cos kyy. 

ii) In the upper free-space region, y > d/2: 

E«{y) = [E0smk-^e-«y-*l2\ 

MV-*-E°y{y)=J{ (£° s i n <*(y-d/2) 

kj K{y)J^{E0smk-f)e-«>-*i2\ 

(10-248) 

(10-249) 

(10-250) 

(10-251) 

(10-252) 

(10-253) 

where Cu in Eq. (10-246a) has been set to equal E0 sin (kyd/2), which is the 
value of E°z(y) in Eq. (10-248) at the upper interface, y = d/2. 

iii) In the lower free-space region, y < —d/2: 

ES(y)=-(E0^n^y V(y + dl2) (10-254) 
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E°y(y) = -]^ (E0 sin M W ^ ) ; (10-255) 

H°x(y) = ^ U sin k-A <#yw\ (10-256) 

where C, in Eq. (10-246b) has been set to equal -E0sm(kyd/2), which is 
the value of E°z{y) in Eq. (10-248) at the lower interface y = —d/2. 
Now we must determine ky and a for a given angular frequency of excitation 

co. The continuity of Hx at the dielectric surface requires that Hx(d/2) computed 
from Eqs. (10-250) and (10-253) be the same. We have 

(10-257) 

a2 + k2 = w2{fided - ii0€0) (10-258) 
By adding dispersion relations Eqs. (10-245) and (10-247) we find 

or 

a = [co2(fided - ii0€0) - k2f'2. (10-259) 

[co2(iided - /i0e0) - k2]1'2 = -^ky tan -*-. (10-260) 

Equations (10-257) and (10-259) can be combined to give an expression in which 
ky is the only unknown: 

e0 , + kd 
— kv tan -f-
ed 2 

Unfortunately, the transcendental equation, Eq. (10-260), cannot be solved 
analytically. But for a given co and given values of ed, /id, and d of the dielectric 
slab, both the left and the right sides of Eq. (10-260) can be plotted versus ky. 
The intersections of the two curves give the values of ky for odd TM modes, of 
which there are only a finite number, indicating that there are only a finite num
ber of possible modes. This is in contrast with the infinite number of modes pos
sible in waveguides with conducting walls. 

We note from Eq. (10-248) that E°z = 0 for y = 0. Hence a perfectly conduct
ing plane may be introduced to coincide with the y = 0 plane without affecting 
the existing fields. It follows that the characteristics of odd TM waves propagating 
along a dielectric-slab waveguide of thickness d are the same as those of the cor
responding TM modes supported by a dielectric slab of a thickness d/2 that is 
backed by a perfectly conducting plane. 

The surface impedance looking down from above on the surface of dielectric 
slab is 0 

Zs = ~ =j — (TM modes), (10-261) 
Hx CO€0 

which is an inductive reactance. Thus a TM surface wave can be supported by an 
inductive surface. 
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b) Even TM modes. For even TM modes, JEj(y) is described by a cosine function 
that is symmetric with respect to the y = 0 plane: 

E°z(y) = Ee cos kyy, d 
*2 

(10-262) 

The other nonzero field components, E°y and J7°, both inside and outside the di
electric slab can be obtained in exactly the same manner as in the case of odd 
TM modes (see Problem P.10-33). Instead of Eq. (10-257), the characteristic 
relation between kv and a now becomes 

! = _ f° Cot y (Even TM modes), 
L e, 2 

(10-263) 

which can be used in conjunction with Eq. (10-259) to determine the transverse 
wavenumber ky and the transverse attenuation constant a. The several solutions 
correspond to the several even TM modes that can exist in the dielectric slab 
waveguide of thickness d. Of course, in this case a conducting plane cannot be 
placed at y = 0 without disturbing the whole field structure. 

From Eqs. (10-245) and (10-247) it is easy to see that the phase constant, ft of 
propagating TM waves lies between the intrinsic phase constant of the free space, 
k0 = (Oyjfi0e0, and that of the dielectric, kd = (Dy]nded; that is, 

As /? approaches the value ofa)VMoeo> Eq. (10-247) indicates that a approaches zero. 
An absence of attenuation means that the waves are no longer bound to the slab. 
The limiting frequencies under this condition are called the cutoff frequencies of the 
dielectric waveguide. From Eq. (10-245) we have ky = cocyJpLd€d — jU0e0 at cutoff. Sub
stitution into Eqs. (10-257) and (10-263) with a set to zero yields the following rela
tions for TM modes. At cutoff: 

Odd TM Modes Even TM Modes 

tan I -y- sJlided-ti0e0\ = 0 

Tfcody/^d ~ Môo = (n - l)n, 
n = 1, 2, 3, . . . 

cot I °y- yJlided-ii0eA = 0 

nfcedy/nd€d - ii0e0 ={n- \)%, 
n = 1, 2, 3, . . . 

Jco 
(n-l) 

dy/p& ~ / ^ o 
(10-264) Jce 

(»-i) 
dyJlifid ~ / ^ o 

(10-265) 

It is seen that fco = 0 for n = 1. This means that the lowest-order odd TM mode 
can propagate along a dielectric-slab waveguide regardless of the thickness of the slab. 
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As the frequency of a given TM wave increases beyond the corresponding cutoff fre
quency, a increases and the wave clings more tightly to the slab. 

10-6.2 TE WAVES ALONG A DIELECTRIC SLAB 

For transverse electric waves, Ez = 0, and Eq. (10-82) applies 

^ ^ + /i2H°()0 = O, (10-266) 

where h2 is the same as that given in Eq. (10-242). The solution for Hz(y) may also 
contain both a sine term and a cosine term: 

H°y(y) = H0 sin kyy + He cos kyy, \y\ < - , (10-267) 

where ky has been defined in Eq. (10-245). In the free-space regions {y > d/2 and 
y < — d/2) the waves must decay exponentially. We write 

\cue-a(y~dl2\ y>~, (10-268a) 

H°z(y) = \ 
Uea(* + d/2); y<--> (10-268b) 

where a is defined in Eq. (10-247). Following the same procedure as used for TM 
waves, we consider the odd and even TE modes separately. Besides Hz(y), the only 
other field components are Hy(y) and E®{y), which can be obtained from Eqs. (10-50) 
and (10-51). 

a) Odd TE modes. 
i) In the dielectric region, \y\ < d/2: 

H°z(y) = H0 sin kyy, (10-269) 

H°y(y)= -f H0 cos kyy, (10-270) 

E°x(y)= J ^ H 0 cos kyy. (10-271) 
Ky 

ii) In the upper free-space region, y > d/2: 

H°z(y) = U0 sin ^ \ e - « y - d ' 2 \ (10-272) 

H°y(y) = - ^ (H0 sin ^ V ^ ~ ^ \ (10-273) 

E°x{y) = - ^ (H0 sin M V « & - - / 2 ) . (io-274) 
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iii) In the lower free-space region, y < -d/2: 

H°Ay)=-(H0smk-^)e^+d>2\ 

JP kj 
H°(y)=-^ H0sm^ )e«^\ 

E°x(y) = -
J<*>t*o H„sinyi^+ d / 2 ) 

(10-275) 

(10-276) 

(10-277) 

A relation between ky and a can be obtained by equating E°(y), given in 
Eqs. (10-271) and (10-274), at y = d/2. Thus, 

« ^ > t a n M (Odd TE modes), 
K Hd 2 

(10-278) 

which is seen to be closely analogous to the characteristic equation, Eq. (10-257), 
for odd TM modes. Equations (10-259) and (10-278) can be combined in the 
manner of Eq. (10-260) to find ky graphically. From ky, a can be found from Eq. 
(10-259). 

From a position of looking down from above, the surface impedance of the 
dielectric slab is 

m 
(TE modes), (10-279) 

which is a capacitive reactance. Hence a TE surface wave can be supported by a 
capacitive surface. 

b) Even TE modes. For even TE modes, H°z{y) is described by a cosine function 
that is symmetric with respect to the y = 0 plane. 

H°z{y) = He cos kyy, \y\ < d/2. (10-280) 

The other nonzero field components, Hy and E°x, both inside and outside the di
electric slab can be obtained in the same manner as for odd TE modes (see Prob
lem P.10-35). The characteristic relation between ky and a is closely analogous 
to that for even TM modes as given in Eq. (10-263): 

^- = - — cot - J - (Even TE modes). 
ky nd 2 

(10-281) 

It is easy to see that the expressions for the cutoff frequencies given in Eqs. 
(10-264) and (10-265) apply also to TE modes. Like the lowest-order (n = 1) TM 
mode, the lowest-order odd TE mode has no cutoff frequency. The characteristic re
lations for all the propagating modes along a dielectric-slab waveguide of a thickness 
d are listed in Table 10-4. 
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TABLE 10-4 
Characteristic Relations for Dielectric-Slab Waveguide 

Mode 

TM 

TE 

Odd 

Even 

Odd 

Even 

Characteristic Relation 

(a//g = (e0/ed)tan(/c//2) 

(a/ky) = -(e0/ed) cot (kyd/2) 

(a/ky) = (n0/nd) tan (kyd/2) 

(a/ky)=-Qi0/fid) cot (kyd/2) 

Cutoff Frequency 

fco = (n~ l)A*V/^d - fi0e0 

L = (n - i)A*V/^d - ii0e0 

La = (n~ l)A*V/^d - fi0€0 

fe = (n ~ i ) /W/^ d - fi0e0 

' ^ [ ^ t o - w c ) - ^ " 2 

EXAMPLE 10-13 A dielectric-slab waveguide with constitutive parameters \xd = pi0 

and ed = 2.50e0 is situated in free space. Determine the minimum thickness of the 
slab so that a TM or TE wave of the even type at a frequency 20 GHz may propagate 
along the guide. 

Solution The lowest TM and TE waves of the even type have the same cutoff fre
quency along a dielectric-slab waveguide: 

Letting n= 1, we have 

ViMo 
Therefore, 

= = 6.12 x 10"3 (m) or 6.12 (mm). 

EXAMPLE 10-14 (a) Obtain an approximate expression for the decaying rate of the 
dominant TM surface wave outside of a very thin dielectric-slab waveguide, (b) Find 
the time-average power per unit slab width transmitted along the guide, (c) What is 
the time-average power transmitted in the transverse direction? 

Solution 

a) The dominant TM wave is the odd mode having a zero cutoff frequency—fco = 0 
for n = 1, independent of the slab thickness (see Table 10-4). With a slab that 

c 

3 x 108 

2 x 20 x 10V2.5 -
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is very thin in comparison to the operating wavelength, kydj2 « 1, tan {kyd/2) = 
kyd/2, and Eq. (10-257) becomes 

a ^ i°_ kid. (10-282) 

Using Eq. (10-258), Eq. (10-282) can be written approximately as 

a ^ ^- co2(^ded - ix0e0)d (Np/m). (10-283) 
Z€d 

In Eq. (10-283) it has been assumed that ad/2 « eje0. 
b) The time-average Poynting vector in the +z-direction in the dielectric slab is 

Using Eqs. (10-249) and (10-250), we have Pav = azPav and 

where 

and 

4/cJ 
d + — sin (kyd) (W/m), 

ky ^ (DyJJld€d - jl0€0 

(10-284) 

(10-284a) 

(10-284b) 

c) The time-average Poynting vector in the transverse direction is calculated from 
&>av = i ^ ( a z E z x aXHX). 

From Subsection 10-6.1 we see that the expressions of E°z and H°x are 90° out 
of time phase. Their product has no real part, yielding a zero &av. Hence no 
average power is transmitted in the transverse direction normal to the reactive 
surface. ^ 

10-6.3 ADDITIONAL COMMENTS ON DIELECTRIC WAVEGUIDES 

In the preceding subsection we studied the characteristics of electromagnetic waves 
guided by dielectric slabs with an analysis based on Maxwell's equations and the as
sociated boundary conditions. We can gain some physical insight from the concept 
of total reflection in plane-wave theory that we discussed in Section 8-10. 

Consider the dielectric slab in Fig. 10-23. From Section 8-10 we know that if 
a plane wave in the slab with a permittivity ed > e0 is incident obliquely on the lower 

A 

(«o. MO) 

{t,h Mrf) 

(to. MO) 

FIGURE 10-23 
_̂ . Bouncing-wave interpretation of propagating 
z waves along a dielectric waveguide. 
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boundary at an angle of incidence 0t greater than the critical angle (see Eq. 8-188) 

0c = sin_ 1 /—, (10-285) 

it will be totally reflected toward the upper boundary. Moreover, an evanescent wave 
exists along the interface (in z-direction) that is attenuated exponentially in the trans
verse direction outside of the boundary. The reflected wave from the lower boundary 
will be incident on the upper boundary at the same angle of incidence 6t > 9C and 
will be similarly totally reflected. This process will continue so that there will be two 
sets of multiply reflected waves: one set going from the upper boundary toward the 
lower boundary, and the other set from the lower boundary toward the upper bound
ary. Under the condition that the points on the same wavefront have the same phase, 
each set of reflected waves forms a single uniform plane wave. We then have two in
terfering uniform plane waves, giving rise to an interference pattern, which is the 
mode pattern of the propagating wave. It is clear that the phase requirements at both 
reflecting boundaries depend on the angle of incidence 6t, since 0t determines the 
phase shifts caused by total internal reflections. Analysis shows that the required 
phase conditions correspond precisely to the dispersion and characteristic relations 
obtained in the preceding section.1. Thus the results based on Maxwell's equations 
and boundary conditions can be interpreted by bouncing waves due to total internal 
reflections. 

So far our attention has been directed toward the wave behavior in dielectric-
slab waveguides. Similar analyses apply to round dielectric-rod waveguides. In par
ticular, they can be used to study the transmission of light waves along quartz or 
glass fibers that form optical waveguides. Optical fiber waveguides are of great im
portance as transmission media for communication or control systems because of 
their low-attenuation and large-bandwidth properties. They also are extremely com
pact and flexible. A study of circular dielectric waveguides necessitates the use of 
cylindrical coordinates that lead to Bessel's differential equation and Bessel functions. 
The study is complicated by the fact that pure TM or TE modes are possible only 
if the fields are circularly symmetrical; that is, if the fields are independent of the 
angle coordinate 4>. When the fields are dependent on <f>, separation into TM and 
TE modes is no longer possible, and it is necessary to assume the existence of both 
Ez and Hz components simultaneously and study the so-called hybrid modes. 

As a simple example, consider the circularly symmetrical TM modes for a round 
dielectric rod of radius a and permittivity ed, situated in air. The transverse distribu
tion of the axial component of electric field intensity, £°, in the dielectric rod (r < a) 
is, from Eq. (10-218) by setting n = 0, 

E°zi = C0J0(hr), r < a, (10-286) 
where 

h2 = y2 + kj = ~co2fi0ed - P2. (10-287) 

! S. R. Seshadri, Fundamentals of Transmission Lines and Electromagnetic Fields, Addison-Wesley, Reading, 
Mass., 1971, Chapter 8. 
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The corresponding Hj, is, from Eq. (10-224), 

H% = J^Y CoJ'o(hrl r < a. (10-288) 

Outside the dielectric rod, the fields are required to be evanescent and must decrease 
exponentially with distance. An appropriate choice for E°z0 is K0(Cr), the modified 
Bessel function of the second kind of order zero, whose asymptotic expansion for 
large arguments is given in Eq. (10-215). We write 

E°zo = D0K0(Cr), r>a, (10-289) 
where 

£2 = p2-k2
0 = p2- CD2fx0eQ, (10-290) 

and D0 is a constant. The corresponding HJ0 is 

Hl0=J-^°D0K>0(Zr), r>a. (10-291) 

The field components £° and Hj must be continuous at r = a, which requires 

C0J0(ha) = D0K0({a) (10-291) 

and 

^ C0J'0(ha) = - | D0K'0(£a). (10-292) 

Combination of Eqs. (10-291) and (10-292) gives the following characteristic equa
tion for circularly symmetrical TM modes: 

W = _ ^ W (10_293) 

f0(ha) e0hK'0(Ca) 
where £ and h are related through Eqs. (10-287) and (10-290): 

h2 + C2 = co2fi0(ed - €0). (10-294) 
Equations (10-293) and (10-294) can be solved for h and £ either graphically or on 
a computer. Once the eigenvalues have been found, the cutoff frequencies and other 
properties of the corresponding circularly symmetrical TM modes can be determined. 

In the above example we discussed only the analysis procedure for circularly 
symmetrical TM modes in an unclad homogeneous optical fiber. In practice, com
mercially available optical fibers are mainly of two types: step-index fibers that con
sist of a central homogeneous dielectric core and an outer sheath of a material having 
a lower refractive index and graded-index fibers whose center core has a nonhomo-
geneous refractive-index profile. Detailed studies of these types do not fall into the 
scope of this book.1" 

f See, for instance, D. Marcuse, Theory of Dielectric Waveguides, Academic Press, New York, 1974; A. W. 
Snyder and J. D. Love, Optical Waveguide Theory, Methuen Inc., New York, 1984. 
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10—7 Cavity Resonators 

We have previously pointed out that at UHF (300 MHz to 3 GHz) and higher fre
quencies, ordinary lumped-circuit elements such as R, L, and C are difficult to make, 
and stray fields become important. Circuits with dimensions comparable to the op
erating wavelength become efficient radiators and will interfere with other circuits 
and systems. Furthermore, conventional wire circuits tend to have a high effective 
resistance both because of energy loss through radiation and as a result of skin effect. 
To provide a resonant circuit at UHF and higher frequencies, we look to an enclo
sure (a cavity) completely surrounded by conducting walls. Such a shielded enclosure 
confines electromagnetic fields inside and furnishes large areas for current flow, thus 
eliminating radiation and high-resistance effects. These enclosures have natural res
onant frequencies and a very high Q (quality factor), and are called cavity resonators. 
In this section we will study the properties of rectangular and circular cylindrical 
cavity resonators. 

10-7.1 RECTANGULAR CAVITY RESONATORS 

Consider a rectangular waveguide with both ends closed by a conducting wall. The 
interior dimensions of the cavity are a, b, and d, as shown in Fig. 10-24. Let us 
disregard for the moment the probe-excitation part of the figure. Since both TM and 
TE modes can exist in a rectangular guide, we expect TM and TE modes in a rec
tangular resonator too. However, the designation of TM and TE modes in a resonator 
is not unique because we are free to choose x or y or z as the "direction of propaga
tion"; that is, there is no unique "longitudinal direction." For example, a TE mode 
with respect to the z-axis could be a TM mode with respect to the y-axis. 

* >z 

(a) Probe excitation. (b) Loop excitation. 

FIGURE 10-24 
Excitation of cavity modes by a coaxial line. 
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For our purposes we choose the z-axis as the reference "direction of propagation." 
In actuality the existence of conducting end walls at z = 0 and z = d gives rise to 
multiple reflections and sets up standing waves; no wave propagates in an enclosed 
cavity. A three-symbol {mnp) subscript is needed to designate a TM or TE standing 
wave pattern in a cavity resonator. 

TMmftp Modes The expressions for the transverse variations of the field components 
for TMm„ modes in a waveguide have been given in Eqs. (10-132) and (10-134) 
through (10-137). Note that the longitudinal variation for a wave traveling in the 
+ z-direction is described by the factor e~yz or e~jpz, as indicated in Eq. (10-121). 
This wave will be reflected by the end wall at z = d; and the reflected wave, going 
in the — z-direction, is described by a factor eJPz; The superposition of a term with 
e~jpz and another of the same amplitude1, with ejpz results in a standing wave of the 
sin jSz or cos (3z type. Which should it be? The answer to this question depends on 
the particular field component. 

Consider the transverse component Ey(x, y, z). Boundary conditions at the con
ducting surfaces require that it be zero at z = 0 and z = d. This means that (1) its 
z-dependence must be of the sin (3z type, and that (2) § — pn/d. The same argument 
applies to the other transverse electric field component Ex(x, y, z). 

Recalling that the appearance of the factor ( — y) in Eqs. (10-134) and (10-135) 
is the result of a differentiation with respect to z, we conclude that the other com
ponents Ez(x, y, z), Hx{x, y, z), and Hy{x, y, z), which do not contain the factor ( — y), 
must vary according to cos (3z. We have then, from Eqs. (10-132) and (10-134) 
through (10-137), the following phasors of the field components for TMmnp modes 
in a rectangular cavity resonator: 

x r , - tmii \ ■ fn7C \ fPn \ Ez{x, y, z) = E0 sin I — x 1 sin I — y I cos \-jzy 

Ex(x, y, z) = - 1 (^ (^jE0 cos (^ x) sin ( J y ) ™ ( f *) , 

Ey(x, y,z)=~ ( f ) ( f )Eo sin ( ^ x) cos ( J y ) sin ( f z), 

jcoe (n%\ . fmn \ fnn \ (p% \ Hx(x, y,z) = -0r (j)E0 sin ^ — xj cos ^ - yj cos (j z j , 

jcoe /WrX fmn \ . (mi \ (pit \ 
H,(x, y, z) = - - p . ^—JE0 cos ^ — xj s,n [j y) cos [j zj, 

where 

The reflection coefficient at a perfect conductor is — 1. 

(10-295) 

(10-296) 

(10-297) 

(10-298) 

(10-299) 
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It is clear that the integers m, n, and p denote the number of half-wave variations in 
the x-, y-, and z-direction, respectively. 

From Eq. (10-138) we obtain the following expression for the resonant frequency: 

1 fmn\2 (nn\2 fpn^2 

or 

(10-301) 

Equation (10-301) states the obvious fact that the resonant frequency increases as 
the order of a mode becomes higher. 

TEmfip Modes For TEmnp modes (Ez = 0) the phasor expressions for the standing-
wave field components can be written from Eqs. (10-158) and (10-159) through 
(10-162). We follow the same rules as those we used for TMm„p modes; namely, (1) 
the transverse (tangential) electric field components must vanish at z = 0 and z = d, 
and (2) the factor y indicates a negative partial differentiation with respect to z. The 
first rule requires a sin (pnz/d) factor in Ex(x, y, z) and E}(x, y, z), as well as in Hz(x, y, z); 
and the second rule indicates a cos (pnz/d) factor in Hx(x, y, z) and Hy(x, y, z), and the 
replacement of y by —(pn/d). Thus, 

fmn \ {nn \ . fpn \ „ n „ ^ 
Hz(x, y, z) = H0cosl~x\ cos ( — y \ sin ( y— z j , (10-302) 

ia)ufnn\rr fmn \ . (nn \ . fpn \ „^x 
EAx, y, z) = ^ [j)H0 COS ( _ x j s,n ( y yj sm [j z j , (,0-303) 

^ - -) - J¥ (T)«- - (T *)cos (y')sin {T ')• ( « 

«**■>- -My)® f l-(T")-(T ')»&')■ ( ™ 
The value of/J2 has been given in Eq. (10-300). The expression for resonant frequency, 
fmnp, remains the same as that obtained for TMm„p modes in Eq. (10-301). Different 
modes having the same resonant frequency are called degenerate modes. Thus TMm„p 
and TEmnp modes are always degenerate if none of the mode indices is zero. The 
mode with the lowest resonant frequency for a given cavity size is referred to as the 
dominant mode (see Example 10-15). 

Examination of the field expressions, Eqs. (10-295) through (10-299), for TM 
modes in a cavity reveals that the longitudinal and transverse electric field compo-
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nents are in time phase with one another and in time quadrature with the magnetic 
field components. Hence the time-average Poynting vector and time-average power 
transmitted in any direction are zero, as they should be in a lossless cavity. This is 
in contrast to the field expressions Eqs. (10-132) and (10-134) through (10-137) for 
TM modes in a waveguide, where the transverse electric field components are in time 
phase with the transverse magnetic field components, resulting in a time-average 
power flow in the direction of wave propagation. The same contrasting phase rela
tionships between electric and magnetic field components for TE modes in a cavity 
resonator (Eqs. 10-302 through 10-306) and those in a waveguide (Eqs. 10-158 
through 10-162) are also in evidence. 

A particular mode in a cavity resonator (or a waveguide) may be excited from 
a coaxial line by means of a small probe or loop antenna. In Fig. 10-24(a) a probe 
is shown that is the tip of the inner conductor of a coaxial cable and protrudes into 
a cavity at a location where the electric field is a maximum for the desired mode. 
The probe is, in fact, an antenna that couples electromagnetic energy into the reso
nator. Alternatively, a cavity resonator may be excited through the introduction of 
a small loop at a place where the magnetic flux of the desired mode linking the 
loop is a maximum. Figure 10-24(b) illustrates such an arrangement. Of course, the 
source frequency from the coaxial line must be the same as the resonant frequency 
of the desired mode in the cavity. 

As an example, for the TE1 0 1 mode in an a x b x d rectangular cavity, there are 
only three nonzero field components: 

Ey= —H0sm[-x I s i n l - z l , (10-307) 

Hx= ~ ^ H o s i n P x j c o s ( ^ z j , (10-308) 

Hz = H 0 c o s ( - x ) s i n ( - z j . (10-309) 

This mode may be excited by a probe inserted in the center region of the top or 
bottom face where Ey is maximum, as shown in Fig. 10-24(a), or by a loop to couple 
a maximum Hx placed inside the front or back face, as shown in Fig. 10-24(b). The 
best location of a probe or a loop is affected by the impedance-matching require
ments of the microwave circuit of which the resonator is a part. 

A commonly used method for coupling energy from a waveguide to a cavity 
resonator is the introduction of a hole or iris at an appropriate location in the cavity 
wall. The field in the waveguide at the hole must have a component that is favorable 
in exciting the desired mode in the resonator. 

EXAMPLE 10-15 Determine the dominant modes and their frequencies in an air-
filled rectangular cavity resonator for (a) a > b > d, (b) a > d > b, and (c) a = b = d, 
where a, b, and d are the dimensions in the x-, y-, and z-directions, respectively. 
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Solution With the z-axis chosen as the reference "direction of propagation": First, 
for TMmnp modes, Eqs. (10-295) through (10-299) show that neither m nor n can be 
zero, but that p can be zero; second, for TEmnp modes, Eqs. (10-302) through (10-306) 
show that either m or n (but not both m and n) can be zero, but that p cannot be 
zero. Thus the modes of the lowest orders are 

TM1 1 0 , TE011, and TE101. 

The resonant frequency for both TM and TE modes is given by Eq. (10-301). 
a) For a> b> d: The lowest resonant frequency is 

/'-4^/f4' (10~310) 
where c is the velocity of light in free space. Therefore TM1 1 0 is the dominant 
mode. 

b) For a> d> b: The lowest resonant frequency is 

fioi=*.h + l*> (10-3H) 2 V ^ + ^ 
and TE1 0 1 is the dominant mode. 

c) For a = b = d, all three of the lowest-order modes (namely, TM1 1 0 , TE011, and 
TE101) have the same field patterns. The resonant frequency of these degenerate 
modes is 

/ n o = 4 - (10-312) 
\lla 

10-7.2 QUALITY FACTOR OF CAVITY RESONATOR 

A cavity resonator stores energy in the electric and magnetic fields for any particular 
mode pattern. In any practical cavity the walls have a finite conductivity; that is, a 
nonzero surface resistance, and the resulting power loss causes a decay of the stored 
energy. The quality factor, or Q, of a resonator, like that of any resonant circuit, is a 
measure of the bandwidth of the resonator and is defined as 

Time-average energy stored at a resonant frequency 
Energy dissipated in one period of this frequency 

(10-313) 

(Dimensionless) 

Let W be the total time-average energy in a cavity resonator. We write 

W=We+Wni (10-314) 

where We and Wm denote the energies stored in the electric and magnetic fields, 
respectively. If PL is the time-average power dissipated in the cavity, then the energy 
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dissipated in one period is PL divided by frequency, and Eq. (10-313) can be written 
as 

(10-315) 

In determining the Q of a cavity at a resonant frequency, it is customary to assume 
that the loss is small enough to allow the use of the field patterns without loss. 

We will now find the Q of an a x b x d cavity for the TE1 0 1 mode that has three 
nonzero field components given in Eqs. (10-307), (10-308), and (10-309). The time-
average stored electric energy is 

Ah* 
€0w2

01Hoa 

^n;j>g*W[r w (lô ) 
2 "2~2 ^ Q\ i 
4n 2 H2(-bi-\=-e0n2a3bdf2

01H2, 

where we have used h2 = {n/a)2 from Eq. (10-300). The total time-average stored 
magnetic energy is 

+ cosz \—x\ sin2 I — z 
(10-317) 

dx dy dz 

From Eq. (10-311) the resonant frequency for the TE1 0 1 mode is 

A°^2^-Ja2+d2-
Substitution of / 1 0 1 from Eq. (10-318) in Eq. (10-316) proves that, at the resonant 
frequency, We= Wm. Thus, 

(10-318) 

VOHQ a' 
d2 

To find PL, we note that the power loss per unit area is 

(10-319) 

(10-320) 
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where \Ht\ denotes the magnitude of the tangential component of the magnetic field 
at the cavity walls. The power loss in the z = d (back) wall is the same as that in the 
z = 0 (front) wall. Similarly, the power loss in the x = a (left) wall is the same as that 
in the x = 0 (right) wall; and the power loss in the y = b (upper) wall is the same as 
that in the j ; = 0 (lower) wall. We have 

PL = j> 0>„Js = RsUb
o f° \Hx(z = Of dxdy + fQ £ \Hj,x = Ofdydz 

+ j;/>f^z + j ; j > f ^ Z } ,,0-321) 

RfllaWf, ^+fb + i 

2 [d \d 2J \a 2/ 

Using Eqs. (10-319) and (10-321) in Eq. (10-315), we obtain 

n nfioiHoabd(a2 + d2) 
Ql01 = Rs[2b(a

3 + d3) + ad(a' + d^ ( T E '<" m ° d e ) ' (10^322) 

where /101 has been given in Eq. (10-318). 

EXAMPLE 10-16 (a) What should be the size of a hollow cubic cavity made of 
copper in order for it to have a dominant resonant frequency of 10 (GHz)? (b) Find 
the Q at that frequency. 

Solution 
a) For a cubic cavity, a = b = d: From Example 10-15 we know that TM110, TE011, 

and TE101 are degenerate dominant modes having the same field patterns and 
that 

f101=^°-=10™ (Hz). 

Therefore, 
3 x 108 

a = — = 2 .12x l0 - 2 (m) 
V2x 1010 

= 21.2 (mm). 

b) The expression of Q in Eq. (10-322) for a cubic cavity reduces to 

G.o. = ^ ^ = a
i ^ U ^ - dO-323) 

For copper, o = 5.80 x 107 (S/m), we have 

2ioi = R r ^ x 10"2 ]V7rl010(47ilO-7)(5.80 X 107) = 10,700. 
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The Q of a cavity resonator is thus extremely high in comparison with that ob
tainable from lumped L-C resonant circuits. In practice, the preceding value is some
what lower owing to losses through feed connections and surface irregularities. 

10-7.3 CIRCULAR CAVITY RESONATOR 
In a manner similar to the construction of a rectangular cavity resonator from a rect
angular waveguide, a circular cylindrical resonator can be formed by placing con
ducting walls at both ends of a cylindrical waveguide. For simplicity, let us consider 
the TM01 mode in a circular waveguide of radius a at cutoff so that there is no varia
tion in the z-direction. The ends of the waveguide are shorted by conducting plates 
at a distance d (< la) apart, forming a circular cylindrical cavity. The field components 
inside the cavity are, from Eqs. (10-218) and (10-224) by setting n = 0 and recalling 
Eq. (10-227), 

Ez = C0J0(hr) = C0J0( — r ], (10-324) 
a 

no no \ a 
2.405 

(10-325) 

where the relation J'0{hr) = — Jx(hr) has been used. The electric and magnetic field 
patterns for the TM010 mode in the circular cavity in both transverse and longitudinal 
sections are sketched in Fig. 10-25. Note from Eqs. (10-324) and (10-325) again that 

Electric field lines 

(a) Transverse section. 
Magnetic field lines 

V////////////////////////A 

//W//>//)y//>/W////////A 
(b) Longitudinal section. 

FIGURE 10-25 
TM 0 1 0 field patterns in a 
circular cylindrical cavity 
resonator. 
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the electric and magnetic fields are in time quadrature, resulting in no power loss 
in the cavity walls. 

In actuality the cavity walls do have a finite conductivity and a nonzero surface 
resistance. There will be power loss in the walls, and the cavity Q is not infinite. To 
calculate the cavity Q, we apply Eq. (10-315) and follow the same procedure as that 
used in the preceding subsection for the rectangular resonator. We will assume that 
the field intensities inside a low-loss cavity remain approximately the same as those 
for a lossless cavity. 

Let us find the Q of a circular cylindrical cavity of radius a and length d for the 
TM0 1 0 mode. The field components have been given in Eqs. (10-324) and (10-325). 
The time-average stored energy is 

W=2W„ 2 Jv 
eo^o 

\E\2dv 

(2nd)j"oJ2
0 

2.405 
r)rdr (10-326) 

= 0M)CJ J?(2.405) 

The average power loss per unit area is given by Eq. (10-320). Here Ht = H^, and 
there are radial surface currents J r on the flat end faces and uniform longitudinal 
surface currents Jz on the inside of the cylindrical walls. We have 

PL = y h j° \Jr\22nrdr + (2nad)\jA 

= nRs\2 J ; \H,\2rdr + (ad^H^r = a)\2 j 
(10-327)* 

KRSC2 

^i[2porJ2(^r)dr + (ad)J2(2A05) 

, xa + d)J2(2A05). 
To 

Substituting Eqs. (10-326) and (10-327) in Eq. (10-315), we obtain 

H $ w r k (™olomode)' (10-328) 

1 The following relations have been used: 

jj?,(hr)rdr = *- J'n\hr) + (l - ^~\j2
n{hr) \, J\(hr) = J0{hr) - - J^hr), and J0(ha) = 0. 
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where Rs = -JnfuJo is to be calculated at the resonant frequency for the TM0 1 0 mode, 
which is, from Eqs. (10-227) and (10-228), 

(/)TM010 = - 2A0^=0A11 (GHZ). (10-329) 
2%a^{ M0e0 

EXAMPLE 10-17 A hollow circular cylindrical cavity resonator is to be constructed 
of copper such that its length d equals its diameter 2a. (a) Determine a and d for a 
resonant frequency of 10 (GHz) at the TM0 1 0 mode, (b) Find the Q of the cavity at 
resonance. 

Solution 

a) From Eq. (10-329) we have 
0.115 

= 10, 

or 

Thus, 
a= 1.15 x 10_2(m) = 1.15 (cm). 

d = 2a = 2.30 (cm). 

b) R.= W o 

\% x 1010 x (4TT10 

5.80 x 107 

- 7 \ 
= 2.61 x 10 - 2 (Q). 

From Eq. (10-328) we obtain 

Q = 
377 

2.61 x l O " 2 / 2 ( 1 + 1/2) 
2.405 = 11,580. 

It is interesting to compare the results of this example with those obtained in 
Example 10-16 for a rectangular cavity resonator of a comparable size that reso
nates at the same frequency. 

Resonant mode at frequency 

Dimensions 

Volume 
Total area 
Q 

Circular Cavity 

TM010 

10 (GHz) 
Diameter 2a — 2.30 (cm) 
Length d = 2.30 (cm) 
na2d = 9.56 (cm3) 
2(na2) + {2nad) = 24.93 (cm2) 
11,580 

Rectangular Cavity 

TE101 

10 (GHz) 
a = b = d = 2.12{cm) 

axb x d = 9.53 (cm3) 
6a2 = 26.97 (cm2) 
10,700 
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We see that these two cavities have approximately the same volume, but the total 
surface area of the rectangular cavity is about 8.2% larger. The larger surface area 
leads to a higher power loss and a lower Q. The Q of the circular cavity is approx
imately 8.2% higher. M I 

Review Questions 

R.10-1 Why are the common types of transmission lines not useful for the long-distance 
signal transmission at microwave frequencies in the TEM mode? 
R.10-2 What is meant by a cutoff frequency of a waveguide? 
R.10-3 Why are lumped-parameter elements connected by wires not useful as resonant 
circuits at microwave frequencies? 
R.10-4 What is the governing equation for electric and magnetic field intensity phasors in 
the dielectric region of a straight waveguide with a uniform cross section? 
R.10-5 What are the three basic types of propagating waves in a uniform waveguide? 
R.10-6 Define wave impedance. 
R.10-7 Explain why single-conductor hollow or dielectric-filled waveguides cannot support 
TEM waves. 
R.10-8 Discuss the analytical procedure for studying the characteristics of TM waves in a 
waveguide. 
R.10-9 Discuss the analytical procedure for studying the characteristics of TE waves in a 
waveguide. 
R.10-10 What are eigenvalues of a boundary-value problem? 
R.10-11 Can a waveguide have more than one cutoff frequency? On what factors does the 
cutoff frequency of a waveguide depend. 
R.10-12 What is an evanescent model 
R.10-13 Is the guide wavelength of a propagating wave in a waveguide longer or shorter 
than the wavelength in the corresponding unbounded dielectric medium? 
R.10-14 In what way does the wave impedance in a waveguide depend on frequency: 

a) For a propagating TEM wave? 
b) For a propagating TM wave? 
c) For a propagating TE wave? 

R.10-15 What is the significance of a purely reactive wave impedance? 
R.10-16 Can one tell from an co-/? diagram whether a certain propagating mode in a 
waveguide is dispersive? Explain. 
R.10-17 Explain how one determines the phase velocity and the group velocity of a 
propagating mode from its <o-/? diagram. 
R.10-18 What is meant by an eigenmodel 
R.10-19 On what factors does the cutoff frequency of a parallel-plate waveguide depend? 
R.10-20 What is meant by the dominant mode of a waveguide? What is the dominant 
mode of a parallel-plate waveguide? 
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R.10-21 Can a TM or TE wave with a wavelength 3 (cm) propagate in a parallel-plate 
waveguide whose plate separation is 1 (cm)? 2 (cm)? Explain. 
R.10-22 Compare the cutoff frequencies of TM0, TM„, TMm (m > n), and TE„ modes in a 
parallel-plate waveguide. 
R.10-23 Define energy-transport velocity. 
R.10-24 Does the attenuation constant due to dielectric losses increase or decrease with 
frequency for TM and TE modes in a parallel-plate waveguide? 
R.10-25 Discuss the essential differences in the frequency behavior of the attenuation 
caused by finite plate conductivity in a parallel-plate waveguide for TEM, TM, and TE 
modes. 
R.10-26 State the boundary conditions to be satisfied by Ez for TM waves in a rectangular 
waveguide. 
R.10-27 Which TM mode has the lowest cutoff frequency of all the TM modes in a 
rectangular waveguide? 
R.10-28 State the boundary conditions to be satisfied by Hz for TE waves in a rectangular 
waveguide. 
R.10-29 Which mode is the dominant mode in a rectangular waveguide if (a) a > b, 
(b) a < b, and (c) a = b1 
R.10-30 What is the cutoff wavelength of the TE10 mode in a rectangular waveguide? 
R.10-31 Which are the nonzero field components for the TE10 mode in a rectangular 
waveguide? 
R.10-32 Discuss the frequency-dependence of the attenuation constant caused by losses in 
the dielectric medium in a waveguide. 
R.10-33 Discuss the general attenuation behavior caused by wall losses as a function of 
frequency for the TE10 mode in a rectangular waveguide. 
R.10-34 Discuss the general attenuation behavior caused by wall losses as a function of 
frequency for the TMX1 mode in a rectangular waveguide. 
R.10-35 Discuss the factors that affect the choice of the linear dimensions a and b for the 
cross section of a rectangular waveguide. 
R.10-36 What type of conducting diaphragm with an iris in a waveguide can provide a 
shunt capacitive susceptance? A shunt inductive susceptance? Explain. 
R.10-37 Under what circumstances does a Bessel's differential equation arise? 
R.10-38 Describe some general properties of Bessel functions of the first kind. 
R.10-39 Why are Bessel functions of the second kind not useful in the analysis of wave 
propagation in a hollow circular waveguide? 
R.10-40 Which mode is the dominant mode in a circular waveguide? 
R.10-41 It is claimed that the TE n wave of a given frequency will propagate in a circular 
cylindrical pipe having a diameter only 76.5% of that required to support a TM01 wave of 
the same frequency. Explain. 
R.10-42 What is the distinctive characteristic of the attenuation constant of TE0n modes 
in a circular waveguide? 
R.10-43 Why is it necessary that the permittivity of the dielectric slab in a dielectric 
waveguide be larger than that of the surrounding medium? 



594 10 Waveguides and Cavity Resonators 

R.10-44 What are dispersion relations? 
R.10-45 Can a dielectric-slab waveguide support an infinite number of discrete TM and 
TE modes? Explain. 
R.10-46 What kind of surface can support a TM surface wave? A TE surface wave? 
R.10-47 What is the dominant mode in a dielectric-slab waveguide? What is its cutoff 
frequency? 
R.10-48 Does the attenuation of the waves outside a dielectric slab waveguide increase or 
decrease with slab thickness? 
R.10-49 How does the time-average power transmitted in the transverse direction of a 
dielectric waveguide depend on the propagating mode in the guide? 
R.10-50 What kinds of Bessel functions are appropriate in the analysis of wave behavior 
in and around optical fibers? Explain. 
R.10-51 What are cavity resonators? What are their most desirable properties? 
R.10-52 Are the field patterns in a cavity resonator traveling waves or standing waves? 
How do they differ from those in a waveguide? 
R.10-53 In terms of field patterns, what does the TMU 0 mode signify? The TE123 mode? 
R.10-54 What is the expression for the resonant frequency of TMmnp modes in a rectangular 
cavity resonator of dimensions a x b x dl Of TEmnp modes? 
R.10-55 What is meant by degenerate modes! 
R.10-56 What are the modes of the lowest orders in a rectangular cavity resonator? 
R.10-57 Define the quality factor, Q, of a resonator. 
R.10-58 What fundamental assumption is made in the derivation of the formulas for the 
Q of cavity resonators? 
R.10-59 What field components exist in a circular cylindrical cavity operating in the 
TM010 mode? 
R.10-60 Will the Q of a circular cylindrical cavity resonator be higher or lower by 
increasing its length? Explain by physical reasoning. 
R.10-61 Explain why the measured Q of a cavity resonator is lower than the calculated 
value. 

Problems 

P.10-1 In studying the wave behavior in a straight waveguide having a uniform but 
arbitrary cross section it is expedient to find general formulas expressing the transverse 
field components in terms of their longitudinal components. We write 

E = E r + az£z, 
H = H r + aztf z, 

V = V r + a z l , 

where the subscript T denotes "transverse." Prove the following relations for time-harmonic 
excitation: 
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a) ET = - 1 (y \TEZ - ajcop x \THZ) (10-330) 

b) HT = - - 2 (y VTHZ + ajcoe x VT£Z), (10-331) 

where h2 is that given in Eq. (10-15). 
P.10-2 For rectangular waveguides, use appropriate relations in Section 10-2 to: 

a) plot the universal circle diagrams relating uju and /3/k versus fjf, 
b) plot the universal graphs of u/up, fi/k, and XJk versus // /„ 
c) find up/u, ug/u, fi/k, and XJX at / — l.25fc. 

P.10-3 Sketch the m-fi diagrams of a parallel-plate waveguide separated by a dielectric 
slab of thickness b and constitutive parameters (e, pi) for TMl5 TM2, and TM3 modes. 
Discuss 

a) how b and the constitutive parameters affect the diagrams, 
b) whether the same curves apply to TE modes. 

P.10-4 Obtain the expressions for the surface charge density and the surface current 
density for TM„ modes on the conducting plates of a parallel-plate waveguide. Do the 
currents on the two plates flow in the same direction or in opposite directions? 
P.10-5 Obtain the expressions for the surface current density for TE„ modes on the 
conducting plates of a parallel-plate waveguide. Do the currents on the two plates flow in 
the same direction or in opposite directions? 
P.10-6 Sketch the electric and magnetic field lines for (a) the TM2 mode and (b) the TE2 
mode in a parallel-plate waveguide. 
P.10-7 Determine the energy-transport velocity of the TE„ mode in a lossless parallel-plate 
waveguide in terms of its cutoff frequency. 
P.10-8 A waveguide is formed by two parallel copper sheets—ac = 5.80 x 107 (S/m)— 
separated by a 5(cm) thick lossy dielectric—er = 2.25, pr = 1, a = 10'1 0 (S/m). For an 
operating frequency of 10 (GHz), find j5, <xd, <xc, up, ug, and Xg for (a) the TEM mode, (b) the 
TMj mode, and (c) the TM2 mode. 
P.10-9 Repeat Problem P.10-8 for (a) the TEi mode and (b) the TE2 mode. 
P.10-10 For a parallel-plate waveguide, 

a) find the frequency (in terms of the cutoff frequency fc) at which the attenuation 
constant due to conductor losses for the TM„ mode is a minimum, 

b) obtain the formula for this minimum attenuation constant, 
c) calculate this minimum ac for the TM1 mode if the parallel plates are made of 

copper and spaced 5 (cm) apart in air. 
P.10-11 A parallel-plate waveguide made of two perfectly conducting infinite planes spaced 
3 (cm) apart in air operates at a frequency 10 (GHz). Find the maximum time-average 
power that can be propagated per unit width of the guide without a voltage breakdown for 

a) the TEM mode, b) the TMj mode, c) the TE1 mode. 
P.10-12 Without deriving any new equations, roughly sketch the electric and magnetic 
field lines in a typical xy-plane of a rectangular waveguide for 

a) TM21 mode by an extension of Fig. 10-11(a). 
b) TE n mode by an extension of Fig. 10-12(a). 

The densities of the field lines should show the proper sine or cosine variations. 
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P.10-13 For an a x b rectangular waveguide operating at the TMU mode, 
a) derive the expressions for the surface current densities on the conducting walls, 
b) sketch the surface currents on the walls at x = 0 and at y = b. 

P.10-14 A standard air-filled S-band rectangular waveguide has dimensions a = 7.21 (cm) 
and b = 3.40 (cm). What mode types can be used to transmit electromagnetic waves having 
the following wavelengths? 

a) X = 10 (cm) b) X = 5 (cm) 
P.10-15 Determine the energy-transport velocity of the TE10 mode in a lossless a x b 
rectangular waveguide in terms of its cutoff frequency. 
P.10-16 Calculate and list in ascending order the cutoff frequencies (in terms of the cutoff 
frequency of the dominant mode) of an a x b rectangular waveguide for the following modes: 
TE01, TE10, TEU, TE02, TE20, TMU) TM12, and TM22 (a) if a = 2b and (b) if a = b. 
P.10-17 An air-filled a x b {b < a <2b) rectangular waveguide is to be constructed to 
operate at 3 (GHz) in the dominant mode. We desire the operating frequency to be at least 
20% higher than the cutoff frequency of the dominant mode and also at least 20% below 
the cutoff frequency of the next higher-order mode. 

a) Give a typical design for the dimensions a and b. 
b) Calculate for your design /?, up, Xg, and the wave impedance at the operating 

frequency. 
P.10-18 Calculate and compare the values of j5, up, ug, Xg, and ZTEl0 for a 2.5 (cm) x 1.5 (cm) 
rectangular waveguide operating at 7.5 (GHz) 

a) if the waveguide is hollow, 
b) if the waveguide is filled with a dielectric medium characterized by er — 2,\ir=\ 

and o = 0. 
P.10-19 An air-filled rectangular waveguide made of copper and having transverse 
dimensions a = 7.20 (cm) and b = 3.40 (cm) operates at a frequency 3 (GHz) in the dominant 
mode. Find (a) fc, (b) Xg, (c) <xc, and (d) the distance over which the field intensities of the 
propagating wave will be attenuated by 50%. 
P.10-20 An average power of 1 (kW) at 10 (GHz) is to be delivered to an antenna at the 
TE10 mode by an air-filled rectangular copper waveguide 1 (m) long and having sides 
a = 2.25 (cm) and b = 1.00 (cm). Find 

a) the attenuation constant due to conductor losses, 
b) the maximum values of the electric and magnetic field intensities within the 

waveguide, 
c) the maximum value of the surface current density on the conducting walls, 
d) the total amount of average power dissipated in the waveguide. 

P.10-21 Find the maximum amount of 10 (GHz) average power that can be transmitted 
through an air-filled rectangular waveguide—a = 2.25 (cm), b = 1.00 (cm)—at the TE10 
mode without a breakdown. 
P.10-22 Determine the value of {f/fc) at which the attenuation constant due to conductor 
losses in an a x b rectangular waveguide for the TE10 mode is a minimum. What is the 
minimum obtainable <xc in a 2 (cm) x 1 (cm) guide? At what frequency? 
P.10-23 Derive Eq. (10-188), the formula for the attenuation constant due to conductor 
losses in an a x b rectangular waveguide for the TMU mode. Determine the value of {f/fc) 
at which this attenuation constant is a minimum. 
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P.10-24 Measurements at 10 (GHz) on an X-band air-filled rectangular waveguide 
(a = 2.29 cm, b = 1.02 cm) connected to an unknown load indicate a minimum electric field 
at 6 (cm) from the load and a standing-wave ratio (SWR) of 1.80. Find the location and the 
dimensions of a symmetrical capacitive iris required to bring the SWR to unity. 
P.10-25 A solution of the Bessel's differential equation 

d2R(r) 1 dR(r) 

can be obtained by assuming R{r) to be a power series in r as in Eq. (10-202), substituting 
it in the equation, and equating the sum of the coefficients of each power of r to zero. Find 
the solution and verify that it is consistent with J0{r) given in Eq. (10-204). 
P.10-26 Starting from Maxwell's curl equations in simple media, verify Eq. (10-219) for 
TM modes in a circular waveguide. 
P.10-27 Without deriving any new equations, roughly sketch the electric and magnetic 
field lines in a typical transverse plane of a circular waveguide 

a) for TMX1 mode by an extension of Fig. 10-20, and 
b) for TE01 mode. 
c) Determine the cutoff frequencies for TMU and TE01 modes in an air-filled circular 

waveguide of radius a. 
P.10-28 Sketch the co-/? diagrams for T E n and TM01 modes in a hollow circular 
waveguide of radius a. Discuss how the diagrams will be affected 

a) if a is doubled, 
b) if the waveguide is filled with a nonmagnetic medium having a dielectric constant er. 

P.10-29 For a straight waveguide with a semicircular cross section shown in Fig. 10-26, 
a) write the appropriate expression of £° for TM modes, 
b) write the appropriate expression of H° for TE modes. 
c) Explain how the eigenvalues of the respective modes can be determined. 

FIGURE 10-26 
Cross section of a semicircular waveguide 
(Problem P.10-29). 

P.10-30 Show that electromagnetic waves propagate along a dielectric waveguide with a 
velocity between that of plane-wave propagation in the dielectric medium and that in the 
medium outside. 
P.10-31 Find the solutions of Eq. (10-260) for ky by plotting Eqs. (10-257) and (10-258) 
with ocd/2 versus kyd/2 for d = 1 (cm) and er = 3.25 if (a) / = 200 (MHz), and 
(b) / = 500 (MHz). Determine /? and a for the lowest-order odd TM modes at the two 
frequencies. 
P.10-32 Repeat problem P.10-31 using Eq. (10-263). What can you conclude about the 
even TM modes? 
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P.10-33 For an infinite dielectric-slab waveguide of thickness d situated in air, obtain the 
instantaneous expressions of all the nonzero field components for even TM modes in the 
slab, as well as in the upper and lower free-space regions. 
P.10-34 When the slab thickness of a dielectric-slab waveguide is very small in terms of 
the operating wavelength, the field intensities decay very slowly away from the slab surface, 
and the propagation constant is nearly equal to that of the surrounding medium. 

a) Show that if kyd « 1, the following relations hold approximately for the dominant 
TE mode: 

« = ^{kj-kl), 
where kd = (OyJixded and kQ = co^J(xQ€Q. 

b) For a slab of thickness 5 (mm) and dielectric constant 3, estimate the distance from 
the slab surface at which the field intensities have decayed to 36.8% of their values 
at the surface for an operating frequency of 300 (MHz). 

P.10-35 For an infinite dielectric-slab waveguide of thickness d situated in free space, 
obtain the instantaneous expressions of all the nonzero field components for even TE modes 
in the slab, as well as in the upper and lower free-space regions. Derive Eq. (10-281). 
P.10-36 A waveguide consists of an infinite dielectric slab (ed, fid) of thickness d that is 
sitting on a perfect conductor. 

a) What are the propagating modes and what are their cutoff frequencies? 
b) Obtain the phasor expressions for the surface current and surface charge densities 

on the conducting base for the propagating modes. 
P.10-37 A round dielectric-rod waveguide of radius a, permittivity el5 and permeability fil 
is enveloped in a homogeneous medium characterized by permittivity e2 and permeability \i2-

a) Write the expressions of all the field amplitudes for circularly symmetrical TE 
modes. 

b) Obtain the characteristic equation for these modes. 
P.10-38 Given an air-filled lossless rectangular cavity resonator with dimensions 8 (cm) x 
6 (cm) x 5 (cm), find the first twelve lowest-order modes and their resonant frequencies. 
P.10-39 An air-filled rectangular cavity with brass walls—e0, [x0, a = 1.57 x 107 (S/m)— 
has the following dimensions: a = 4 (cm), b = 3 (cm), and d = 5 (cm). 

a) Determine the dominant mode and its resonant frequency for this cavity. 
b) Find the Q and the time-average stored electric and magnetic energies at the 

resonant frequency, assuming H0 to be 0.1 (A/m). 
P.10-40 If the rectangular cavity in Problem P.10-39 is filled with a lossless dielectric 
material having a dielectric constant 2.5, find 

a) the resonant frequency of the dominant mode, 
b) the Q, 
c) the time-average stored electric and magnetic energies at the resonant frequency, 

assuming H0 to be 0.1 (A/m). 
P.10-41 A rectangular cavity resonator of length d is constructed from an a x b 
rectangular waveguide. It is to be operated at the TE101 mode. 

a) For a fixed b, determine the relative magnitudes of a and d such that the cavity Q 
is maximized. 

b) Obtain an expression for Q as a function of a/b under the above conditions. 
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P.10-42 For an air-filled rectangular copper cavity resonator, 
a) calculate its Q for the TE101 mode if its dimensions are a = d = 1.8b = 3.6 (cm), 
b) determine how much b should be increased in order to make Q 20% higher. 

P.10-43 Derive an expression for the Q of an air-filled a x b x d rectangular resonator for 
the TM110 mode. 
P.10-44 For an air-filled circular cylindrical cavity resonator of radius a and length d: 

a) Write the general expressions for the resonant frequencies and the corresponding 
wavelengths for TMmnp and TEmnp modes. 

b) For d = a, list the first seven modes that have the lowest resonant frequencies. 
P.10-45 In some microwave applications, ring-shaped cavity resonators with a very 
narrow center part are used. A cross section of such a resonator is shown in Fig. 10-27, in 
which d is very small in comparison with the resonant wavelength. Assuming that this 
resonator can be represented approximately by a parallel combination of the capacitance of 
the narrow center part and the inductance of the rest of the structure, find 

a) the approximate resonant frequency, 
b) the approximate resonant wavelength. 

i 
a : 
T — 

h -b \ 

FIGURE 10-27 
A ring-shaped resonator with a narrow center 
part (Problem P.10-45). 
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Antennas and 
Radiating Systems 

11—1 Introduction 

In Chapter 8 we studied the propagation characteristics of plane electromagnetic 
waves in source-free media without considering how the waves were generated. Of 
course, the waves must originate from sources, which in electromagnetic terms are 
time-varying charges and currents. In order to radiate electromagnetic energy effi
ciently in prescribed directions, the charges and currents must be distributed in 
specific ways. Antennas are structures designed for radiating electromagnetic energy 
effectively in a prescribed manner. Without an efficient antenna, electromagnetic 
energy would be localized, and wireless transmission of information over long 
distances would be impossible. 

An antenna may be a single straight wire or a conducting loop excited by a 
voltage source, an aperture at the end of a waveguide, or a complex array of these 
properly arranged radiating elements. Reflectors and lenses may be used to accentuate 
certain radiation characteristics. Among radiation characteristics of importance are 
field pattern, directivity, impedance, and bandwidth. These parameters will be exam
ined when particular antenna types are studied in this chapter. 

To study electromagnetic radiation, we must call upon our knowledge of Max
well's equations and relate electric and magnetic fields to time-varying charge and 
current distributions. A primary difficulty of this task is that the charge and current 
distributions on antenna structures resulting from given excitations are generally un
known and very difficult to determine. In fact, the geometrically simple case of a 
straight conducting wire (linear antenna) excited by a voltage source in the middle1 

has been a subject of extensive research for many years, and the exact charge and 
current distributions on a wire of a finite radius are extremely complicated even 
when the wire is assumed to be perfectly conducting. Fortunately, the radiation field 

This arrangement is called a dipole antenna. 

600 
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of such an antenna is relatively insensitive to slight deviations in the current distri
bution, and a physically plausible approximate current on the wire yields useful re
sults for nearly all practical purposes. We will examine the radiation properties of 
linear antennas with assumed currents. 

By combining Maxwell's equations we can derive nonhomogeneous wave equa
tions in E and in H (see Problem P. 11-1). However, these equations tend to involve 
the charge and current densities in a complicated way. It is generally simpler to solve 
for the auxiliary potential functions A and V first. Using A and V in Eqs. (7-55) 
and (7-57), we can determine H and E. For harmonic time variation in a simple 
medium we have 

H = - V x A (11-1) 
H 

and 
E = - V 7 - J O A . (11-2) 

The potential functions A and V are themselves solutions of nonhomogeneous wave 
equations, Eqs. (7-63) and (7-65), and the solutions are given in Eqs. (7-78) and 
(7-77), respectively. For harmonic time dependence the phasor retarded potentials 
are, from Eqs. (7-100) and (7-99), 

A = T-f ~^dv', (11-3) 

V = -r—\ tL-^^dv', (11-4) 

where k = w^JJie — 2n/X is the wavenumber. Of course, A and V are related by the 
Lorentz condition, Eq. (7-98), for potentials, just as J and p are related by the equa
tion of continuity Eq. (7-48), or 

\-J=-j(op. (11-5) 

Hence there is no need for evaluating the integrals in both Eqs. (11-3) and (11-4). 
As a matter of fact, since E and H are related by Eq. (7-104b), 

E = V x H. (11-6) 
JC06 

We follow three steps in the determination of electromagnetic fields from a current 
distribution: (1) determine A from J using Eq. (11-3); (2) find H from A using Eq. 
(11-1); and (3) find E from H using Eq. (11-6). Note that only Step 1 requires an 
integration and that Steps 2 and 3 involve only straightforward differentiation. This 
is the procedure we will use in finding the radiation pattern of antennas. 

We will first study the radiation fields and characteristic properties of an ele
mental electric dipole and of a small current loop (or magnetic dipole). We then con
sider finite-length thin linear antennas, of which the half-wavelength dipole is an 
important special case. The radiation characteristics of a linear antenna are largely 
determined by its length and the manner in which it is excited. To obtain more 
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directivity and other desirable properties, a number of such antennas may be ar
ranged together to form an antenna array. The geometrical configuration, the spacings 
between the array elements, as well as the relative amplitudes and phases of the 
excitations in the elements all affect the field pattern of the array. Some basic prop
erties of simple arrays will be considered. 

When an antenna is used as a receiving device, its function is to collect energy 
from an incoming electromagnetic wave and deliver it to a receiver. Any antenna 
that is useful for radiation is also useful for reception. We will use the reciprocity 
theorem to show that the pattern, directivity, input impedance, effective height, and 
effective aperture of an antenna are the same for transmitting as for receiving. We 
will define backscatter cross section and study the radar equation and the effect of 
wave propagation near the earth's surface. Finally, we will discuss such antenna types 
as traveling-wave antennas, Yagi-Uda antennas, helical antennas, broadband an
tennas and arrays, and aperture antennas. 

2 Radiation Fields of Elemental Dipoles 

In this section we study the radiation fields of the simplest types of all radiating 
systems—namely, elemental oscillating electric and magnetic dipoles. We will find 
that the field solutions for electric and magnetic dipoles are duals of each other. As 
a consequence, the radiation properties of one can be deduced from those of the 
other without recalculation. 

11-2.1 THE ELEMENTAL ELECTRIC DIPOLE 

Consider the elemental oscillating electric dipole (in free space), as shown in Fig. 
11-1, which consists of a short conducting wire of length d£ terminated in two small 
conductive spheres or disks (capacitive loading). We assume the current in the wire 
to be uniform and to vary sinusoidally with time: 

i(t) = / cos cot = @*\_Iejmtl (11-7) 

dt \6 
\ Av FIGURE 11-1 

v ^ A Hertzian dipole. 

602 
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Since the current vanishes at the ends of the wire, charge must be deposited there. 
The relation between the charge and the current is 

m = ± dq(t) 
dt ' 

In phasor notation, q(t) = &e\_Qejcot~\, we have 

/ = ±jcoQ 
or 

(11-8) 

(11-9) 

(H-10) 

where, for the indicated current direction in Fig. 11-1, the positive sign is for the 
charge on the upper end and the negative sign for the charge on the lower end. The 
pair of equal and opposite charges separated by a short distance effectively form an 
electric dipole with a vector phasor electric moment 

p = azQ<tf (C-m). (11-11) 

Such an oscillating dipole is called a Hertzian dipole. 
To determine the electromagnetic field of a Hertzian dipole, we follow the three 

steps outlined in Section 11-1. The phasor representation of the retarded vector 
potential is, from Eq. (11-3), 

A " a ' An \ R 

where /? = k0 = co/c = 2n/X. Since 

az = a^ cos 8 — a0 sin 8, 

the spherical components of A = a ^ ^ + aeAe + a^A^ are 

AR = Az cos 8 = ^ - ( ^ H cos 8, 
An R 

Ae - —Az sin 8 = — ̂ — — — sin 8, 
An R 

A t k = Q. 

(11-12) 

(11-13) 

(11-14a) 

(ll-14b) 

(11-14c) 

From the geometry of Fig. 11-1 we expect no variation with respect to the coor
dinate <j). We have, from Eq. (2-139) 

H = i - V x A = a * 

= - a „ — / ? 2 s i n 0 

' d (RA\ 3A* 

An 
1 1 

+ jfiR UPR): 

(H-15) 
,-JfiR 
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The electric field intensity can be obtained from Eq. (11—6): 

E = 
1 

jcoe0 

1 

V x H 

jo^o ''«iel^sinfl) — m < ^ 
which gives 

ER= ~^rjop22cos9 1 1 
+ 

,-JPR 

Id/ nl Ee= -^~r}J2sm9 

^ = 0, 

UPRY UPRY 
i i i 

\JPR UPR)2 UPR)2 
,-JPR 

(11-16) 

(ll-16a) 

(11-16b) 

(ll-16c) 

where rj0 = *Jix0/e0 ^ 120n (Q). 
Equations (11-15) and (11-16) constitute the electromagnetic field of a Hertzian 

dipole. Note that in deriving these expressions we used only the current in the dipole 
to find the vector potential A; the charges at the ends of the dipole did not enter 
into the calculations. We could, however, take an alternative approach by finding 
both A from Id/?, as in Eq. (11-12), and the scalar potential Ffrom the pair of equal 
and opposite charges using Eq. (11-4). The electric field intensity could then be 
determined from Eq. (11-2), instead of from Eq. (11-6). The result would be exactly 
the same as that obtained above (see Problem P. 11-2). 

The complete field expressions in Eqs. (10-15) and (10-16) are fairly complicated. 
It is advantageous to examine their behavior in regions near to and far from the dipole 
separately. 

Near Field In the region near to the Hertzian dipole (in the near zone), PR = 
InR/X « 1, the leading term in Eq. (11-15) is 

H^ = 
4nR' 

sin 9, (11-17) 

where we have approximated the factor e~JPR = 1 -jPR - {PR)2/2 -\ by unity. 
Equation (11-17) is exactly what would be obtained for the magnetic field intensity 
due to a current element / M by applying the Biot-Savart law in magnetostatics as 
given in Eq. (6-33b). 

The leading near-zone terms for the electric field intensity are, from Eqs. (ll-16a) 
and (ll-16b), 

F - P 

and 

Ea = 

4ne0R3 

P 
4ne0R3 

2 cos 9 

sin 9, 

(ll-18a) 

(ll-18b) 
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where the phasor relations (11-10) and (11-11) have been used. These expressions 
are identical to those of the electric field intensity due to an elemental electric dipole 
of a moment p in the z-direction, as given in Eq. (3-31), obtained by an application 
of the laws of electrostatics. The near-zone fields of an oscillating time-varying dipole 
are then quasi-static fields. 

Far Field The region where flR = 2nR/X » 1 is the far zone. The far-zone leading 
terms in Eqs. (11-15) and (11-16) are 

(ll-19a) 

(ll-19b) 

Several important observations can be made on these far-zone fields. First, Ee and 
HQ are in space quadrature and in time phase. Second, their ratio EJH^ = rj0 is a 
constant equal to the intrinsic impedance of the medium (which is, in the present case, 
free space). The far-zone fields, then, have the same properties as those of a plane 
wave. This is not unexpected, since at very large distances from the dipole a spherical 
wavefront closely resembles a plane wavefront. 

A third observation from Eqs. (11—19a, b) is that the magnitude of the far-zone 
fields varies inversely with the distance from the source. The phase of both Ee and H^ 
is a periodic function of R with a period that is the wavelength: 

2% c 
(11-20) 

Note that the far-zone condition (3R » 1 translates into R » X/2n; hence one has to 
be farther away from the dipole at lower frequencies in order to be in the far zone. 
(Other characteristics of far-zone fields will be discussed in Section 11-3.) 

11-2.2 THE ELEMENTAL MAGNETIC DIPOLE 

Let us now consider a small filamentary loop of radius b carrying a uniform time-
harmonic current i(t) = / cos cot around its circumference, as shown in Fig. 11-2. 
This is an elemental magnetic dipole with a vector phasor magnetic moment 

m = ajjib2 = azm (A-m2). (11-21) 

To determine the electromagnetic field, we first find the vector potential. The pro
cedure is the same as that used in Section 6-5, except for the time-dependent nature 
of the current. Instead of starting from Eq. (6-39), we have 

A = 
,-JpRi 

Ri 
dr. (11-22) 
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FIGURE 11-2 
A magnetic dipole. 

The integral in Eq. (11-22) is relatively difficult to carry out exactly because R1 
changes with the location of d€' on the loop. For a small loop the exponential factor 
in the numerator can be written as 

e~JPRi _ e-JPRe-MRi-R) 

*e-»\l-JWi-R)l 

Substitution of Eq. (11-23) in Eq. (11-22) yields approximately 

A = 
4TT w 

d€' 

(11-23) 

(11-24) 

The second integral in Eq. (11-24) obviously vanishes. The first integral is the same 
as that in Eq. (6-39), except for the multiplying factor (1 + j(]R)e~jpR. In view of the 
result in Eq. (6-43) we have 

A = a, ^0m 
4nR2 {\+jf]R)e-msm6. (11-25) 

The electric and magnetic field intensities can be determined by straightforward 
differentiation using Eqs. (11-6) and (11-1), respectively: 

E* = ̂ ° > s i n 0 
4TL 

1 1 
+ 

HR - -

Ha= -

^ ^ 2 cos* 

4nr}0 

jfiR ' UPR)2. 
1 

+ 

,-JpR 

1 ,-JpR 

UPR)2 (JPR) 
1 1 1 

jPR UPR? UPRY 
,-JPR 

(ll-26a) 

(ll-26b) 

(ll-26c) 
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Comparison of Eqs. (ll-26a, b, c) with Eqs. (11-15) and (l l-16a, b) reveals imme
diately the dual nature of the electromagnetic fields of electric and magnetic dipoles. 

Let (Ee, He) denote the electric and magnetic fields of the electric dipole and 
(Em, H J the electric and magnetic fields of the magnetic dipole. We have 

and 
Ee = VoKn 

if the electric and magnetic dipole moments are related as follows: 

Id€=jPm, 

(11-27) 

(11-28) 

(11-29) 

where /? = ftW/o = (Oy/n0€0. Equations (11-27) and (11-28) are results expected 
from the principle of duality, which was introduced in connection with Example 7-7. 
Thus Hertzian electric dipole and elemental magnetic dipole are dual devices, and 
their electromagnetic fields are dual solutions of source-free Maxwell's equations. As 
a consequence of this duality, the discussions about the nature of the near and far 
fields of an electric dipole apply to the dual quantities of a magnetic dipole. In par
ticular, the far-zone (fiR » 1) fields of a magnetic dipole are 

(ll-30a) E<t> = = ̂ (^Vs in0 An \ R J 
(V/m), 

He = 4^0 v R r (A/m). (ll-30b) 

We can see that the far-field intensities vary inversely as R and their ratio E^H9 
equals the intrinsic impedance rj0 of free space. 

Examination of the far-field Ee in Eq. (11—19b) of the electric dipole and E^ in 
Eq. (ll-30a) of the magnetic dipole reveals that they have the same pattern function 
| sin 01 and are in both space and time quadrature. Thus it is possible to combine 
electric and magnetic dipoles to form an antenna that produces circular polarization 
(see Problem P. 11-4). 

11—d Antenna Patterns and Antenna Parameters 

In antenna problems we are primarily interested in the far-zone fields. These are also 
called radiation fields. No physical antennas radiate uniformly in all directions in 
space. The graph that describes the relative far-zone field strength versus direction 
at a fixed distance from an antenna is called the radiation pattern of the antenna, or 
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(a) £-plane pattern. (b) //-plane pattern. 

FIGURE 11-3 
Radiation patterns of a Hertzian dipole. 

simply the antenna pattern. In general, an antenna pattern is three-dimensional, 
varying with both 6 and 0 in a spherical coordinate system. The difficulties of making 
three-dimensional plots can be avoided—as is the usual practice—by plotting sepa
rately the magnitude of the normalized field strength (with respect to the peak value) 
versus 0 for a constant 0 (an E-plane pattern) and the magnitude of the normalized 
field strength versus 0 for 0 = n/2 (the H-plane pattern). 

EXAMPLE 11-1 Plot the £-plane and H-plane radiation patterns of a Hertzian 
dipole. 
Solution Since Ee and H^ in the far zone are proportional to each other, we need only 
consider the normalized magnitude of Ee. 
a) E-plane pattern. At a given R, E0 is independent of 0; and from Eq. (11—19b) 

the normalized magnitude of Ee is 
Normalized \Ee\ = |sin0|. (H-31) 

This is the £-plane pattern function of a Hertzian dipole. For any given cf), Eq. 
(11-31) represents a pair of circles, as shown in Fig. ll-3(a). 

b) H-plane pattern. At a given R and for 9 = n/2 the normalized magnitude of Ee 
is |sin0| = 1. The //-plane pattern is then simply a circle of unity radius centered 
at the z-directed dipole, as shown in Fig. 11-3(b). f»a 

The radiation pattern of practical antennas are usually more complicated than 
those shown in Fig. 11-3. A typical //-plane pattern might look like the one illustrated 
in Fig. 11-4(a), which is plotted in polar coordinates with normalized \Eg\ versus <f). 
It generally has a major maximum and several minor maxima. The region of maximum 
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radiation between the first null points around it is the main beam, and the regions 
of minor maxima are sidelobes. 

Sometimes it is convenient to plot antenna patterns in rectangular coordinates. 
The polar plot in Fig. 11-4(a) will appear as Fig. ll-4(b) in rectangular coordinates. 
Since the field intensities in the main-beam and sidelobe directions may differ by 
many orders of magnitude, antenna patterns are frequently plotted in a logarithmic 
scale measured in decibels down from the main-beam level. The pattern in Fig. 11-4(b) 
converted to a decibel scale will have the shape shown in Fig. 11-4(c). 

In the comparison of various antenna patterns the following characteristic para
meters are of importance: (1) width of main beam, (2) sidelobe levels, and (3) directivity. 

Normalized 
\Eg\ 

5TT/8 ^ 3TT/8 

0 TT/8 TT/4 3TT/8 f TT/2 f 5TT/8 3TT/4 7TT/8 TT 
01 02 

(b) Radiation pattern 
in rectangular coordinates. 

20 log,0 
(normalized \Ee\) 

f 

(a) A typical radiation pattern 
in polar coordinates. 

■8.2 (dB) 
10.7 (dB) 

13.5 (dB) Z ^ 
0 TT/8 TT/4 3TT/8^ TT/2 7 ^ / 8 3TT/4 7TT/8 TT' 

01 02 

(c) Radiation pattern in rectangular 
coordinates plotted in dB scale. 

FIGURE 11-4 
Typical H-plane radiation patterns. 
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The significance of each of these parameters is explained below. 

1. Width of main beam (or simply beamwidth). The main-beam beamwidth describes 
the sharpness of the main radiation region. It is generally taken to be the angular 
width of a pattern between the half-power, or — 3 (dB), points. In electric-intensity 
plots it is the angular width between points that are 1/̂ /2 or 0.707 times the 
maximum intensity. Thus, the H-pIane pattern in Fig.. 11-4 has a 3 (dB) beam-
width equal to (<f>2 — 0i)> and the E-plane pattern of the Hertzian dipole in 
Fig. ll-3(a) has a 3 (dB) beamwidth of 90°. Occasionally the angular width of 
the main beam between —10 (dB) points or between the first nulls is also of 
interest. Of course, the main beam must point in the direction where the antenna 
is designed to have its maximum radiation. 

2. Sidelobe levels. Sidelobes of a directive (nonisotropic) pattern represent regions 
of unwanted radiation; they should have levels as low as possible. Generally, the 
levels of distant sidelobes are lower than the levels of those near the main beam. 
Hence, when one talks about the sidelobe level of an antenna pattern, one usually 
refers to the first (the nearest and highest) sidelobe. In modern radar applications, 
sidelobe levels of the order of minus 40 or more decibels are required. In practical 
applications the locations of the sidelobes are also of importance. 

3. Directivity. The beamwidth of an antenna pattern specifies the sharpness of the 
main beam, but it does not provide us with any information about the rest of the 
pattern. For example, the sidelobes may be very high—an undesirable feature. 
A commonly used parameter to measure the overall ability of an antenna to 
direct radiated power in a given direction is directive gain, which may be defined 
in terms of radiation intensity. Radiation intensity is the time-average power per 
unit solid angle. The SI unit for radiation intensity is watt per steradian (W/sr). 
Since there are R2 square meters of spherical surface area for each unit solid 
angle, radiation intensity, U, equals R2 times the time-average power per unit 
area or R2 times the magnitude of the time-average Poynting vector, .#„„: 

U = R2&M MW/sr). (ii-32) 
The total time-average power radiated is 

Pr = <p &a0 -ds = fU dCl (W), (11-33) 

where dQ. is the differential solid angle, dQ. = sin Qd0d<j>. 
The directive gain, GD{9, 0), of an antenna pattern is the ratio of the radiation 

intensity in the direction (0, 4>) to the average radiation intensity: 

GD(0, (p) = = -T. (11-34) 
pr/47r <j)UdCl 

Obviously, the directive gain of an isotropic or omnidirectional antenna (an 
antenna that radiates uniformly in all directions) is unity. However, an isotropic 
antenna does not exist in practice. 
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The maximum directive gain of an antenna is called the directivity of the 
antenna. It is the ratio of the maximum radiation intensity to the average radia
tion intensity and is usually denoted by D: 

D = 
Unn P. 

(Dimensionless). (11-35) 

In terms of electric field intensity, D can be expressed as 

D 
4n\E» 

§*" f*[E(6,<f>)\2 sin edOd<j> 
(Dimensionless). (11-36) 

Directivity is frequently expressed in decibels, referring to unity. 

EXAMPLE 11-2 Fjnd ^e directive gain and the directivity of a Hertzian dipole. 

Solution For a Hertzian dipole the magnitude of the time-average Poynting vector 
is 

^ a i .H#« |ExH*|~i |£ f l | | f f J . 

Hence from Eqs. (11-19a, b) and (11-32), 

(Id/)2 

V = 32;r; tj0fi2 sin2 6. 

(31-37) 

(11-38) 

The directive gain can be obtained from Eq. (11-34): 

4TE sin2 8 
GD{6, 4>) = 

Jo
2* Jo*(sin20)sin0<i0# 

= f sin2 6. 

The directivity is the maximum value of GD{8, (ft): 

1.5, D = GD\j,(j) 

which corresponds to 101ogI0 1.5 or 1.76 (dB). ■"■ 

We note that beamwidth, sidelobe levels, and directive gain are parameters of 
an antenna pattern; they do not convey information about the efficiency or the input 
impedance of the antenna. A measure of antenna efficiency is the power gain. The 
power gain, or simply the gain, GP, of an antenna referred to an isotropic source is 
the ratio of its maximum radiation intensity to the radiation intensity of a lossless 
isotropic source with the same power input. The directive gain as defined in Eq. 
(11-34) is based on radiated power Pr. Because of ohmic power loss, P£, in the 
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antenna itself as well as in nearby lossy structures including the ground, Pr is less 
than the total input power Pt. We have 

Pi = Pr + Pf 
The power gain of an antenna is then 

Gp=~rr (Dimensionless). 

(11-39) 

(11-40) 

The ratio of the gain to the directivity of an antenna is the radiation efficiency, r\r: 

(11-41) 
GP P. 

rjr = yr = j ^ (Dimensionless). 

Normally, the efficiency of well-constructed antennas is very close to 100%. 
A useful measure of the amount of power radiated by an antenna is radiation 

resistance. The radiation resistance of an antenna is the value of a hypothetical 
resistance that would dissipate an amount of power equal to the radiated power Pr 
when the current in the resistance is equal to the maximum current along the antenna. 
Naturally, a high radiation resistance is a desirable property for an antenna. 

EXAMPLE 11-3 Find the radiation resistance of a Hertzian dipole. 

Solution If we assume no ohmic losses, the time-average power radiated by a 
Hertzian dipole for an input time-harmonic current with an amplitude / is 

Pr = \ J0
2" H EeH%R2 sin 6d6d4>. (11-42) 

Using the far-zone fields in Eqs. (11-19a, b), we find 

P , = noP2fo* $n
0sm3ed9d<t> l\dtf 

32K2 

12n ^ ~ 2 »-'F 
(11-43) 

In this last expression we have used 120TI for the intrinsic impedance of free space, 
r\0, and substituted 2K/X for /?. 

Since the current along the short Hertzian dipole is uniform, we refer the power 
dissipated in the radiation resistance Rr to I Equating I2RJ2 to Pr, we obtain 

(11-44) 
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As an example, if dtC = 0.01 X, Rr is only about 0.08 (Q), an extremely small value. 
Hence a short dipole antenna is a poor radiator of electromagnetic power. However, 
it is erroneous to say without qualification that the radiation resistance of a dipole 
antenna increases as the square of its length because Eq. (11-44) holds only if d£ « X. 

Radiation resistance may be quite different from the real part of the input im
pedance because the latter includes ohmic losses in the antenna structure itself as 
well as losses in the ground. The input impedance of a short dipole antenna has a 
large capacitive reactance, which makes it difficult to match and therefore difficult 
to feed power to the antenna efficiently. 

EXAMPLE 11-4 Find the radiation efficiency of an isolated Hertzian dipole made of 
a metal wire of radius a, length d, and conductivity o. 

Solution Let / be the amplitude of the current in the wire dipole having a loss 
resistance R£. Then the ohmic power loss is 

P< = il2R<- (H-45) 

In terms of radiation resistance Rr the radiated power is 

Pr = il2Rr- (H-46) 

From Eqs. (11-39) and (11-41) we have 

P, Rr 
Vr = Pr + P; Rr + R£ 

e r ' (11-47) 

1 + ( * , / * , ) ' 

where Rr has been found in Eq. (11-44). The loss resistance Re of the metal wire 
can be expressed in terms of the surface resistance Rs: 

R< = *■(£) < n - 4 8 > 
where 

Rs= / ^ o (11-49) 

as given in Eq. (9-26b). Using Eqs. (11-44) and (11-48) in Eq. (11-47), we obtain 
the radiation efficiency of an isolated Hertzian dipole: 

n'=
1+ * . ' A W ^ ' (11-50> 

160JI3 WVrf/ 
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Assume that a = 1.8 (mm), <M = 2 (m), operating frequency / = 1.5 (MHz), and 
<T (for copper) = 5.80 x 107 (S/m). We find that 

c 3 x 108 

! = - = . , ^ 6 = 200 (m), ' / 1.5 x 10( 

R = 
n x (1.50 x 106) x (4TI10-7) 

5.80 x 10' 

£ , = 3.20 x 10"4 x 
2TT1.8 x 10 

= 3.20 x 10~4 (Q), 

_ 3 , = 0.057 (Q), 

^ - 8 0 7 r 2 f ^ Y = 0.079 (Q), 

and 

rjr = 
0.079 

0.079 + 0.057 
= 58%, 

which is very low. Equation (11-50) shows that smaller values of (a/A) and (d/f/X) 
lower the radiation efficiency. ^ 

Linear Antennas 

We have just indicated that a short dipole antenna is not a good radiator of electro
magnetic power because of its low radiation resistance and low radiation efficiency. 
We now examine the radiation characteristics of a center-fed thin straight antenna 
having a length comparable to a wavelength, as shown in Fig. 11-5. Such an antenna 
is a linear dipole antenna. If the current distribution along the antenna is known, we 
can find its radiation field by integrating over the entire length of the antenna the 
radiation field due to an elemental dipole. The determination of the exact current 
distribution on such a seemingly simple geometrical configuration (a straight wire 

FIGURE 11-5 
A center-fed linear dipole with sinusoidal current 
distribution. 
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of a finite radius) is, however, a very difficult boundary-value problem even if the 
wire is assumed to be perfectly conducting. The current must be zero at the ends 
of the wire where charges are deposited, and the tangential electric field due to all 
currents and charges must vanish at every point on the wire surface. An analytical 
formulation of the problem leads to an integral equation in which the current distri
bution along the antenna is the unknown function under the integral. Unfortunately, 
an exact solution of the integral equation does not exist. Various approximate solu
tions have been attempted. With the advent of high-speed digital computers, .nu
merical solutions for current distributions and input impedances can be obtained for 
linear antennas of specific lengths and thicknesses. The ratio of the voltage and the 
current at the feed points is the input impedance. Both the solution procedure and 
the numerical results are quite involved, and we shall not delve into them in this 
book. For our purposes the knowledge of the exact current distribution on the linear 
antenna is not of prime importance; a good estimate will give us considerable useful 
information on the radiation characteristics of the antenna. We assume a sinusoidal 
current distribution on a very thin, straight dipole. Such a current distribution con
stitutes a kind of standing wave over the dipole and represents a good approximation. 

Since the dipole is center-driven, the currents on the two halves of the dipole 
are symmetrical and go to zero at the ends. We write the current phasor as 

I(z) = Imsmp(h-\z\), 
_ (Im sin P{h - z), z>0, (11-51) 

}/m sin p(h + z), z < 0. 

We are interested only in the far-zone fields. The far-field contribution from the differ
ential current element I dz is, from Eqs. (11—19a, b), 

Idz /e~JliR'\ 
dE9 = n0 dH, = j — I - ^ - W/J sin 6. (11-52) 

Now R' in Eq. (11-52) is slightly different from R measured to the origin of the 
spherical coordinates, which coincides with the center of the dipole. In the far zone, 
R»h, 

R' = {R2 + z2 - 2Rz cos 0)112 ^ R - z cos 6. (11-53) 

The magnitude difference between 1/R' and 1/R is insignificant, but the approximate 
relation in Eq. (11-53) must be retained in the phase term. Using Eqs. (11-51) and 
(11-53) in Eq. (11-52) and integrating, we have 

Ee = noH4, 

4nR J~h ' 

The integrand in Eq. (11-54) is the product of an even function of z, sin /?(/i - |z|), and 
^fiz cos 0 = c o s (pz c o s fl) + j s i n yz C Q S 0^ 
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where sin (fiz cos 9) is an odd function of z. Integrating between symmetrical limits 
— h and h, we find that only the part of the integrand containing the product 
sin (l(h — |z|) cos (fiz cos 9) does not vanish. Equation (11-54) then reduces to 

E9 = r\0H4t=j 
.Imrj0P sin 9 _. JfiR 

2nR sin fi(h — z) cos (fiz cos 9) dz 

R e~jpRF(9), 

where 

F(9) = cos (fih cos 9) — cos flh 
sin 0 

(11-55) 

(11-56) 

The factor \F(9)\ is the £-plane pattern function of a linear dipole antenna. It 
describes the radiation pattern or the variation of the normalized far field, \Ee\, versus 
the angle 9. The exact shape of the radiation pattern represented by \F{9)\ in Eq. 
(11-56) depends on the value of fih = 2%h/X and can be quite different for different 
antenna lengths. The radiation pattern, however, is always symmetrical with respect 
to the 9 = n/2 plane. Figure 11-6 shows the £-plane patterns for four different dipole 
lengths measured in terms of wavelength: 2h/X = \, 1, f and 2. The //-plane patterns 
are circles inasmuch as F(9) is independent of </>. From the patterns in Fig. 11-6 we 
see that the direction of maximum radiation tends to shift away from the 9 = 90° 
plane when the dipole length approaches 3/1/2. For 2/i = 2X there is no radiation in 
the 9 = 90° plane. 

(a) 2h/\ = 1/2 . (b) 2/z/X = 1 . 

(c) 2/z/X = 3/2 . (d) 2/z/X = 2 . 

FIGURE 11-6 
£-plane radiation patterns for center-fed dipole antennas. 
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11-4.1 THE HALF-WAVE DIPOLE 

The half-wave dipole having a length 2/i = A/2 is of particular practical importance 
because of its desirable pattern and impedance characteristics. We shall now examine 
its properties in more detail. 

For a half-wave dipole, fih = 2TT/I/A = n/2, the pattern function in Eq. (11-56) 
becomes 

cos[W2)cosfl] 
sinQ 

This function has a maximum equal to unity at 6 = 90° and has nulls at 6 = 0° and 
180°. The corresponding £-plane radiation pattern is sketched in Fig. ll-6(a). The 
far-zone field phasors are, from Eq. (11-55), 

Eejm^e.mjoos[moose^ (U58) 

and 

The magnitude of the time-average Poynting vector is 

9- ~ 2 E>H* ~ Htf \ ^Te 1 ' (U-60) 

The total power radiated by a half-wave dipole is obtained by integrating g?av over 
the surface of a great sphere: 

P'=JT So^R2 sin edd dc/) 

=3oiirs2[{nTse]M- (11_61) 

J° sin 9 
The integral in Eq. (11-61) can be evaluated numerically to give a value 1.218. Hence 

P r = 36.54/^ (W), (11-62) 

from which we obtain the radiation resistance of a free-standing half-wave dipole: 

2Pr 

It 
Rr = -^ = 13A (Q). (11-63) 

Neglecting losses, we find that the input resistance of a thin half-wave dipole equals 
73.1 (Q) and that the input reactance is a small positive number that can be made 
to vanish when the dipole length is adjusted to be slightly shorter than A/2. (As we 
have indicated before, the actual calculation of the input impedance is tedious and 
is beyond the scope of this book.) 
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The directivity of a half-wave dipole can be found by using Eq. (11-35). We have, 
from Eqs. (11-32) and (11-60), 

UmaK = R20>J9O°) = -I2
m 

and 
D = 4^ m a x 60 

36.54 
= 1.64, 

(11-64) 

(11-65) 

which corresponds to 101og10 1.64 or 2.15 (dB) referring to an omnidirectional 
radiator. 

The half-power beamwidth of the radiation pattern is the angle between the two 
solutions of the equation 

cos [(TT/2) cos &] _ 1 

sin 9 ~ Ji 0 < 9 < TL, 

which can be solved either numerically or graphically to give a beamwidth of 78°. 
Thus a half-wave dipole is only slightly more directive than a short Hertzian dipole 
that has a directivity of 1.76 (dB) and a beamwidth of 90°. 

EXAMPLE 11-5 A thin quarter-wavelength vertical antenna over a perfectly con
ducting ground is excited by a sinusoidal source at its base. Find its radiation pattern, 
radiation resistance, and directivity. 

Solution Since current is charge in motion, we can use the method of images dis
cussed in Section 4-4 and replace the conducting ground by the image of the vertical 
antenna. A little thought will convince us that the image of a vertical antenna carrying 
a current / is another vertical antenna. The image antenna has the same length, is 
equidistant from the ground, and carries the same current in the same direction as 

X/4 
X/4 

L_& 
(a) A vertical quarter-wave 

monopole over conducting 
ground. 

\l 

X/4 

(b) Equivalent half-wave 
dipole radiating into 
upper half-space. 

FIGURE 11-7 
Quarter-wave monopole over a 
conducting ground and its equiva
lent half-wave dipole. 
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the original antenna. The electromagnetic field in the upper half-space due to the 
quarter-wave vertical antenna in Fig. l l-7(a) is, then, the same as that of the half-
wave antenna in Fig. 11-7(b). The pattern function in Eq. (11-57) applies here for 
0 < 6 < 7t/2, and the radiation pattern drawn in dashed lines in Fig. 11-7(b) is the 
upper half of that in Fig. 11-6(a). 

The magnitude of the time-average Poynting vector, &av, in Eq. (11-60), holds 
for 0 < 9 < 7t/2. Inasmuch as the quarter-wave antenna (a monopole) radiates only 
into the upper half-space, its total radiated power is only one-half that given in Eq. 
(11-62): 

Pr = 18.27/2 (W). 

Consequently, the radiation resistance is 

2Pr 

I Rr = - ^ = 36.54 (O), (11-66) 

which is one-half of the radiation resistance of a half-wave antenna in free-space. 
To calculate directivity, we note that although the maximum radiation intensity 

t/max remains the same as that given in Eq. (11-64), the average radiation intensity 
is now Pr/2n. Thus, 

which is the same as the directivity of a half-wave antenna. «n 

11-4.2 EFFECTIVE ANTENNA LENGTH 

For thin linear antennas with a given current distribution it is sometimes convenient 
to define a quantity called the effective length, to which the far-zone field is propor
tional. Let us refer to the dipole antenna in Fig. 11-5 and assume a general phasor 
current distribution I(z). The far-zone field is then, from Eq. (11-54), 

Ee = rioH* =J^ jfoT-"* js in d J ^ I{z)e^cos e dzl. (11-68) 

Let 1(0) be the input current at the feed point of the antenna. We write Eq. (11-68) 
as 

Ee = rioH, J - ^ - fie~^M tfl-69) 

where 

Se(e) = ~jh_hI(z)eJlizcos9dz (11-70) 

is the effective length of the transmitting antenna. (We will discuss the effective length 
of a receiving antenna presently.) As we see from Eq. (11-69), £e measures the effec
tiveness of the antenna as a radiator, and for a given current distribution the far-zone 
field is proportional to 4 , which contains all the information about the directional 
properties of the antenna. In most practical situations the important value of the 
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effective length is that at 9 = n/2, where 

(11-71) 

Equation (11-71) indicates that 4 is the length of an equivalent linear antenna with 
a uniform current 1(0) such that it radiates the same far-zone field in the 9 = n/2 
plane. 

EXAMPLE 11-6 Assume a sinusoidal current distribution on a center-fed, thin, 
straight half-wave dipole. Find its effective length. What is its maximum value? 

Solution For the assumed sinusoidal current distribution we use Eq. (11-51) for I(z) 
and substitute it in Eq. (11-70), where 1(0) = Im and h = A/4. We have 

4(0) = sin 9 j ^ 4
/ 4 sin jgf- - \z\)ejl3zcos0 dz. (11-72) 

The above integral has been evaluated in Eq. (11-56). Thus, 

m=\ cos I — cos 

sin 9 

The m a x i m u m value of 4(#) is at 9 = n/2, where the effective length is 

<-'.i)-K-

(11-73) 

(11-74) 

We note from Eq. (11-74) tha t the m a x i m u m effective length of a half-wave dipole 
is less t han its physical length, A/2. Bum 

A careful examinat ion of Eq. (11-71) reveals a potent ia l anomaly in the ap
pearance of 1(0) in the denomina tor . W h e n the half-length of a dipole is greater t han 
1/4 and approaches X/2, 1(0) would be progressively less t han Im, which would no t 
occur at z = 0. This could m a k e 4 much greater than 2h. Thus the definition of 
effective length as given in Eqs. (11-70) and (11-71) is meaningful only for relatively 
short an tennas tha t have a current m a x i m u m at the feed point . 

The effective length of a receiving linear an tenna is defined as the ra t io of the 
open-circuit voltage Voc induced a t the an tenna terminals a n d the electric field in
tensity Et = lEJ at the an tenna tha t induces it: 

4(0) - -~ (11-75) 
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FIGURE 11-8 
A linear antenna in the receiving mode. 

where the negative sign is to conform with the convention that the electric potential 
increases in a direction opposite to that of the electric field. The situation is illus
trated in Fig. 11-8. We will assume that E{ lies in the plane of incidence, since the 
component of E,- normal to the antenna does not induce a voltage across the antenna 
terminals. Obviously, the open-circuit voltage Voc depends on Eu 6, and (3h in a com
plicated way. It is possible to use a reciprocity theorem to prove formally that the ef
fective length of an antenna for receiving is the same as that for transmitting [14]^ 
In Section 11-6 we shall prove that both the impedance and the directional pattern 
of an isolated antenna in the receiving mode are the same as those of the antenna 
in the transmitting mode. We may also conclude the equality of the effective lengths 
operating under these two modes. 

If the incoming electric field Et is not parallel to the dipole, there is a polar
ization mismatch, and the magnitude of the open-circuit voltage will be 

l^hfc'Ej, (11-76) 
where 4 denotes the vector effective length. Obviously, | Voc\ will be maximum when 
Et is parallel to the dipole and will be zero if Ê  is perpendicular to the dipole. 

11—5 Antenna Arrays 

Antenna arrays are groups of similar antennas arranged in various configurations 
(straight lines, circles, triangles, and so on) with proper amplitude and phase relations 
to give certain desired radiation characteristics. Frequently, the radiation charac
teristics of importance are the direction and width of the main beam, sidelobe levels, 
and/or directivity. In this section we examine the basic theories and characteristics 
of linear antenna arrays (radiating elements arranged along a straight line). The elec
tromagnetic field of an array is the vector superposition of the fields produced by 

Bracketed numbers refer to the literature listed in the reference section at the end of this chapter. 
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the individual antenna elements. We first consider the simplest case of two-element 
arrays. After some experience has been gained with them, we consider the basic prop
erties of uniform linear arrays made up of many identical elements. 

11-5.1 TWO-ELEMENT ARRAYS 

The simplest array, is one consisting of two identical radiating elements (antennas) 
spaced a distance apart. This is illustrated in Fig. 11-9. For simplicity, let us assume 
that the far-zone electric field of the individual antennas be in the ^-direction and 
that the antennas are lined along the x-axis. The antennas are excited with a current 
of the same magnitude, but the phase in antenna 1 leads that in antenna 0 by an 
angle £. We have 

E0 = EmF(6, </>) 
,-JPRo 

Ro 

Ex = EmF(6, 4>) 
eXe-JPR! 

(11-77) 

(11-78) 

where F(9, <$>) is the pattern function of the individual antennas, and Em is an ampli
tude function. The electric field of the two-element array is the sum of E0 and E1. 
Hence, 

E = E0 + Ex = EmF(d, 4>) 
e-JPRo eJ^e JZa-Wi' 

Ri 
(11-79) 

In the far zone, R0 » d/2, and the factor l/R1 in the magnitude may be replaced 
approximately by 1/R0. However, a small difference between R0 and Ri in the ex
ponents may lead to a significant phase difference, and a better approximation must 
be used. Because the lines joining the field point P and the two antennas are nearly 
parallel, we may write 

R, ^ R0 - d sin 9 cos </>. (11-80) 

FIGURE 11-9 
A two-element array. 
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Substitution of Eq. (11-80) in Eq. (11-79) yields 

E = E, 
F(9, 0) 

Rn 
-JPRo [1 + e JPd sin 6 cos 4>0 jg ■e'?] 

= £.Me-**.e*/ 'f2co.tl . 
where 

\j/ = fid sin 9 cos 0 + £. 

The magnitude of the electric field of the array is 

| E | = ^ » | F ( M ) | 
•A 

cos — 
2 

(11-81) 

(11-82) 

(11-83) 

where \F(6, (f>)\ may be called the element factor, and |cos (<A/2)| the normalized array 
factor. The element factor is the magnitude of the pattern function of the individual 
radiating elements, and the array factor depends on array geometry as well as on 
the relative amplitudes and phases of the excitations in the elements. (In this partic
ular case the excitation amplitudes are equal.) The array factor is that of an array 
of isotropic elements, the directional property of the elements having been accounted 
for by the element factor. From Eq. (11-83) we may conclude that the pattern function 
of an array of identical elements is described by the product of the element factor 
and the array factor. This property is called the principle of pattern multiplication. 

For an array of two parallel z-directed half-wave dipoles the magnitude of the 
total electric field is, from Eqs. (11-57) and (11-83), 

\E\ = 
2E„ 
R, 

COS [(7C/2) COS &] 

sin 9 
<A 

cos — 
2 

(11-84) 

Since if/ is also a function of 9, we see that the pattern in an £-plane is not the same 
as that of a single dipole, except when <j> = ± n/2. In the if-plane, 9 = n/2, and the 
pattern is determined entirely by the array factor |cos {i///2)\. 

EXAMPLE 11-7 Pl° t the if-plane radiation patterns of two parallel dipoles for the 
following two cases: (a) d = X/2, I = 0; (b) d = A/4, £ = -n/2. 

Solution Let the dipoles be z-directed and placed along the x-axis, as shown in Fig. 
11-9. In the if-plane (9 = n/2), each dipole is omnidirectional, and the normalized 
pattern function is equal to the normalized array factor \A((j))\. Thus 

1-4(0)1 = 

a) d = X/2 {fid = n),Z = 0: 

<A 
cos — 

2 

1-4(0)1 = 

cos - {fid cos d> + Q 

COS ( — COS (f) (ll-85a) 
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(a) d=\/2, $ = 0 . (b) d = X/4, k = - T / 2 . 

FIGURE 11-10 
tf-plane radiation patterns of two-element 
parallel dipole array. 

The pattern has its maximum at $ 0 = + n/2—that is, in the broadside direction. 
This is a type of broadside array. Figure ll-10(a) shows this broadside pattern. 
Since the excitations in the two dipoles are in phase, their electric fields add in 
the broadside directions, 0 = ± n/2. At (f> = 0 and n the electric fields cancel each 
other because the A/2 separation leads to a phase difference of 180°. 

b) d = X/4 {fid = n/2), £ = -n/2: 

|40| = cos — (cos (f) — 1) (ll-85b) 

which has a maximum at (f)0 = 0 and vanishes at </> = n. The pattern maximum 
is now in a direction along the line of the array, and the two dipoles constitute 
an endfire array. Figure 11—10(b) shows this endfire pattern. In this case the phase 
in the right-hand dipole lags by n/2, which exactly compensates for the fact that 
its electric field arrives in the (j> = 0 direction a quarter of a cycle earlier than the 
electric field of the left-hand dipole. As a consequence, the electric fields add in 
the (f) = 0 direction. In the (f> — n direction, the n/2 phase lag in the right-hand 
dipole plus the quarter-cycle delay results in a complete cancellation of the fields. 

EXAMPLE 11-8 Discuss the radiation pattern of a linear array of the three isotropic 
sources spaced A/2 apart. The excitations in the sources are in-phase and have ampli
tude ratios 1:2:1. 

r-I-hH 
(a) Three-element 

binomial array. 
(b) Two displaced 

two-element arrays. 

FIGURE 11-11 
A three-element array and its equivalent 
pair of displaced two-element arrays. 
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FIGURE 11-12 
Radiation pattern of three-element broadside binomial array. 

Solution This three-source array is equivalent to two two-element arrays displaced 
1/2 from each other as depicted in Fig. 11-11. Each two-element array can be con
sidered as as a radiating source with an element factor as given by Eq. (11—85a) and 
an array factor, which is also given by the same equation. By the principle of pattern 
multiplication we obtain 

i . 4£_ I (n 
\E\ = -^— cos I — cos (p Ro 

(11-86) 

The radiation pattern represented by the pattern function |cos {in/2) cos </»]|2 is 
sketched in Fig. 11-12. Compared to the pattern of the uniform two-element array 
in Fig. ll-10(a), this three-element broadside pattern is sharper (more directive). Both 
patterns have no sidelobes. — 

The three-element broadside array is a special case of a class of sidelobeless ar
rays called binomial arrays. In a binomial array of N elements the excitation ampli
tudes vary according to the coefficients of a binomial expansion (N~1), n = 0,1, 2 , . . . , 
N — 1. For N = 3 the relative excitation amplitudes are (1) = 1, (I) = 2 and (I) = 1, 
as in Example 11 -8 . To obtain a directive pattern without sidelobes, d in a binomial 
array is normally restricted to be X/2. The feature of no sidelobes in the array pattern 
of a binomial array is accompanied by a wider beamwidth and a lower directivity 
compared to those of a uniform array with the same number of elements. 

11-5.2 GENERAL UNIFORM LINEAR ARRAYS 

We now consider an array of identical antennas equally spaced along a straight line. 
The antennas are fed with currents of equal magnitude and have a uniform progressive 
phase shift along the line. Such an array is called a uniform linear array. An example 
is shown in Fig. 11-13, where N antenna elements are aligned along the x-axis. Since 
the antenna elements are identical, the array pattern function is the product of the 
element factor and the array factor. Our attention here will be concentrated on the 
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Phase shifts 0 £ 2\ 

FIGURE 11-13 
A general uniform linear array. 

yv- 2 N- i 

(/V - 2)ij (N - l)? 

manner in which the array factor depends on the parameter fid ( = 2nd/X) and the 
progressive phase shift f between neighboring elements. The normalized array factor 
in the xy-plane is 

| ^ ) | = 1 1 1 + ei* + e/2* + • ■ • + ej{N~X)% (11-87) 

where 
\ji = fid cos (f) + £. (11-88) 

The polynomial on the right side of Eq. (11-87) is a geometric progression and can 
be summed up in a closed form: 

or 

W)|=i 1 - e^ 

\m=j, sin (N\l//2) 
sin(<A/2) 

(Dimensionless). (11-89) 

0 0.2TT 0 ■K 1.87T 2-K 

FIGURE 11-14 
, Normalized array factor of a five-

element uniform linear array. 
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This is the general expression of the normalized array factor for a uniform linear ar
ray. Figure 11-14 is a sketch of the normalized array factor for a five-element array. 
The actual radiation pattern as a function of (f> depends on the values of (3d and £ 
(see Problem P.ll-17). As 0 varies from 0 to 2n, the value of x// changes from fid + £ 
to — pd + £, covering a range of 2f3d or 4nd/X. This defines the visible range of the 
radiation pattern. 

We may derive several significant properties from \A{*l/)\ as given in Eq. (11-89). 

1. Main-beam direction. The maximum value occurs when \]/ = 0 or when 

(3d cos 4>0 + £ = 0, 
which leads to 

cos 0O - - i - (11-90) 
pd 

Two special cases are of particular importance. 
a) Broadside array. For a broadside array, maximum radiation occurs at a 

direction perpendicular to the line of the array—that is, at 0O — ± n/2. This 
requires £ = 0, which means that all the elements in a linear broadside array 
should be excited in phase, as was the case in Example 11-7(a). 

b) Endfire array. For an endfire array, maximum radiation occurs at 0O = 0. 
Equation (11-90) gives 

£ = — fid cos (f)Q = — pd. 
We note that this condition is satisfied by the two-element array in Example 
11-7(b). 

2. Null locations. The array pattern has nulls when \A(4>)\ = 0 or when 

^=±kn, k= 1 ,2 ,3 , . . . . (11-91) 

It is obvious that the corresponding null locations in 4> are different for broad
side and endfire arrays because of the different values of £ implicit in \f/. 

3. Width of main beam. The angular width of the main beam between the first nulls 
can be determined approximately for large N. Let \f/01 denote the values of \j/ at 
the first nulls: 

MAoi , , 2n 
-^-= ±7i or if/01 = + — . 

In order to see how ^ 0 1 converts to an angle between the first nulls in $, we 
need to know the direction of the main beam. 
a) Broadside array (£ = 0, (j)0 = n/2). For a broadside array, if/ = pd cos (f). If the 

first null occurs at 0O1, then the width of the main beam between the first 
nulls is 2A0 = 2(^01 - <f)0). At <f)01 we have 

cos 0O1 = cos (0O + A0) = "^f, 
Pd 
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which, for $0 = n/2, gives 

cos I — + A(j) = —sin A</> = — 
2 7 ^ AT^ 

or 

A ^ = s i n " ' ( ^ ) ^ - (11"92) 

The last approximation is obtained when Nd » 1 Equation (11-92) leads to 
a useful rule of thumb that the width of the main beam (in radians) of a long 
uniform broadside array is approximately twice the reciprocal of the array 
length in wavelengths. 

b) Endfire array {£ = -fid, ^0 = 0). For an endfire array, \\/ = fid{cos </> - 1), and 

cos <Ani — 1 = ^±- = = 
^01 fid N/Sd Nd 

But cos </>01 = cos A0 ^ 1 - (A(/>)2/2 for small A#. Thus, 

(A</>)2 „ 1 
2 ~Nd 

or 

(11-93) 

Comparing Eq. (11-93) with Eq. (11-92), we may conclude that the width of 
the main beam of a uniform endfire array is greater than that of a uniform 
broadside array of the same length (because Nd > Xjl). 

4. Sidelobe locations. Sidelobes are minor maxima that occur approximately when 
the numerator on the right side of Eq. (11-89) is a maximum—that is, when 
|sin (N\l//2)\ = 1 or when 

^ = ± ( 2 m + l ) | , m = l , 2 , 3 , . . . . (11-94) 

The first sidelobes occur when 

Note that Ni/z/l = ±n/2 (m = 0) does not represent locations of sidelobes because 
they are still within the main-lobe region. 

5. First sidelobe level. An important characteristic of the radiation pattern of an ar
ray is the level of the first sidelobes compared to that of the main beam, since 
the former is usually the highest of all sidelobes. All sidelobes should be kept as 
low as possible in order that most of the radiated power be concentrated in the 
main-beam direction and not be diverted to sidelobe regions. Substituting Eq. 
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(11-95) in Eq. (11-89), we find the amplitude of the first sidelobes to be 

I |_ !_LI |—I =- = 0212 
N | sin (37i/2iV) | N 13n/2N | 3TT 

for large N. In logarithmic terms the first sidelobes of a uniform linear antenna 
array of many elements are 20 log10 (1/0.212) or 13.5 (dB) down from the principal 
maximum. This number is almost independent of N as long as N is large. 
One way to reduce the sidelobe level in the radiation pattern of a linear array is 

to taper the current distribution in the array elements—that is, to make the excita
tion amplitudes in the elements in the center portion of an array higher than those 
in the end elements. This method is illustrated in the following example. 

EXAMPLE 11-9 Find the array factor and plot the normalized radiation pattern of a 
broadside array of five isotropic elements spaced 1/2 apart and having excitation 
amplitude ratios 1:2:3:2:1. Compare the first sidelobe level with that of a five-element 
uniform array. 

Gataitiomi The normalized array factor of the five-element tapered array is 

\A(il/)\ = i | l + 2e* + 3ej2^ + 2em + e*4*| 
= i|e>2*[3 + 2(e» + «"*) + (e12* + e " ^ ) ] | (11-96) 
= i|3 + 4cosi/f + 2cos2^|. 

The graph of \A([//)\ versus i// is shown in Fig. 11-15(a). Note that this figure holds 
for a general ij/ = fid cos <f> + £ the values of fid and £ have not yet been specified. 

In order to plot the desired radiation pattern we use the following additional 
information: 

Broadside radiation, C = 0: iff = fid cos <f>\ 

Element spacing, d = ~: \j/ = n cos <f>. 

The normalized radiation pattern can be plotted from 

W ) | = 913 + 4 cos (n cos <f>) + 2 cos (2rc cos </))|. 
However, having calculated and plotted \A(\j/)\, we do not need to recalculate the 
array factor as a function of <£. This conversion can be effected graphically as follows 
(see Fig. 11-15): 

1. Extend the vertical axis of the array-factor graph downward, and let it intersect 
with a horizontal line (which represents the line for </> = 0 and <f> = n). The point 
of intersection is the point for £ = 0. 

2. Locate the point, P0, on the horizontal line that is £ radians to the right or left 
of the point of intersection, depending on whether £ is positive or negative. (In 
the present case, £ = 0 and P0 is at the point of intersection.) 
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3. Using P0 as the center, draw a circle with fid as the radius. 
4. For any angle $ l 9 draw the radius vector PQP^ (The projection P0P\ is equal to 

\}/1 = (Id cos (j)v) 
5. At \j/1} measure the magnitude of I^O/Ol, which is marked as P2 on the radius 

vector i W (P2 is a point on the normalized radiation pattern.) 

Repeat this process until the entire radiation pattern is obtained. 
Figure 11-15(b) shows the normalized radiation pattern of this five-element 

broadside array with tapered excitation. The first sidelobe level is found to be 0.11 

VW)\ 

3TT/2 

FIGURE 11-15 
(a) Graph for normalized array 
factor as a function of ip, and 
(b) normalized polar radiation 
pattern of a five-element broad
side array with d = X/2 and 
tapered excitation amplitude 
ratios 1:2:3:2:1 (Example 
11-9). 
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or 20 log10 (1/0.11) = 19.2 (dB) down from the main-beam radiation. This compares 
with 0.25 or 12 (dB) down for the five-element uniform broadside array shown in 
Fig. 11-14. ma 

In the discussion of uniform linear arrays we started out with the assumptions 
of equal spacing, equal excitation amplitude, and constant progressive phase shifts. 
The main reason for making these assumptions is mathematical simplicity in analyzing 
radiation characteristics. The preceding example shows that a tapered nonuniform 
amplitude distribution in the array elements produces the desirable result of a 
reduction in the sidelobe level. In a similar manner the spacings between neighboring 
elements may be made unequal [l]-[4], and the phase shifts do not have to be 
constant [5]. In two-dimensional arrays the elements need not be arranged in a rect
angular lattice [6], [7]. We have, then, many additional parameters that can be 
adjusted to achieve desirable results. Adjustments in these parameters, however, 
destroy the simplicity of the analysis. There are techniques for synthesizing an antenna 
array to approximate a specified radiation pattern closely. It is not possible to examine 
all the various possible array designs in this book, but they do exist and present 
themselves as interesting problems [8] -[12]. 

Our discussions on linear arrays can be extended to two-dimensional rectangular 
arrays. A rectangular array can be studied as an array of linear arrays, to which the 
principle of pattern multiplication applies. From Eq. (11 -90) we note that the direction 
of the main beam of a uniform linear array can be changed by simply changing the 
amount of progressive phase shift £. In fact, the radiation pattern can be changed 
from broadside (£ = 0) to endfire (£ = — fid) or to somewhere in between. We see 
here a possibility of scanning the main beam by simply varying £. This can be achieved 
in practice by using electronically controlled phase shifters. Antenna arrays equipped 
with phase shifters to steer the main beam electronically are called phased arrays. The 
main beam of a two-dimensional array can be made to scan in both 9 (elevation) 
and (f) (azimuth) directions. Scanning phased arrays are of great practical importance 
in radar and radioastronomy work, in which the antenna system may be arrays of 
many thousands of elements that are not amenable to rapid mechanical motion for 
beam steering. Time-delay circuits may also be used to furnish the required phase 
shifts to the various array elements. By changing the frequency the time-delays are 
translated into varying phase shifts. This scheme is called frequency scanning. 

11—6 Receiving Antennas 

In the discussion of antennas and antenna arrays so far we have implied that they 
operate in a transmitting mode. In the transmitting mode a voltage source is applied 
to the input terminals of an antenna, setting up currents and charges on the antenna 
structure. The time-varying currents and charges, in turn, radiate electromagnetic 
waves, which carry energy and/or information. A transmitting antenna can then be 
regarded as a device that transforms energy from a source (a generator) to energy 
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\ 
\ 

\ 

j ^gv FIGURE 11-1(6 
1 r w Two coupled antennas. 

associated with an electromagnetic wave. A receiving antenna, on the other hand, 
extracts energy from an incident electromagnetic wave and delivers it to a load. In 
the receiving mode the external electromagnetic field that causes currents and charges 
to flow is incident on the entire antenna structure, not just at the input terminals. 
Moreover, the induced currents and charges, which depend on the direction of arrival 
of the incident electromagnetic wave, will produce reradiation or scattering of electro
magnetic energy, making the situation very complicated. We may reasonably expect 
that the current and charge distributions on an antenna in the receiving mode are 
different from those in the transmitting mode. Nevertheless, despite these differences, 
reciprocity relations enable us to conclude that (1) the equivalent generator impedance 
of an antenna in the receiving mode is equal to the input impedance of the antenna 
in the transmitting mode, and (2) the directional pattern of an antenna for reception 
is identical with that for transmission. We will justify these two important conclusions 
by using equivalent network representations. Also in this section we will discuss the 
concepts of effective area and backscatter cross section. 

11-6.1 INTERNAL IMPEDANCE AND DIRECTIONA L PATTERN 

Let us assume that a transmitter with antenna A radiates electromagnetic energy, 
which is absorbed by a distant receiver with antenna B. Antenna B moves about an
tenna A at a constant distance r t and is always oriented in such a way as to receive 
maximum power, as illustrated in Fig. 11-16. The two coupled antennas and the 
space between can be represented as a two-port T-network shown in Fig. 11-17. The 
terminal characteristics, (Vu IJ and (V2,12) of antennas A and B, respectively, are 
linearly related by the following equations: 

where Z l l 3 Z 1 2 , Z2 1 , and Z 2 2 are open-circuit impedance coefficients. 

1 The symbol r, instead of R, is used here to denote distance in order to avoid possible confusion of the 
latter with the symbol for resistance used later in this chapter. 

(11-97) 
(11-98) 
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Zl l - Z\2 Z22 - Z\2 

V\ \Zn Z L V2 

FIGURE 11-17 
Equivalent two-port network of coupled 

- transmitting and receiving antennas. 

When the medium in the transmission path between antennas A and B is bilateral 
such that reciprocity relations hold, the transfer or coupling impedances Z 1 2 and 
Z 2 1 are equal.f Under normal circumstances, transmitting and receiving antennas 
are separated by very large distances, and the coupling impedances are negligibly 
small as far as the reaction on the transmitting antenna owing to scattering by the 
receiving antenna is concerned. In the limit r -> 00, 

lim Z 1 2 = 0. (11-99) 

The parallel arm of the T-network in Fig. 11-17 is almost a short-circuit, and the 
impedance coefficients Z11 and Z 2 2 are nearly equal to the input impedances ZA and 
ZB, respectively, of isolated antennas A and B in the transmitting mode. Equation 
(11-97) can be written approximately as 

V^Z.J^ZJ,. (11-100) 

An equivalent circuit representing Eq. (11-100) is drawn in Fig. 11—18(a). 
The coupling from the transmitting antenna to the receiving antenna, however, 

cannot be neglected inasmuch as it is through this coupling that the latter extracts 
energy from the electromagnetic wave originated from the former. Thevenin's theorem 
can be applied to the left of the load impedance ZL in the network in Fig. 11-17 to 
determine an open-circuit voltage Voc and an internal impedance Zg. An equivalent 
circuit at the receiving end is shown in Fig. 11—18(b). We have 

V0c = 7~V^ (11-101) 

z. = (z22 - z12) + | i i ( z n - z12) = z22 - § a (u-102) 
^ 1 1 z l l 

Because of the weak coupling, we conclude that the equivalent generator internal 
impedance Zgfor antenna B in the receiving mode is approximately equal to its input 
impedance when it is transmitting; that is, 

Zn £ Z , , £ Z (11-103) 

f An example of a nonbilateral medium for which Z 1 2 T6 Z 2 1 is the ionosphere under the 
influence of the earth's magnetic field. 
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Z\\ 
12 

ZL V,2 

(a) Circuit at transmitting end. (b) Circuit at receiving end. 

_ FIGURE 11-18 
- Approximate equivalent circuits for 

weakly coupled antennas. 

When antenna B is receiving, V2 = —I2ZL, and Eq. (11-98) becomes 

Z21 
Z 2 2 + ZL 

The time-average power absorbed in ZL is 

h-

'21 

Z 2 2 ~l~ ZL 
e(ZL). 

(11-104) 

(11-105) 

For two successive positions of antenna B as indicated in Fig. 11-16 the ratio of the 
absorbed powers in ZL is 

PL(0I, 4>I) 

PL(e2,02) 
ZnWi^i) 
Z2i{02, fa 

(11-106) 

Thus the absorbed power is proportional to the square of the transfer impedance 
coefficient. 

If we consider the situation in which antenna B is transmitting and antenna A 
is receiving, then the ratio of the absorbed powers in ZL connected to antenna A for 
the two successive locations of antenna B would be the same as that given in Eq. 
(11-106), except that Z 2 1 would be replaced by Z1 2 . Because of the reciprocity rela
tion Z 1 2 = Z2 1 , we conclude that the directional pattern of an antenna for reception 
is identical with that for transmission. 

11-6.2 EFFECTIVE AREA 

In discussing receiving antennas it is convenient to define a quantity called the 
effective area? The effective area, Ae, of a receiving antenna is the ratio of the average 
power delivered to a matched load to the time-average power density (time-average 
Poynting vector) of the incident electromagnetic wave at the antenna. We write 

PL = A (11-107) 

where PL is the maximum average power transferred to the load (under matched 
conditions) with the receiving antenna properly oriented with respect to the polariza-

Also called effective aperture or receiving cross section. 



11-6 Receiving Antennas 635 

tion of the incident wave. We will now show that the effective area bears a definite 
relationship with the directive gain of an antenna. 

When the load impedance is matched to the internal impedance, 

Zh = Z*^RB-jXB, (11-108) 

the maximum power delivered to the load is, from Eq. (11-105), 

PL = ^ T ' (11_109) 

Let RA be the input resistance of transmitting antenna A. The transmitted power is 
then 

i \ = iki|2KA. (H-110) 
Combining Eqs. (11-109) and (11-110), we have 

(11-111) 
P \7 I2 

Pt 4RARB 

When antenna B is receiving, the time-average power density at B depends on 
the directive gain of transmitting antenna A in that direction: 

4nr2 ^m = ir^GDA. (H-112) 

Using Eq. (11-112) in Eq. (11-107), we obtain 

Pt ~ 4nr2 

Comparison of Eqs. (11-111) and (11-113) yields 

(11-113) 

If antenna B is transmitting and antenna A is receiving, a similar derivation leads to 

[Z12|2 = *BiVtfGi)B- (H-115) 

Since Z 1 2 = Z2 1 , Eqs. (11-114) and (11-115) lead to the following important relation: 

GDA _ Gi ^ = ^ - (H-116) 

Inasmuch as we have not specified the types of transmitting and receiving antennas 
in obtaining Eq. (11-116), we conclude that the ratio of the directive gain and the 
effective area of an antenna is a universal constant. This constant can be found by 
determining the directive gain and eflFective area of ally antenna—for instance, those 
of an elemental dipole as illustrated in the following example. 
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EXAMPLE 11-10 Determine the effective area, Ae(9), of an elemental electric dipole 
of a length d/ («1) used to receive an incident plane electromagnetic wave of wave
length I that is polarized in a direction shown in Fig. 11-8. 

Let Et be the amplitude of the electric field intensity at an elemental dipole 
of length &£. Then the time-average power density is 

S - ' / T l l 

2Vo 
The average power delivered to a matched load (ZL = Z*) is 

'A Etd^ sin 9 
z9 + z* K = 

{Etdtf)2 sin2 9 

(11-117) 

(11-118) 

where Rr = &0{nd>f/X)2 has been given in Eq. (11-44). The ratio PJ0>av gives the 
effective area of the elemental dipole: 

PL AM = J7o_ 
4Rr 

{dtf sin2 9 
(11-119) 

= - ( A s i „ ^ (m2). 

It is interesting to note that the effective area of an elemental electric dipole is in
dependent of its length. C-J 

From Example 11-2 we have GD{9) = f sin2 9 for an elemental electric dipole. 
Thus, 

GD{9) = \^29= ^ ( . I s i n f l ) 2 

471 

I2 

(11-120) 

= ^2 MO), 

which indicates that the universal constant for Eq. (11-116) is 4n/X2, and we may 
write the following relation for an antenna under matched impedance conditions: 

4TT 

T7 GD{9,<t>) =-72^X9,^) (Dimensionless). (11-121) 

In the case of thin linear antennas the concept of effective area may seem ar
bitrary. Nevertheless, its definition is useful in measuring the power available to a 
particular antenna. Of course, we expect the effective area Ae(9) to be related to 
the effective length fe(0). The available power to the antenna load under matched 
conditions is 

Pr = viJ-^Ej)7 

SRr 8tfr 
(11-122) 
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where the relation in Eq. (11-75) has been used. Substitution of Eqs. (11-117) and 
(11-122) into Eq. (11-107) yields 

(11-123) 

As we saw in the preceding subsection, the concept of effective area pertains to the 
power available to the matched load of a receiving antenna for a given incident 
power density. In cases in which the incident wave impinges on a passive object 
whose purpose is not to extract energy from the incident wave but whose presence 
creates a scattered field, it is appropriate to define a quantity called the backscatter 
cross section, or radar cross section. The backscatter cross section of an object is 
the equivalent area that would intercept that amount of incident power in order to 
produce the same scattered power density at the receiver site if the object scattered 
uniformly (isotropically) in all directions. Let 

&t = Time-average incident power density at the object (W/m2), 
0>s = Time-average scattered power density at the receiver site (W/m2), 
ah< = Backscatter cross section (m2), 'bs 

Then, 

r = Distance between scatterer and receiver (m). 

<r»?t 
Anr2 

or 

0> 
°bs = *nr2 -£ (m). (11-124) 

Note that 0>s is inversely proportional to r2 for large r and that abs does not change 
with r. 

The backscatter cross section is a measure of the detectability of the object (target) 
by radar (radio detection and ranging); hence the term radar cross section. It is a 
composite measure, depending on the geometry, orientation, and constitutive param
eters of the object, and on the frequency and polarization of the incident wave in a 
complicated way. 

EXAMPLE 11-11 A uniform plane wave with electric field intensity E(- = az£, im
pinges on a small dielectric sphere of radius b(«X) and dielectric constant er, as 
shown in Fig. 11-19. Assume the polarization produced in the sphere to be the same 



638 11 Antennas and Radiating Systems 

H, ■;«< ►*• ® + y FIGURE 11-19 
Plane wave incident on a small dielectric sphere. 

as that produced in a uniform static electric field E£ and to be given by (see Problem 
P.4-29) 

P = e0(er - 1)E 

az3e0 €r + 2 
E; (C/m: (11-125) 

a) Find the backscatter cross section abs. 
b) Determine abs for a spherical raindrop of diameter 3 (mm) at 15 (GHz), assuming 

the dielectric constant of water to be 55 at that frequency. 

Solution 

a) Since the induced polarization vector (the volume density of electric dipole mo
ment) P is constant within the dielectric sphere, the total electric dipole moment 
induced in the sphere of radius b («X) is 

P = f 7lfc3P 

- az47ib3€0 
€r + 2 

(C-m) 
(11-126) 

Thus the dielectric sphere acts electromagnetically like an elemental electric di
pole of moment p given in Eq. (11-126). The scattered electric field intensity in 
the far-zone is then, from Eq. (11—19b) and using Eqs. (11-10) and (11-11), 

E. = aaE« 
cop ( e 

An 

-JPr 
rj0(3 sin 9 

= - a e / W ( f J ^ V ^ 4 \E, sin 9 
(11-127) 

r I \€r + 2 

The time-average backscattered power density is 

A ~ 2„0
 N " = " ' 2 " 2„0r2 U + 2. 

The time-average incident power density is 

2>7o 

(V/m) 

(W/m: 

(W/m2 

(11-128) 

(11-129) 
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Substitution of Eqs. (11-128) and (11-129) in Eq. (11-124) yields the backscatter 
cross section: 

cbs = 4nb2([}by(^±J (m2). (11-130) 

b) For / = 15 (GHz), X = 20 (mm), the radius of the raindrop b = \ (mm) « X. We 
obtain 

<r6s = 1.25 x 1(T6 (m2) 
= 1.25 (mm2), 

which is a fraction of the geometrical cross section nb2 of the sphere: 

- ^ = ^ 1 = 0177 
nb2 1.52TT — 

Of course, raindrops do not exist singly; nor is their shape strictly spherical. 
Meaningful calculations of backscatter from rain require a knowledge of the rainfall 
rate and the distribution of the drop size, which are mutually dependent. The assump
tion of an equivalent spherical drop for nonspherical droplets has been found to be 
acceptable as long as their sizes are much smaller than the wavelength. Of equal 
importance to the calculation of backscatter from rainfall is the estimation of the 
attenuation suffered by an electromagnetic wave propagating through rain due to an 
imaginary part of the permittivity of raindrops. Interested readers should refer to the 
literature for details. [13] 

11—7 Transmit-Receive Systems 

In the preceding section we discussed the concepts of effective area for receiving 
antennas and backscatter cross section for scattering objects. We shall now examine 
the power transmission relation between transmitting and receiving antennas. When 
the same antenna is used for transmitting short pulses of radiation and for receiving 
them after they have been reflected (scattered) back by a target, the transmit-receive 
system is a radar; it is a special case. Measurement of the time elapsed At between 
the transmitted pulse and the received pulse determines the distance r of the target 
to the antenna site through the relation At = 2r/c, where c is the velocity of light. 

If the transmission path between the transmitting and receiving antennas is near 
the earth's surface, the effect of the conducting earth must be considered. We shall 
also discuss the transmit-receive arrangement over a flat earth in this section. 

11-7.1 FRHS TRANSMISSION FORMULA AND RADAR EQUATION 

Consider a communication circuit between stations 1 and 2 with antennas having 
effective areas Ael and Ae2, respectively. The antennas are separated by a distance 
r. We wish to find a relation between the transmitted and the received powers. 
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Let PL and Pt be the received and transmitted powers, respectively. Combining 
Eqs. (11-113) and (11-121), we obtain 

'4nAel PL_ Ae2\ _ Ae2 

Pt~Unr2rm~Unr2J\ X2 

or 

(11-131) 

The relation in Eq. (11-131) is referred to as the Friis transmission formula. For a 
given transmitted power the received power is directly proportional to the product 
of the effective areas of the transmitting and receiving antennas and is inversely 
proportional to the square of the product of the distance of separation and wave
length. 

Noting Eq. (11-121), we may write the Friis transmission formula in the following 
alternative form: 

(11-132) 

The received power PL in Eqs. (11-131) and (11-132) assumes a matched condition 
and disregards the power dissipated in the antenna itself. From Eq. (11-131) we see 
that for a given transmitted power the received power increases as the square of the 
operating frequency (decreases as the inverse square of wavelength). But, at progres
sively increasing frequencies, Pt is limited by available technology, and the minimum 
detectable power over electromagnetic noise also increases. It is incorrect to conclude 
from Eq. (11-132) that PL increases as the square of the wavelength because the 
directive gains usually decrease as the wavelength increases. 

Now consider a radar system that uses the same antenna for transmitting short 
pulses of time-harmonic radiation and for receiving the energy scattered back from 
a target. For a transmitted power Pt the power density at a target at a distance r 
away is (see Eq. 11-112) 

ATIT1 (11-133) 

where GD{9, 0) is the directive gain of the antenna in the direction of the target. If abs 
denotes the backscatter or radar cross section of the target, then the equivalent power 
that is scattered isotropically is abJ?T, which results in a power density at the antenna 
obs0>T/4nr2. Let Ae be the effective area of the antenna. We have the following ex
pression for the received power: 

r L - Ae°bs 4nr2 

Pt 
(11-134) 

= Aja eubs (4nr2) ,2\2 GD(9, 0). 
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By using Eq. (11-121), Eq. (11-134) becomes 

Pt (4TT)V 
G2

D(e, </>), (11-135) 

which is called the radar equation. In terms of the antenna effective area Ae instead 
of the directive gain GD(9, 0), the radar equation can be written as 

(11-136) 

Because radar signals have to make round trips from the antenna to the target and 
then back to the antenna, the received power is inversely proportional to the fourth 
power of the distance r of the target from the antenna. 

EXAMPLE 11-12 Assume that 50 (kW) is fed into the antenna of a radar system 
operating at 3 (GHz). The antenna has an effective area of 4 (m2) and a radiation 
efficiency of 90%. The minimum detectable signal power (over noise inherent in the 
receiving system and from the environment) is 1.5 (pW), and the power reflection 
coefficient for the antenna on receiving is 0.05. Determine the maximum usable range 
of the radar for detecting a target with a backscatter cross section of 1 (m2). 

Solution At / = 3 x 109 (Hz), A = 0.1 (m): 

Ae = 4 (m2), 
Pt = 0.90 x 5 x 104 = 4.5 x 104 (W), 

PL = 1.5 x 10"12(-—1——] = 1.58 x 10"1 2 (W), 
1 - 0.05 

abs = 1 (m2). 

From Eq. (11-136), 

and 

4 _ ubs^e 
AnX7 

r = 4.36 x 104 (m) = 43.6 (km). 

A satellite communication system makes use of satellites traveling in orbits in the 
earth's equatorial plane. The speed of the satellites and the radius of their orbits are 
such that the period of rotation of the satellites around the earth is the same as that 
of the earth. Thus the satellites appear to be stationary with respect to the earth's sur
face, and they are said to be geostationary. The radius of the geosynchronous orbit 
is 42,300 (km). With an earth radius of 6380 (km) the satellites are about 36,000 (km) 
from the earth's surface. 
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Signals are transmitted from a high-gain antenna at an earth station toward a 
satellite, which receives the signals, amplifies them, and retransmits them back toward 
the earth station at a different frequency. Three satellites equally spaced around the 
geosynchronous orbit would cover almost the entire earth's surface except the polar 
regions (see Problem P. 11-27). A quantitative analysis of the power and antenna 
gain relations for a satellite communication circuit requires the application of the Friis 
transmission formula twice, once for the uplink (earth station to satellite) and once 
for the downlink (satellite to earth station). 

11-7.2 WAVE PROPAGATION NEAR EARTH'S SURFACE 

Consider a transmitting antenna A at a height hx and a receiving antenna B at a 
height h2 above the flat earth's surface with a distance of separation d, as shown in 
Fig. 11-20. If antenna A is an elemental electric dipole, then the electric field intensity 
at B is the sum of the direct contribution E91 from A and the indirect contribution 
E92 after reflection at point C. We write 

E - E01 + E92, 

where the magnitudes of E91 and E92 are 

£oi = K '01 

Efi-y = K 

>-jpR 

R 

R' 

sin 9, 

sin W. 

(11-137) 

(ll-137a) 

(11 137b) 

The constant K equals jl d/r}op/4n (see Eq. 11-19b), and the distance R' = ~AC + 
CB = A'B. The effect of the perfectly conducting (assumed) earth's surface is replaced 
by an image antenna at A'. In the general case, E01 and E02 are not parallel; but if 
d » hlf h2, then 9 ^ 9', and Eqs. (ll-137a) and (11—137b) may be combined to give 

En ^ aftK 
,-jpR 

R 
(sin 0)F, (11-138) 

FIGURE 11-20 
Transmit-receive system near the 
earth's surface. 
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where 

The distances 

and 

F = 1 + e~MR'~R). 

R = [d2 + (h2 - M 2 ] 
(h2 - htf 

211/2 

= d 1 + 

R' = [d2 + (h2 + h1)2f'2^d + 

1/2 „ A , (h2 - K)2 

(h2 + h,)2 

2d 

yield approximately 

R' -R^ 
(h2 + hx)2 (h2 - hxy 

2d 
2h,h2 

2d 

(11-139) 

(11-140a) 

(11-140b) 

(11-141) 

Substituting Eq. (11-141) in Eq. (11-139), we obtain 

\F\ = |1 + e-sp2hlh2ld\, 

which is like the array factor of a two-element array. 
Equation (11-142) may be written as 

Ipl _ \e~JPhih2ld(eJPh).h2ld _|_ e-J/»*ih2/«I)| _ 2 COS 
Xd 

(11-142) 

(11-143) 

Equation (11-143) shows that for fixed values of hx and X the electric field intensity 
Eg at the receiving site B will have nulls and maximum values as the ratio h2/d is 
changed. The quantity |F| varies from 0 to 2 and is called the path-gain factor. 
Calculation of the path-gain factor for a spherical earth is a much more involved 
task. 

1 1 — 8 Some Other Antenna Types 

Practical antennas take many different shapes and sizes, each designed to fulfill certain 
desired performance characteristics. Our attention so far has been focused on the 
radiation properties of linear antennas having a current distribution in the form of 
a standing wave. In this section we shall discuss several other types of antennas of 
practical importance. 

11-8.1 TRAVELING-WAVE ANTENNAS 

In the analysis of thin linear antennas in Section 11-4 we assumed that the center-
driven dipole antennas were not terminated and that the currents from the excitation 
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Terminating 
impedance 

11-21 
A traveling-wave antenna with termination. 

sources were reflected at the ends, resulting in a standing-wave distribution as given 
in Eq. (11-51). If an antenna is several wavelengths long and properly terminated, 
as illustrated in Fig. 11-21, we have a situation similar to that of a transmission 
line terminated in its characteristic impedance. No reflection results, and the current 
distribution along the antenna is in the form of a traveling wave: 

I{z) = I0e-^z. (11-144) 

Disregarding for the moment the effect of the nearby ground, we can find the far-
zone electric field of an isolated antenna by using Eq. (11-144) in Eq. (11-19b) and 
integrating: 

Ea = jriofismO __: 
Anr 

^jri0pl0sm6 

__J60 / 0 n-mR + (Li2)(i 
R 

e~jPR ^I{z)eJlizcosedz 

e-jpR fL e-jpz(i-coSo)dz (11-145) 

p JHL"- ' \^l^)\x ""* ")]p(ff\ 

where 
sinfl sin [ W - c o s fl)/2] _ 

1 - cos 9 

is the pattern function of an isolated traveling-wave antenna of length L. Comparison 
of Eqs. (11-146) and (11-56) shows that the pattern functions of traveling-wave and 
standing-wave antennas have quite different characteristics. One especially notable 
difference is that the pattern represented by Eq. (11-146) is no longer symmetrical 
with respect to the 6 = n/2 plane. 

A typical radiation pattern of an isolated traveling-wave antenna that is several 
wavelengths long may look like that shown in Fig. 11-22. In general, the main beams 
tilt toward the direction of the traveling current wave: The longer the antenna, the 
more the tilt. The sidelobes are generally only a few decibels down from the main 
beam level. 



FIGURE 11-22 
A typical radiation pattern of a traveling-wave 
antenna. 

We can examine the effect of the ground by applying the method of images. The 
flat, perfectly conducting ground may be replaced by an image antenna carrying a 
current I(z) given by Eq. (11-144) in the opposite direction, as shown in Fig. 11-23. 
We have, in effect, an array of two traveling-wave antennas separated by a distance 
2h and carrying equal and opposite currents. By the principle of pattern multiplica
tion the resultant pattern function is then the product of F(6) in Eq. (11-146) and 
the array factor |cos (^/2)| of two elements given in Eq. (11-83). In this case, d = 2h 
and £ = 7L We have 

cos — 
2 

cos Ph sin 9 cos 0 + — 
(11-147) 

= |sin(/?/isin 6 cos 0)|. 

The long linear antenna excited by a progressive current wave is only one of 
many traveling-wave antennas. 

11=2.2 HELICAL ANTENNAS 

We have seen that the far-zone electromagnetic field produced by linear antennas 
and small loop antennas are linearly polarized; that is, the electric field at a given 

§ 
© 

T 
h 

f h 

_1 
(a) Antenna with its image. 

2h 

(b) End view 
(a two-element array). 

IFIGUftE 11-23 
Method of images applied to traveling-wave antenna above perfectly conducting 
ground. 
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location has a fixed direction that does not change with time. For instance, the electric 
field in the far zone of a vertical dipole is E = &eE0, and that of a horizontal loop 
is E = a ^ . The signals radiated from these antennas can be received efficiently by 
a linear antenna oriented in the direction of the electric field. There are circumstances, 
however, in which the direction of polarization of the incoming radiation is unknown 
or the orientation of the receiving antenna changes (such as the antennas on satellites 
or space vehicles). No reception will occur when the receiving antenna happens to 
be perpendicular to the direction of polarization of the signal. Earth communication 
with satellites and space vehicles is complicated by the fact that radiations from the 
earth must propagate through the ionosphere, which, under the influence of the earth 
magnetic field, becomes anisotropic and causes the electric field to change direction, 
the extent of this change being dependent on the electron density of the ionosphere, 
the strength of the earth magnetic field, and the propagation path. In these circum
stances the use of antennas with circular polarization is advantageous because they 
are able to intercept waves polarized in any direction not normal to the plane of 
circular polarization. 

Since the superposition of two equal-magnitude linearly polarized waves in both 
space and time quadrature yields a circularly polarized wave (see Subsection 8-2.3), 
we can obviously construct an antenna radiating (and receiving, by virtue of recipro
city) circularly polarized waves by feeding two perpendicularly oriented dipoles with 
currents that are equal in magnitude but 90° out of phase. This type of composite 
crossed-dipole arrangement is called a turnstile antenna. If the currents are of different 
magnitudes, an elliptically polarized wave is radiated. A circularly or elliptically polar
ized wave can also be generated by combining electric and magnetic dipoles (see 
Problem P. 11-4). 

A helical antenna is a wire antenna wound in the form of a helix. It is usually 
installed over a flat grounded conducting plane and fed by a coaxial transmission 
line, as shown in Fig. 11-24. Depending on the dimensions of the helix, the helical 
antenna has two quite different modes of operation. When the dimensions are very 
small in comparison to the operating wavelength, its radiation pattern is like that of 
an elemental electric dipole, given in Fig. 11-3. Maximum radiation occurs in the 

Ground 
Coaxiai. 
transmission 
line 

1 

plane 

i 
1 FIGURE 11-24 
I A helical antenna. 
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plane perpendicular to the helix axis. The helical antenna is said to be in the normal 
mode. An approximate analysis of the helical antenna radiating in the normal mode 
can be made with two assumptions. First, it is assumed that the helix can be replaced 
by a combination of elemental electric and magnetic dipoles, as illustrated in Fig. 
11-25(a). Second, the current along the helix is assumed to be uniform both in ampli
tude and in phase. (Some kind of top loading would then be necessary.) The far-zone 
electric field for an AT-turn helical antenna is then a combination of Eqs. (11—19b) and 
(ll-30a): 

E = a„£e + a0£0 

(11-148) 

Thus, the 9- and ^-components are in both space and time quadrature, resulting in 
elliptical polarization—circular polarization if 

s = fab2 (ll-148a) 
or 

-;£ (ll-148b) 

The maximum radiation is in the broadside direction, and the radiation pattern has 
the shape of a doughnut with zero inner diameter. Fig. 11-25(b) shows a section in 
the E-plane. Normal-mode helical antennas are seldomly used in practice on account 
of their low radiation efficiency and low directive gain. 

(b) E-plane radiation pattern. 

(a) Combination of elemental 
electric and magnetic dipoles. 

FIGURE 11-25 
Analysis of a normal-mode 
helical antenna. 
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t 

FIGURE 11-26 
Axial-mode helical antenna and radiation pattern. 

When both the turn circumference and the spacing between turns of a helix are 
comparable to a wavelength, the antenna behaves in an entirely different manner. 
The main beam of radiation will be in the end-fire direction, operating in the axial 
mode. A theoretical analysis of an axial-mode helical antenna is very difficult because 
of its geometry. The boundary-value problem of determining the current distribution 
along the helix can only be solved numerically in a limited way. The usual approach 
is to use some experimentally observed results for an assumed traveling-wave current 
and find the radiation pattern [14]. We will simply assert that the radiation pattern 
of an axial-mode helical antenna takes the form of a main beam in the end-fire direc
tion together with some sidelobes, as indicated in Fig. 11-26. The radiation in the 
main beam is elliptically polarized, the axial ratio of the polarization ellipse being 
dependent on the frequency and the various dimensions of the helix. Helical antennas 
operating in the axial mode have been installed on communication satellites and 
space vehicles as well as on earth stations. Arrays of helical antennas have been used 
at radio telescope sites. 

11-8.3 YAGI-UDA ANTENNAS 
One type of antenna that is of particular practical importance is the ubiquitous Yagi-
Uda antenna [15], [16], which one sees on the rooftops of many households for re
ception of television signals. A Yagi-Uda antenna in the transmitting mode is an 
array of parallel linear antennas, of which only one is driven by an excitation source 
and the rest are parasitic (not directly connected to the source). In the receiving mode 
an electromagnetic wave impinges on all elements of the array, but the received signal 
is collected from one "active element." The simplicity in the feed structure is a major 
advantage of Yagi-Uda antennas over other linear arrays. 
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FIGURE 11-27 
A typical Yagi-Uda array. 

Figure 11-27 is a sketch of a typical Yagi-Uda antenna, which is actually an array. 
Element 2 is the dirven or active element and is normally a dipole of approximately 
(slightly less than) a half-wavelength long tuned to resonance. All other elements are 
parasitic. Element 1 is a reflector that is usually slightly longer than the driven ele
ment, whereas elements 3 to N are directors and are shorter than the driven element. 
Because all the elements are coupled, the current distribution in each element depends 
on the length and spacing of all the other elements. Consequently, a Yagi-Uda antenna 
of many elements presents a formidable analytical problem. 

Experience has shown that little advantage is gained by using more than one 
reflector, but directivity can be improved by increasing the number of directors. A 
Yagi-Uda antenna is an endfire array with its main beam pointing away from the 
reflector. A good Yagi-Uda antenna should have a high directivity, a narrow beam-
width, low sidelobes, and a high front-to-back ratio. With the dipole radius assumed 
to be a = 0.003369/1 (In l/2a = 5) a typical well-designed six-element Yagi-Uda array 
with four uniformly spaced directors of equal length may have the following data: 

Antenna Dimensions 

Element lengths 

Element spacings 

2hx 2h2 2h3 = 2h4 = 2h5 = 2h6 

0.510A 0.490A 0.430A 

b12 b23 - b34 = b45 = b56 

0.250A 0.310A 

Pattern Characteristics 

Directivity 
(Referring to Half-power First Front-to-back 
A/2 Dipole) Beamwidth Sidelobes Ratio 

7.54 (8.77 dB) 45c -7.2(dB) 9.52 (dB) 

The directivity of a half-wave dipole is 1.64 or 2.15 (dB)—see Eq. (11-65). 
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It has been found that uniformly spaced directors of equal lengths do not make 
an optimum array. Analytical methods have been developed for the maximization of 
the directivity of a Yagi-Uda array by adjusting both the interelement spacings and 
the lengths of all the array elements [17], [18]. The effects of a finite element radius 
and the mutual coupling between the array elements are taken into consideration. An 
application of these methods to the foregoing six-element array leads to the following 
optimized array (for dipole radius a = 0.003369/1): 

Antenna Dimensions 

Element lengths 

Element spacings 

2h, 2h2 2h3 2fc4 2h5 2h6 

0.476A 0.452A 0.436A 0.430A 0.434A 0.430A 

bi2 ^23 ^34 Ks b56 

0.250A 0.289A 0.406/1 0.323A 0A22X 

Pattern Characteristics 

Directivity 
(Referring to 
A/2-Dipole) 

13.36 (12.58 dB) 

Half-power 
Beamwidth 

37° 

First 
Sidelobes 

-10.9(dB) 

Front-to-back 
Ratio 

10.04 (dB) 

The pattern characteristics of the optimized array are better in all aspects than those 
of the array with uniformly spaced directors of equal length. The optimized array 
sustains a predominantly traveling wave in the sense that the amplitudes of the cur
rents in the driven and director elements decrease smoothly and the phases change 
progressively. 

11-8.4 BROADBAND ANTENNAS 

To provide flexibility and versatility, antennas are often required to operate over a 
wide frequency range with satisfactory pattern, impedance, and polarization charac
teristics. It is difficult to define the useful bandwidth of an antenna in general terms 
because what is useful depends critically on applications. Normally, one refers to 
the characteristics of the radiation pattern—namely, the directivity, the main-lobe 
beamwidth, and/or the sidelobe levels. However, for antennas of relatively small 
dimensions in terms of wavelength, the impedance characteristics become very im
portant. For antennas with circular polarization the polarization characteristics may 
be the limiting factor on useful bandwidth. The bandwidth of linear dipoles is very 
narrow. Increasing the thickness of the dipoles improves the bandwidth slightly, but 
the latter can seldom be more than a few percent of the designed center frequency. 
In this subsection we discuss briefly two types of broadband antennas that have come 
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to be known as frequency-independent antennas and log-periodic antennas. The 
design concepts of log-periodic dipole arrays will also be introduced. 

The concept of frequency-independent antennas evolved from the observation 
that the pattern and impedance characteristics of an antenna depend critically on 
its dimensions measured in wavelengths. An examination of the pattern function in 
Eq. (11-56) and the radiation patterns in Fig. 11-6 will confirm this observation.1 

Antennas having similar geometric structures will then retain the same radiation 
characteristics if a frequency change does not change the ratio of antenna dimensions 
to wavelength—that is, if the dimensions of the antenna structures are scaled in 
wavelengths. This observation led to the suggestion that, if an antenna structure could 
be described entirely by angles without specifying any characteristic length dimen
sions, its pattern and impedance characteristics would be frequency-independent [19]. 
The equiangular spiral defined by the equation 

r = r0ea{(t,~d) (ll-149a) 

is such a structure. In Eq. (ll-149a), r and 4> are the usual polar coordinates (cylin
drical coordinates for a constant z); and r0, a, and 3 are design constants. The spiral 
is equiangular in the sense that it makes a constant angle with the radius vector at 
all points on the curve. 

The structure defined by Eq. (ll-149a) is also called a logarithmic spiral because 
the angle change is proportional to In (r/r0): 

cj)-3 = - l n ( — ) . (ll-149b) 

The three constants r0, a, and 3 in Eqs. (11-149a) and (11-149b) determine the size of 
the terminal region, the reciprocal of the rate of spiral, and the arm width, respectively. 
Figure 11-28 shows a planar equiangular spiral antenna consisting of two symmetri
cal arms. The four edges of the two spirals are defined by the relations r = r0 exp (a4>), 
r = r0 exp \a{(j) — 3)~\, r = r0 exp [a(0 — 7i)], and r = r0 exp \_a((j) — n — <5)]. 

The antenna is excited at the terminals by a voltage source that causes currents 
to flow. One viewpoint is that the currents flow outward along the spiral arms until 
they reach a region where most of the radiation occurs. Another viewpoint is that 
the electric field vector between the spiral arms travels outward until the space be
tween the arms is approximately a half-wavelength at the operating frequency. In 
this region, resonance occurs and strong radiation takes place. Beyond this region, 
currents and fields diminish rapidly, and the truncation of the infinite spiral at a finite 
boundary is of little consequence. An increase or a decrease in the operating fre
quency simply moves the radiating region inward or outward along the spiral, but the 
effective radiating aperture in terms of wavelength does not change. As a result, an 
automatic scaling process takes place, and the pattern and impedance characteristics 

1 We have not studied the method for calculating the input impedance of antennas. The impedance charac
teristics depend on the current distribution on an antenna, which, in turn, depends critically on antenna 
dimensions measured in wavelengths. 
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FIGURE 11-28 
A planar two-arm equiangular spiral antenna. 

remain almost indepedent of frequency [20]. The two-arm equiangular spiral antenna 
is circularly polarized. As the frequency is changed, the radiation pattern rotates 
about the axis normal to the spirals. Strictly speaking, the spirals must extend to 
infinity in order to be truly frequency-independent. 

The planar equiangular spiral antenna of Fig. 11-28 is bidirectional in that it 
radiates a broadside main beam on both sides of the plane. This is sometimes un
desirable. By wrapping a balanced two-arm equiangular spiral on the surface of a 
cone of revolution we can obtain a unidirectional radiation pattern with a single main 
beam in the direction of the cone apex. The pattern is still broadband and substan
tially circularly polarized. Both planar and conical equiangular spiral antennas can 
be designed to cover a 30-to-l frequency range or more. 

Can a broadband antenna be designed with linear (instead of circular) polariza
tion? The search for an answer to this question led to a distinctive class of broad
band linearly polarized antennas called log-periodic antennas [21], [22]. The basic 
log-periodic antenna has a toothed design cut out of sheet metal as shown in Fig. 
11-29. The teeth are discontinuities that tend to localize the region of maximum 
radiation and cause the current to diminish rapidly beyond this region. The lengths 
of the teeth (the distances between the tips and the triangular support section) are 
determined by the angles between the lines from the origin. The region of strongest 
radiation is where the teeth are approximately a quarter-wavelength long. 

The spacings between the successive edges of the teeth follow the rule that governs 
the distance between neighboring conductors in an equiangular spiral. From Eq. 
(ll-149a), 

r r z>«(4>-<5) 

r„ ro(fU> + 2*-*) (11-150) 
= T (a constant). 
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This constant ratio is used as a design parameter for log-periodic antennas. Changing 
the operating frequency changes the tooth, whose length corresponds to a definite 
fraction of a wavelength. In terms of wavelength a scaling scheme is in effect that 
does not rely on a specification of length dimensions. This is the basis of the broad
band nature of these antennas. 

For an infinite structure, antenna characteristics would be identical at a discrete 
number of frequencies that are related by the parameter v. 

fn = tfn + i (ll-151a) 

or 

ln(fn + 1) = \n(fn) + \n(^\ (ll-151b) 

Antenna characteristics will vary somewhat between the discrete frequencies /„ and 
f„ + 1; but, plotted versus the logarithm of frequency, they are periodic with a period 
equal to In (1/T). Thus the name log-periodic antennas. 

It has been found that, instead of the basic sheet metal structure, a log-periodic 
antenna can be made with wires or tubes that outline the cut-out design. Theore
tically, the sheet thickness and the wire diameter should increase linearly with the 
distance from the feed point in accordance with Eq. (11-150). This consideration 
becomes important when the demand on bandwidth is severe. Bandwidths covering 
a 30-to-l frequency range or more are achievable. 

The planar log-periodic antenna of Fig. 11-29 is bidirectional as was the planar 
equiangular spiral antenna. It can be made unidirectional if the two halves of the 
antenna are folded to form a wedge-like structure. The main beam will point off the 

A planar log-periodic antenna. 
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FIGURE 11-30 
A log-periodic dipole array. 

direction of the apex. It is interesting to note here that the planar log-periodic antenna 
in Fig. 11-29 without the teeth becomes a bow-tie antenna, which can be described 
entirely by the apex angle and is therefore expected to have broadband properties. 
This is true to a limited degree and explains the appearance of the bow-tie antenna 
as a form of commercially available UHF television antennas; but its finite length 
and lack of distinct resonance regions limit the bandwidth. 

Broadband characteristics can also be achieved by a class of linear dipole arrays 
called log-periodic dipole arrays [23], [24], an example of which is shown in Fig. 
11-30. The dipoles are of unequal lengths and are nonuniformly spaced according to 
the following relations: 

'n+\ 'n+1 
L = i, (11-152) 

where T is a design parameter, as in Eq. (11-150). Since the element spacings are 
related to the distances to the imaginary apex point 0, 

we also have 
dn = rtt-rn+1 =r„(l - T), 

= T. 

(11-153) 

(11-154) 

Besides T, only one other design parameter is required, which may be the angle a or 
the spacing factor K: 

K = 
d^ 
1L 

(11-155) 

The relation among T, a, and K is as follows: 

a Sn 4(1 - T) 
tan - = — = —— 

2 2r„ 2dn 

_ 1 - T 

4K 

(11-156) 
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Hence only two of the three parameters are independent. Because of the scaling rela
tions in Eqs. (11-152) and (11-154), a change in the operating frequency changes 
only the particular dipole whose length is a certain fraction of a wavelength.1" The 
remarks pertaining to Eqs. (11-150), (ll-151a), and (ll-151b) apply, and we have a 
log-periodic dipole array. 

The array is usually fed by a source connected to a transmission line. An impor
tant discovery is that neighboring elements must be fed at opposite phases. This is 
accomplished by transposing the wires of the transmission line leading to alternate 
dipoles, as illustrated in Fig. 11-30. At the operating frequency the active region of 
the array consists mainly of the several dipoles whose lengths are approximately a 
half-wavelength and where the dipole currents are large. The currents in the dipoles 
outside this region are relatively very small. The array operates in an end-fire fashion 
with its main beam of radiation in the direction of short dipoles. 

11—9 Aperture Radiators 

Our analysis of the radiation characteristics of antennas has generally proceeded from 
a current distribution on the antenna structure. From the current distribution the 
retarded vector potential is determined by using Eq. (11-3). The magnetic and electric 
field intensities can then be found from Eqs. (11-1) and (11-6), respectively. In many 
cases, electromagnetic radiation may be viewed as emanating from an opening or an 
aperture in a conducting enclosure. To be sure, the source of radiation can always 
be traced to some time-varying currents somewhere; but the current distributions are 
often unknown and difficult to determine or approximate. Such radiating systems 
are quite unlike dipole antennas and must be analyzed in a different way. They are 
aperture radiators or aperture antennas. Examples are slots, horns, reflectors, and 
lenses, some of which are illustrated in Fig. 11-31. 

In our analysis we will use an approximate aperture-field method, assuming that 
electric and magnetic fields exist only in the aperture area and that the field elsewhere 
in an infinite screen containing the aperture is zero. In the case of the slot radiator 
shown in Fig. 11—31(a), the field for dominant TE10-mode excitation is usually as
sumed to be a half-sine having a maximum at the center of the slot and tapering to 
zero at the edges. For the horn in Fig. 11-31(b) the aperture field is derived from the 
waveguide mode propagating into a horn of infinite extent. The aperture fields of 
the reflector in Fig. 11—31(c) and the lens in Fig. 11—31(d) are found by methods 
of geometrical optics from the reflection and refraction of rays emanating from the 
primary feed. 

For TE10-mode excitation the field in a plane aperture is approximately linearly 
polarized, and deviations from the results obtained by geometrical optics are small. 

* Strictly speaking, it is also necessary to scale the radius an of the dipoles according to an + 1/a„ = x. 
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(a) Slot. (b) Horn. 

Aperture 
(c) Reflector. 

Aperture FIGURE 11-31 
(d) Lens. Aperture antennas. 

With a nearly uniform phase over the aperture, the far-zone field is a two-dimensional 
Fourier integral of the field distribution in the aperture. Let the electric field dis
tribution in the aperture outlined in Fig. 11-32 be linearly polarized, say in the x-
direction, with no phase variation: 

Ea = axEa. (11-157) 

If the aperture dimensions are large in comparison to the operating wavelength, then 
almost all the energy of the radiated field will be contained in a small angular region 
around the z-axis, and the far-zone electric field at a distant point P(R0, 6, (j>) can be 
written as EP = axEP, where [13], [25] 

EP = J 
m0 

JJ Ea(x',y')e-jl3Rdx'dy. 
aper. 

For (3R » 1 we have 

R = R0 (axx' + ayy') • (ax sin 9 cos 0 + ay sin 6 sin 0) 
(x' sin 9 cos 0 + y' sin 6 sin </>). 

Substitution of Eq. (11-159) in Eq. (11-158) yields 

J EP = -^-e-^F(0,(f>), 

(11-158) 

(11-159) 

(11-160) 
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where 

F(6, 0 ) = JT Ea(x', y')ejft sin e(x'cos ̂ ' s in *> dx' dy' 
aper. 
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(11-161) 

is the pattern function of the aperture antenna. Equation (11-161) expresses the 
rather simple relation between the aperture distribution and the pattern function; 
namely, they are the Fourier transform of each other. The inverse relation, expressing 
Ea(x', y') in terms of F(6, 0) enables us to determine the aperture field required for a 
specified pattern function. This is a synthesis problem. 

For a rectangular aperture with dimensions a x b and separable field distributions: 

Ea(x',y')=f1(x')f2(y'), (11-162) 

the pattern function in Eq. (11-161) is also separable: 

F{6, 0) = J^ 2
2 / iCx'y^ ' s i n e cos * dx' j h ^ / 2 f2{y')eiliv'sin e sin * dy'. (11-163) 

If we are interested only in the patterns in the principal planes, Eq. (11-163) can be 
further simplified. 

1. In the xz-plane, 0 = 0: 

= c1^/2f1(x'ye*'^dx>, 
(11-164) 

where Cx is a constant. We see that the radiation pattern in the xz-plane depends 
only on the aperture field distribution in the x'-direction. 

2. In the yz-plane, 0 = n/2: 

py^ = \j-2
al2 A{x'] dx\ P'm uy>jPy'sin 6 dy' 

= C2$m
b/2f2(y')e^'sinedy\ 

(11-165) 

*P(Ro,6,ct>) 

FIGURE 11-32 
Pattern calculation from aperture-field distribution. 
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where C2 is a constant. The radiation pattern in the yz-plane depends only on 
the aperture-field distribution in the y'-direction. 

The directivity of an aperture radiator is obtained by using Eq. (11-35), 
which for convenience, is repeated below: 

47tt/m„ 
D = 

where 
1 

1 

77 — ' U2\F I2 

2r,0^ 
J J Ea{x\y')dx'dy' 

(11-166) 

(11-167) 

and 
Pr = Total power radiated 

= ^j- §j\Ea(x\y')\2dx'dy'. 
aper. 

Combining Eqs. (11-166), (11-167), and (11-168), we have 

(11-168) 

D = 
An 

J J Ea(x',y')dx'dy' 

$j \Ea(x',y'fdx'dy' 
(Dimensionless). (11-169) 

It is interesting to note that, when Ea(x', y') = a constant (uniform aperture-field 
distribution), D is a maximum and equals in/A2 times the area of the aperture. 
This is in agreement with Eq. (11-121). 

EXAMPLE 11-13 For an a x b rectangular aperture with a uniform field distri
bution, find (a) the pattern function in a principal plane, (b) the half-power beamwidth, 
(c) the location of the first nulls, and (d) the level of the first sidelobes. 

Solution For simplicity we set Ea(x', / ) = 1. 

a) The pattern function in a principal plane can be found from either Eq. (11-164) 
or Eq. (11-165). In the xz-plane (0 = 0) we have, from Eq. (11-164), 

Fxz{9) = b ^2
a2ejl3x'sinedx' 

(11-170) 
= ab 

sin y\i 

where 

if/ = —- sin 9. 
A 

(11-171) 
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Exactly the same pattern function is obtained for Fyz{0) in the other principal 
plane (0 = n/2) except that b will replace a in Eq. (11-171). Note that the pattern 
function in Eq. (11-170) is similar to the array factor of a uniform linear array 
given in Eq. (11-89) when \ji is small. 

b) The half-power points are determined by setting 
sin {//1 /2 _ 

* 1/2 72 
from which we find 

na . 
<Ai/2 = y sin '1/2 

or 

= 1.39 

X 
sin 01/2 = 0.442 - (11-172) 

For sufficiently large apertures, sin 01/2 is nearly equal to 01/2,t and the half-power 
beamwidth is approximately 

201/2 = 0.88 -

^50 X 

(rad) 

(deg). 

c) The first null occurs at 

^ B i = 
na ■sin v„i = n 

or 

^ sin uHl = - (rad). (11-173) 

d) The location of the first sidelobes is found by setting 

which requires tan \j/1 = i/̂  or ^x = ± 1.4371. Thus, 
sin i/^ 

= 
sin 1.4371 

1.43TT 
= 0.217. 

Referring to unity at i// = 0, we find that the first sidelobes are 20 log10 (1/0.217) = 
13.3 (dB) down from the level of maximum radiation. am 

f For example, when a = 5k, sin 01/2 = 0.442/5 = 0.0884 and 01/2 = sin-1 (0.0884) = 0.0885, an error of 
only 0.11%. The narrow beamwidth of the main lobe confirms our previous statement that almost all of 
the radiated energy is confined in a small angular region around the z-axis. 
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EXAMPLE 11-14 A linearly polarized uniform electric field Ea = axE0 exists in a 
circular aperture of radius b in a conducting plane at z = 0. Assuming b to be large in 
comparison to wavelength, (a) find an expression for the far-zone electric field, and (b) 
determine the width of the main beam between first nulls. 

Solution 

a) For a circular aperture we use polar coordinates x' = p' cos (ft', / = p' sin (ft', and 
x' cos (ft + y' sin (ft = p'(cos (ft cos (ft' + sin (ft sin eft') = p'(cos ((ft — (ft'). The inte
grand in Eq. (11-161) is to be integrated over the circular aperture. We have 

F(9, (ft) = E0 jb
Q £ * e^'sinecos^-^p'd(ft'dp' 

= E0fo2nJ0(Pp' sin 9)p' dp' (11-174)* 

= E02nb: 'Jtfb sin 9) 
fib sin 9 

where J\(u) is the Bessel function of the first kind of the first order. The far-zone 
electric field is then, from Eq. (11-160), 

EP = aJE0 

where 

2nb2 

XR0 
,-JPRo JM 

u = fib sin 9 = —— sin 9. 
A 

(11-175) 

(11-176) 

b) The first null of the radiation pattern occurs at the first zero, u11, of J^u). From 
Table 10-2 we find u11 = 3.832, which corresponds to an angle 

)1 = sin - l 3.832A 3.8322 
2nb 

= 1.22 D 

2%b 

(rad), 

(11-177) 

where D = 2b is the diameter of the circular aperture. Hence the width of the main 
beam between the first nulls is 291 = 2A4X/D (rad). Comparing 91 in Eq. (11-177) 
with 9nl in Eq. (11-173) for a rectangular aperture with width a equaling the 
diameter D of the circular aperture, we find that the main-lobe beamwidth for the 
circular aperture is wider. On the other hand, the first sidelobe level for the circular 
aperture is found to be 0.13, which is 20 log10 (1/0.13) = 17.7 (dB) down from the 
maximum radiation. This is lower than the 13.3 (dB) first sidelobes for the rect
angular aperture with a = D. mm 

1 We have made use of the following two integral relations: 

f2* eJw cos *' d(j)' = 2nJ0{w) and f wJ0{w) dw = wJ^w) 



References 661 

In this section we have considered the radiation properties of only relatively simple 
cases of rectangular and circular apertures in conducting planes. The analysis of other 
aperture-type antennas such as horns, reflectors, and lenses is more difficult and re
quires the use of more advanced concepts. Slots cut in the walls of a waveguide that 
interrupt current flow will radiate. Suitably arranged, they will form antenna arrays 
in a manner analogous to dipole arrays. These and other radiation problems are 
topics for more specialized books on antennas [9], [H]-[13] . 
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Review Questions 

R.ll-l Give a general definition for antenna. 
R.ll-2 Why are antennas important for wireless communication over long distances? 
R.ll-3 State the procedure for finding the electromagnetic field due to an assumed time-
harmonic current distribution on an antenna structure. 
R.ll-4 What is a Hertzian dipole! 
R.ll-5 What constitutes an elemental magnetic dipole? 
R.ll-6 Define the near zone and the far zone of an antenna. 
R.ll-7 Why are the near-zone fields called quasi-static fields? 
R.ll-8. Explain how the magnitude of far fields varies with distance. 
R.ll-9 In what ways does the electromagnetic field of a radiating magnetic dipole differ from 
that of a Hertzian dipole? 
R.ll-10 What are radiation fields! 
R.ll-11 Define antenna pattern. 
R.ll-12 Describe the £-plane and i/-plane patterns of a Hertzian dipole. 
R.ll-13 Define beamwidth of an antenna pattern. 
R.ll-14 Define sidelobe level of an antenna pattern. 
R.ll-15 Define radiation intensity. 
R.ll-16 Define directive gain and directivity of an antenna. 
R.ll-17 Define power gain and radiation efficiency of an antenna. 
R.ll-18 Define radiation resistance of an antenna. 
R.ll-19 Discuss how the ratios {a/X) and (dtf/X) of a Hertzian dipole affect its radiation resis
tance and radiation efficiency. 
R.ll-20 Describe the radiation pattern of a half-wave dipole antenna. 
R.ll-21 What are the radiation resistance and directivity of a half-wave dipole antenna? 
R.ll-22 What is the image of a horizontal dipole over a conducting ground? 
R.11-23 What are the radiation resistance and directivity of a vertical quarter-wave monopole 
over a conducting ground? 
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R. l l -24 Define the effective length of a linear antenna for transmitting. Upon what factors 
does it depend? 
R. l l -25 Define the effective length of a linear antenna for receiving. 
R.11-26 What is meant by the normalized array factor of an antenna array? How is it different 
from the pattern function of the individual antennas? 
R. l l -27 State the principle of pattern multiplication. 
R.l l -28 State the difference between a broadside array and an endfire array. 
R.l l -29 What is a binomial array! What are the relative excitation amplitudes of a six-
element binomial array? 
R. l l -30 Is the radiation pattern of all linear binomial arrrays sidelobeless? Explain. 
R. l l -31 In the radiation pattern of a uniform linear array of many elements, how many 
decibels down from the principal maximum are the first sidelobes? 
R. l l -32 How can the sidelobes of an equally spaced linear array be made lower than those 
of a uniform linear array? 
R. l l -33 What is a phased array! 
R.l l -34 What is a. frequency-scanning array! 
R.l l -35 What are the important consequences of reciprocity relations concerning antennas 
that operate in the transmitting and receiving modes? 
R. l l -36 Define effective area of an antenna. 
R.11-37 What is the universal constant that is the ratio of the directive gain and the effective 
area of an antenna? 

R. l l -38 Define backscatter cross section of an object. 
R. l l -39 Explain the principle of radar. 
R.l l -40 What does the Friis transmission formula say? 
R. l l -41 Define path gain factor concerning wave propagation near the earth's surface. 
R.11-42 In what essential ways does the radiation pattern of a long traveling-wave antenna 
differ from that of an unterminated dipole antenna? 
R. l l -43 What is the essential difference between the radiation characteristics of a helical 
antenna and a dipole antenna? 
R. l l -44 What are the two different operating modes of a helical antenna? Explain. 
R . l l -45 What is a Yagi-Uda antenna! 
R.l l-46 How should the lengths of the reflector and director elements in a Yagi-Uda array 
compare with the length of the driven element? 
R. l l -47 What is the principle of frequency-independent antennas! 
R.l l -48 What is an equiangular spiral! Why does it have broadband properties? 
R. l l -49 What is a log-periodic antenna! 
R.l l -50 Explain the principle of operation of log-periodic dipole arrays. 
R. l l -51 Give three examples of aperture radiators. 
R. l l -52 For a linearly polarized aperture field with uniform phase, what is the relation 
between the aperture's field distribution and the pattern function? 
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R.ll-53 What is the directivity of an aperture having an area A and a linearly polarized 
uniform field distribution at frequency p. 
R.11-54 Describe the manner in which the beamwidth in a principal plane of a rectangular 
aperture with a uniform field distribution depends on its dimensions. 
R.ll-55 Assume that a linearly polarized constant excitation field exists in a rectangular 
aperture with width b and a circular aperture with diameter D = b. Compare the main-lobe 
beamwidths and the first sidelobe levels of their radiation patterns. 

Problems 

P . l l - l Starting from Maxwell's equations, derive the nonhomogeneous wave equations (a) 
for E, and (b) for H in a simple medium. 
P.11-2 Obtain the electric field intensity of a Hertzian dipole by finding both A and V and 
using Eq. (11-2). Check your result with Eqs. (11-16a, b, c). 
P. l l -3 A small filamentary rectangular loop of dimensions Lx and Ly lies in the xy-plane 
with its center at the origin and sides parallel to the x- and ^-axes. The loop carries a current 
i(t) = I0 cos cot. Assuming Lx and Ly to be much less than the wavelength, find the instan
taneous expressions for the following quantities at a point in the far zone: 

a) vector magnetic potential A, 
b) electric field intensity E, 
c) magnetic field intensity H. 

Compare the results in parts (b) and (c) with Eqs. (11-30a) and (11—30b), respectively. 
P. l l -4 A composite antenna consists of an elemental Hertzian electric dipole of length L 
along the z-axis and an elemental magnetic dipole of area S lying in the xy-plane. Equal 
time-harmonic currents of amplitude I0 and angular frequency a> flow in the dipoles. 

a) Verify that the far field of the composite antenna is elliptically polarized. 
b) Determine the condition for circular polarization. 

P. l l -5 (a) Assume the spatial distribution of the current on a very thin center-fed half-
wave dipole lying along the z-axis to be J0 cos fiz, where fi = co/c = 2n/L Find the charge 
distribution on the dipole. (b) Repeat part (a), assuming the current distribution along the 
dipole to be a triangular function described by 

*)-/.(i-^H). 
P. l l -6 A 1 (MHz) uniform current flows in a vertical antenna of length 15 (m). The an
tenna is a center-fed copper rod having a radius of 2 (cm). Find: 

a) the radiation resistance, 
b) the radiation efficiency, 
c) the maximum electric field intensity at a distance of 20 (km) if the radiated power of 

the antenna is 1.6 (kW). 
P. l l -7 The amplitude of the time-harmonic current distribution on a center-fed short 
dipole antenna of length 2h(h « X) can be approximated by a triangular function 

*)-7,(1-1!). 
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Find (a) the far-zone electric and magnetic field intensities, (b) the radiation resistance, and 
(c) the directivity. 
P.l l -8 The transmitting antenna of a radio navigation system is a vertical metal mast 
40 (m) in height insulated from the earth. A 180 (kHz) source sends a current having an 
amplitude of 100 (A) into the base of the mast. Assuming the current amplitude in the 
antenna to decrease linearly toward zero at the top of the mast and the earth to be a 
perfectly conducting plane, determine: 

a) the effective length of the antenna, 
b) the maximum field intensity at a distance 160 (km) from the antenna, 
c) the time-average radiated power, 
d) the radiation resistance. 

P.l l -9 A time-harmonic uniform current I0 cos cot flows in a small circular loop of 
radius b(«X) lying in the xy-plane. 

a) Find the radiation resistance Rr of the magnetic dipole. 
b) Obtain an expression for its radiation efficiency r\r if the loop is made of copper 

wire of radius a, 
c) Calculate Rr and r\r for / = 1 (MHz), b = 50 (cm), and a = 3 (mm). 
d) Rework part (c) if the loop has ten closely wound insulated turns. 

P.ll-10 Repeat parts (a) and (b) of Problem P . l l -9 for a small rectangular loop of sides 
Lx and Ly. Repeat part (c) for / = 1 (MHz), Lx = Ly = 2b = 1 (m), a = 3 (mm), and compare 
results. 
P.11-11 Use the total field expressions in Eqs. (11-15) and (11-16) to find the time-average 
power radiated by a Hertzian dipole, and compare it with the result in Eq. (11-43) using 
only the far-zone fields. 
P.ll-12 Sketch the polar radiation pattern versus 6 for a thin dipole antenna of total 
length 2h = 1.25A. Determine the width of the main beam between the first nulls. 
P.ll-13 Assuming a triangular current distribution on a center-fed 1/6 dipole (h = 1/12), 
find an expression for its effective length. What is its maximum value? 
P.ll-14 A 1.5 (MHz) uniform plane wave having a peak electric field intensity E0 is in
cident on a half-wave dipole at an angle 6. 

a) Find the expression for the open-circuit voltage Voc at the terminals of the dipole. 
b) If the dipole is connected to a matched load, what is the maximum power PL 

delivered to the load? 
c) Calculate Voc and PL for E0 = 50 (mV/m) and for 6 = n/2 and TC/4. 

P.11-15 Two elemental dipole antennas, each of length 2h « X, are aligned colinearly along the 
z-axis with their centers spaced a distance d (d> 2h) apart. The excitations in the two 
antennas are of equal amplitude and equal phase. 

a) Write the general expression for the far-zone electric field of this two-element 
colinear array. 

b) Plot the normalized E-plane pattern for d = 1/2. 
c) Repeat part (b) for d = 1. 

P.ll-16 A horizontal elemental electric dipole of length dt and carrying a time-harmonic 
current of amplitude I0 in the + y-direction is situated at a distance d above a perfectly 
conducting ground. Find its pattern functions (a) in the xy-plane, (b) in the xz-plane, and 
(c) in the yz-plane. (d) Sketch the patterns for parts (a), (b), and (c) for d = 1/4. 
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P.ll-17 Plot the if-plane poiar radiation pattern of two parallel dipoles for 
a) d = A/4, £ = n/2; b) d = 3 A/4, £ = TT/2. 

P.ll-18 For a five-element broadside binomial array: 
a) Determine the relative excitation amplitudes in the array elements. 
b) Plot the array factor for d = A/2. 
c) Determine the half-power beamwidth and compare it with that of a five-element 

uniform array having the same element spacings. 
P.ll-19 For a uniform linear array of 12 elements spaced A/2 apart: 

a) Sketch the normalized array pattern \A(ij/)\ in Eq. (11-89) versus i/j. 
b) Find the widths of the main beam at half-power points and between the first nulls 

when the array is operated in the broadside mode. 
c) Repeat part (b) for an endfire operation. 

P.ll-20 For a uniform linear array with a large number of elements the denominator 
sin (ijj/2) in Eq. (11-89) remains small over a large portion of the normalized array pattern 
near the main beam and can be approximated by (iA/2). Use this approximation to deter
mine the directivity of the array of a large uniform array with many elements. 
P.11-21 Using the graph in Fig. 11-15(a) for the normalized array factor of a five-element 
broadside linear array with d = A/2 and amplitude ratios 1:2:3:2:1, plot the polar radiation 
pattern for d = A/4 and £ = — n/2. 
P.ll-22 Letting £ = exp (j\jj), we can write the array factor of an equally spaced array as 
a polynomial, A(\j/), in \j/, and many characteristics of the array pattern can be estimated 
by examining the distribution of the zeros of the array polynomial on a unit circle. In 
general, an N-element linear array has N — 1 zeros, \j/0m (m = 1, 2 , . . . , N — 1), distributed 
around the unit circle. Find A{i//) and locate all \j/0m on a unit circle for the following linear 
arrays: 

a) a two-element array, 
b) a three-element binomial array, 
c) a five-element uniform array, 
d) a five-element array having amplitude ratios 1:2:3:2:1 (as in Example 11-9). 
e) Based on the locations of ij/0m for the two arrays in parts (c) and (d), explain why 

the pattern for the array in part (d) has lower sidelobes but a wider beamwidth. 
P.ll-23 Obtain the pattern function of a uniformly excited rectangular array of A^ x N2 
parallel half-wave dipoles. Assume that the dipoles are parallel to the z-axis and their 
centers are spaced dj_ and d2 apart in the x- and ^-directions, respectively. 
P.ll-24 Assume that a linearly polarized plane electromagnetic wave is incident on a half-
wave dipole, as in Fig. 11-8. 

a) Obtain an expression for the effective area, Ae{&). 
b) Calculate the maximum value of Ae for 100 (MHz). 

P.ll-25 A uniform plane wave with electric field intensity E{ = az£; impinges on a small 
dielectric sphere of radius b («A) and dielectric constant er. 

a) Find the total time-average power scattered by the sphere. 
b) Obtain the expression for the total scattering cross section as, which is the ratio of 

the total scattered power to the incident power density. Compare as with the back-
scatter cross section abs. 

P.ll-26 Communication is to be established between two stations 1.5 (km) apart that 
operate at 300 (MHz). Each is equipped with a half-wave dipole. 
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a) If 100 (W) is transmitted from one station, how much power is received by a 
matched load at the other station? 

b) Repeat part (a) assuming that both antennas are Hertzian dipoles. 
P . l l -27 (a) Show that three satellites equally spaced around the geosynchronous orbit in 
the equatorial plane would cover almost the entire earth's surface. Explain why the polar 
regions are not covered, (b) Assuming the main beam of the radiation pattern of the satellite 
antenna to have the shape of a circular cone that just covers the earth with no spillover, 
find a relation between the main-lobe beamwidth and the directive gain of the antenna. 
P.l l-28 The antenna at the earth station of a satellite communication link having a gain 
of 55 (dB) at 14 (GHz) is aimed at a geostationary satellite 36,500 (km) away. Assume that 
the antenna on the satellite has a gain of 35 (dB) in transmitting the signal back toward 
the earth station at 12 (GHz). The minimum usable signal is 8 (pW). 

a) Neglecting antenna ohmic and mismatch losses, find the minimum satellite trans
mitting power required. 

b) Find the peak transmitting pulse power needed at the earth station in order to 
detect the satellite as a passive object, assuming the backscatter cross section of the 
satellite including its solar panels as 25 (m2) and the minimum detectable return 
pulse power to be 0.5 (pW). 

P.11-29 A transmitting vertical half-wave dipole 60 (m) above the ground radiates 400 (W) 
at 100 (MHz). Assume the ground to be perfectly conducting. 

a) Calculate the power available at a vertical half-wave receiving antenna 50 (km) 
away at a height 30 (m) above the ground. 

b) At a distance 50 (km) from the transmitting antenna, where (at what altitudes) 
would there be a null field? 

P.l l-30 The current along an isolated and terminated traveling-wave antenna of length L 
is given as 

I(z) = I0e~^. 

a) Find the far-zone vector potential, A(R, 6). 
b) Determine H(R, 6) and E(R, 6) from A(R, 6). 
c) Sketch the radiation pattern for L = A/2. 

P.ll-31 A turnstile antenna consists of two perpendicular half-wave dipoles, one (antenna 
A) lying along the x-axis and the other (antenna B) along the y-axis. The output of antenna 
B, after a 90° phase retardation, is combined with that of antenna A. A right-hand ellipti-
cally polarized plane wave E; = E0(ax + ayjp) exp (jkz) is incident on the antennas. 

a) Determine the open-circuit voltage at the output terminals of the turnstile antenna. 
What is its value if p = 1? 

b) Repeat part (a) for a left-hand elliptically polarized incident wave E ; = 
E0(ax ~ a,jp) exp (jkz). 

c) Repeat part (a) for a linearly polarized incident wave E, = axE0 exp (jkz). 
(Hint: Find the complex effective length of the turnstile antenna and use Eq. 11-76.) 
P.l l-32 A helical antenna operating in the normal mode has N turns with diameter 2b 
and interturn spacing s. Both 2b and s are very small in comparison to A/AT and are 
adjusted to radiate circularly polarized waves. Find: 

a) its directive gain and directivity, 
b) its radiation resistance. 
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P.11-33 For the problem in Example 11-13, write the expression for the far-zone electric 
field EP(d, (j>) at a point P(6, $) located near the z-axis (cos 9=1) but not in either of the 
principal planes. 
P.11-34 Assume that the field in an a x b rectangular aperture in an xy-plane is linearly 
polarized in the y-direction and that the aperture excitation has a uniform phase and a 
triangular amplitude distribution 

|2 I . . a 
f(x) — 1 — - x , x < - . 

\a \ ' ' 2 
Find (a) the pattern function in the xz-plane, (b) the half-power beamwidth, (c) the location 
of the first nulls, and (d) the level of the first sidelobes. Compare the results with those 
obtained in Example 11-13 for uniform field distribution. 
P.ll-35 Do Problem P.11-34 for a uniform-phased cosinusoidal amplitude distribution 

/(x) = cos(— j , H ^ 2 ' 

and compare your results with those obtained in Example 11-13 for a uniform field 
distribution. 
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A 
Symbols and Units 

A™ 1 Fundamental SI (Rationalized MKSA) UnitsT 

Quantity 

Length 
Mass 
Time 
Current 

Symbol 

£ 
m 
t 
hi 

Unit 

meter 
kilogram 
second 
ampere 

Abbreviation 

m 
kg 
s 
A 

f Besides the MKSA system for the units of length, mass, time, 
and current, the SI adopted by the International Committee 
on Weights and Measures consists of two other fundamental 
units. They are Kelvin degree (K) for thermodynamic 
temperature and candela (cd) for luminous intensity. 

A—2 Derived Quantities 

Quantity 

Admittance 
Angular frequency 
Attenuation constant 
Capacitance 
Charge 
Charge density (linear) 
Charge density (surface) 
Charge density (volume) 

Symbol 

Y 
CO 

a 
C 

Q,q 
Pe 
Ps 
P 

Unit 

Siemens 
radian/second 
neper/meter 
farad 
coulomb 
coulomb/meter 
coulomb/meter2 

coulomb/meter3 

Abbreviation 

S 
rad/s 
Np/m 
F 
C 
C/m 
C/m2 

C/m3 

(continued) 
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A—2 Derived Quantities (continued) 

Quantity 

Conductance 
Conductivity 
Current density (surface) 
Current density (volume) 
Dielectric constant 
(relative permittivity) 
Directivity 
Electric dipole moment 
Electric displacement 
(Electric flux density) 
Electric field intensity 
Electric potential 
Electric susceptibility 
Electromotive force 
Energy (work) 
Energy density 
Force 
Frequency 
Impedance 
Inductance 
Magnetic dipole moment 
Magnetic field intensity 
Magnetic flux 
Magnetic flux density 
Magnetic potential (vector) 
Magnetic susceptibility 
Magnetization 
Magnetomotive force 
Permeability 
Permittivity 
Phase 
Phase constant 
Polarization vector 
Power 
Poynting vector 
(power density) 
Propagation constant 

Symbol 

G 
o 

h 
J 
er 

D 

P 
D 

E 
V 

Xe 

r 
w 
w 
F 

f 
z,n 
L 
m 
H 
0 
B 
A 

X.m 
M 
r m 

)",l"o 
e ,£ 0 

<P 
P 
P 
P 
SP 

y 

Unit 

Siemens 
siemens/meter 
ampere/meter 
ampere/meter2 

(dimensionless) 

(dimensionless) 
coulomb-meter 
coulomb/meter2 

volt/meter 
volt 
(dimensionless) 
volt 
joule 
joule/meter3 

newton 
hertz 
ohm 
henry 
ampere-meter2 

ampere/meter 
weber 
tesla 
weber/meter 
(dimensionless) 
ampere/meter 
ampere 
henry/meter 
farad/meter 
radian 
radian/meter 
coulomb/meter2 

watt 
watt/meter2 

meter _ 1 

Abbreviation 

S 
S/m 
A/m 
A/m2 

— 

— 
C-m 
C/m2 

V/m 
V 
— 
V 
J 
J/m3 

N 
Hz 
Q 
H 
A-m2 

A/m 
Wb 
T 
Wb/m 
— 
A/m 
A 
H/m 
F/m 
rad 
rad/m 
C/m2 

W 
W/m2 

m" 1 

(continued) 
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A - 2 Derived Quantities (continued) 

Quantity 

Radiation intensity 
Reactance 
Relative permeability 
Relative permittivity 
(dielectric constant) 
Reluctance 
Resistance 
Susceptance 
Torque 
Velocity 
Voltage 
Wavelength 
Wavenumber 
Work (energy) 

Symbol 

U 
X 
nr 

St 
R 
B 
T 
u 
V 

k 
W 

Unit 

watt/steradian 
ohm 
(dimensionless) 
(dimensionless) 

henry - 1 

ohm 
Siemens 
newton-meter 
meter/second 
volt 
meter 
radian/meter 
joule 

Abbreviation 

W/sr 
Q 

— 

H " 1 

Q 
S 
N-m 
m/s 
V 
m 
rad/m 
J 

A—3 Multiples and Submultiples of Units 

Factor by Which Unit Is Multiplied 

1 000 000 000 000 000 000 = 1018 

1000 000 000 000 000= 1015 

1 000000 000000 = 1 0 1 2 

1000 000 000 = 1 0 9 

1 000 000 = 106 

1 000 = 103 

100 = 102 

10 = 101 

0.1 = 10"1 

0.01 = 10"2 

0.001 = 10"3 

0.000 001 = 10" 6 

0.000000 001 = 10" 9 

0.000 000 000001 = 10"-12 

0.000 000 000 000 001 = 10"1 5 

0.000 000 000 000 000 001 = 10"1 8 

Prefix 

exa 
peta 
tera 
giga 
mega 
kilo 
hectot 

deka* 

decit 

centit 

milli 
micro 
nano 
pico 
femto 
atto 

Symbol 

E 
P 
T 
G 
M 
k 
h 
da 

d 
c 
m 

0 
n 

P 
f 
a 

1 These prefixes are generally not used except for measurements of 
length, area, and volume. 



B 
Some Useful Material Constants 

B— 1 Constants of Free Space 

Constant 

Velocity of light 

Permittivity 

Permeability 

Intrinsic impedance 

Symbol 

c 

e0 

Mo 

no 

Value 

~ 3 x 108(m/s) 

~ x l ( r 9 ( F / m ) 
307T 

4TT x 10-7(H/m) 

~ 120TT or 377 (Q) 

B—2 Physical Constants of Electron and Proton 

Constant 

Rest mass of electron 
Charge of electron 
Charge-to-mass ratio of electron 
Radius of electron 
Rest mass of proton 

Symbol 

me 

— e 
-e/me 

Re 
mp 

Value 

9.107 x 10"3 1 (kg) 
-1.602 x 10" 19(C) 
-1.759 x 10n(C/kg) 
2.81 x 10_ 1 5(m) 
1.673 x KT27(kg) 
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B—3 Relative Permittivities (Dielectric Constants)1 

Material 

' Air 
Bakelite 
Glass 
Mica 
Oil 
Paper 
Parafin wax 
Plexiglass 
Polyethylene 
Polystyrene 
Porcelain 
Rubber 
Soil (dry) 
Teflon 
Water (distilled) 
Seawater 

Relative Permittivity, er 

1.0 1 
5.0 

4-10 
6.0 
2.3 
2-4 
2.2 
3.4 
2.3 
2.6 
5.7 

2.3-4.0 
3-4 
2.1 
80 
72 

B—4 Conductivities 

Material 

Silver 
Copper 
Gold 
Aluminum 
Brass 
Bronze 
Iron 
Seawater 

Conductivity, <r(S/m) 

6.17 x 107 

5.80 x 107 

4.10 x 107 

3.54 x 107 

1.57 x 107 

107 

107 

4 

Material 

Fresh water 
Distilled water 
Dry soil 
Transformer oil 
Glass 
Porcelain 
Rubber 
Fused quartz 

Conductivity, <r(S/m) 

10"3 

2 x KT 4 

10-5 

10"1 1 

10"1 2 

2 x KT 1 3 

KT 1 5 

10"1 7 

f Note that the constitutive parameters of some of the materials are frequency and temperature dependent. 
The listed constants are average low-frequency values at room temperature. 
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5 Relative Permeabilities1 

Material 

Ferromagnetic (nonlinear) 
Nickel 
Cobalt 
Iron (pure) 
Mumetal 

Paramagnetic 
Aluminum 
Magnesium 
Palladium 
Titanium 

Diamagnetic 
Bismuth 
Gold 
Silver 
Copper 

Relative Permeability, \ir 

250 
600 

4,000 
100,000 

1.000021 
1.000012 
1.00082 
1.00018 

0.99983 
0.99996 
0.99998 
0.99999 

f Note that the constitutive parameters of some of the materials are frequency and temperature dependent. 
The listed constants are average low-frequency values at room temperature. 
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Answers to 
Selected Problems 

Chapter 2 

P.2-1 a) (a, + ay2 - a z 3 ) / V R b) V 5 3 . c) - 1 1 . 

e) 11/V29. f) - (a ,4 + ay13 + az10). g) - 4 2 . 
h) a^2 - ay40 + az5 and a,55 - ay44 - azl 1. 

P.2-5 X = (pA + B x A)/A2. 
P.2-9 a) cos(a - /3) = cos a cos /3 4- sin a sin (3. 
P.2-15 1.12. 
P.2-17 a) |E| = \/2,Ex = -0.212. b) 8 = 154°. 
P.2-21 a) 14. b) 14. 
P.2-23 a) (VV)P = -(ay0.026 + az0.043). b) 0.0485. 
P.2-25 € = 0, m = p = 1/ \/2; / 5F • ds = 20. 
P.2-29 §SA ■ ds = JVV • A dv = 1,200TT. 

P.2-31 SeeEq.(2-114). 

d) 135.5°. 

P.2-35 1 
> ^ - ^ Rsind 

P.2-39 a) c, = l ,c 2 = 0 , c 3 = - 3 . 
x2 z2 

b ) c 4 = - l . c) V = - - - x z + 3yz+ - . 

Chapter 3 

P.3-1 a) a = tan'l(mul/ewEd). b) L/w = 10.5. 
P.3-5 a) QJQ2 = -3/4\/2. b) QJQ2 = 1/2 Vi . 
P.3-7 |F| = Qpebh/2e(b2 + h2f2. 
P.3-9 ay3p€I/47re0L. 
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P.3-11 (1) 0<R<b:ERi = (2) b<R<R-.ER2 = 2po/>3 

15enJR2" 

(3) Ri<R<Ro:ER3 = 0. (4) R>R0:ER4 = 
2Pob3 

\5e0R2 

P.3-13 a) 28(/J). b) 28(/LJ). 

P.3-15 a) V = 
qd2 

(3 cos2 6- 1),E = 
3<?</2 

1677-e0JR 
b) fl3 = CV(3cos 2 0- 1). 
c) R2 = C £ s i n 2 0 c o s 0 . 

16T7€0JR 
;[a/f(3cos20-l) + a9sin20]. 

P.3-17 

P.3-19 

VP = 
4776 

sinh '( *J + sinh ' l | 

P.3-21 

P.3-23 
P.3-25 
P.3-29 

If origin is chosen at the center of the base of the circular tube: 

bn z + V ^ 2 + z2 

a) z>h,V0 = ̂ \ n , 
2 e° (z-h) + Vb2 + (z- hf 

b) z<h, Vi = ~\n^2(z + Vb2 + z2)[(h - z) + \ A 2 + (h - z)2], 

where ps = Q/2irbh. 
3 
-£■„. Ae 

P/3e0. 
E2(z = 0) = a^y - av3x + az(10/3). 
a) 19.3 (kV). b) 1.82(kV). 

V0 P.3-31 a) E(a) = ar-aln(b/a)' 
d) C = 277e(F/rn). 

P . M S C - ^ V ^ 1 
ln(r0/r,) 

P.3-35 a) 0.708 (mF). b) 1.35 x 10,0(C). 
€0e rV 

b) b/a = e = 2.718. c) min£(a) = eV0/6. 

P.3-37 a) D = 

b) C = 

a* 
flz h ^ - z V -

1 
, for Rj < R < R0; 

,Rt 2b 2R0, 
0, for R < Ri and R > R0. 

4ire0er 

J___ J 1_" 
Ri 2b 2R0 

P.3-39 Designate the wires as conductors 0, 1, and 2 with wire 1 in the center. 
C,0 = Cl2 = 3.36 (pF/m), C20 = 2.35 (pF/m). 
1.69 x 10"15(m). P.3-41 

P.3-47 F,= 
7T^V\ 

2D[\n(D/b)]2' 
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Chapter 4 

683 

r . 4 . , , 0 ^ ^ , E j _ a y - J ^ 
(4 + er)<f (4 + er)J 

K, v 5 e r y - 4 ( € r - l W 5erV0 b) Va = „ , _X J Vo, Ea = - a y -

c) (p,)y=<* = 

P.4-7 a) p, = -

(4 + e,)</ 
5e0ery0 

(4 + e,)d 

(4 + zr)d 

= -(Ps)y = 0-

b) -Q. 

P.4-11 C = 

2TT(</2 + r2)3/2" 

7re0 

ln{^/[aVl+(^/2/i)2]}" 

P.4-13 C = 27re0 

In 
2 \a{a2 a2 aj yj 4\aia2 a2 

27ren 

s - i 

cosh ' 

P.4-15 b) Ps = -

1 /D 2 _ a, _ a2 

2\flia2 «2 a i / j 

Q(b2 - d2) 
ATT b(b2 + d2-2bd cos 0)3/2' 

P.4-17 g, = G2 = ̂ - ^ G . 
e2 + &! 

P.4-19 V„(x,y) = C c o s h ^ C t - a)cos~y. 
b b 

P.4-21 V„(x,y) = sin — x 
a A„sinh—y + 5 „ c o s h — y 

a a 

P.4-23 a) V(</>) = % . b) V(</>) = — ^ - ( 2 T T - </>). 
a 27T - o: 

P.4-25 V(r, </>)=- E0r[ 1 - -^ ) cos <$>. 

E(r, </>) = arE0 ( 1 + — J cos0 - a^o (1 - —) sin< 

P.4-27 a) V(d) = V0-

ln I tan -

In | t a n -

b) E(0) = - a 6 R In [tan (a/2)] sin 0" 
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P.4-29 Vi(R,0)= - 3£0 

e, + Z 
Rcosd, Vo(R,0)=- R-

Ei(R,ff) = (aRcos6 - aesin6)-^ = a. 3E° 
e,.+ 2 ' e r + 2' 

Eo(R,0) = aR 1 + 
2(e r - l ) f r 3 

(er + 2)R' E0 cos 6 - a0 

(e,. + 2)R2 

(e r - l ) f r 3 

(er + 2)R3 

E0cosd. 

E0 sin 6. 

Chapter 5 

P.5-1 a) V(y) = V0(y/d)4/\ E(y) = -(4Vjld)(y/d)l/\ 
b) Q= -(4V0/3d)e0S. 
c) Charge on cathode = 0; charge on anode = - Q. 
d) 3.58(ns). 

P.5-3 a) 2.32 a. 
b) EX=E2 = I/2TTCI2(7. 

P.5-5 /, = 0.7(A), PRX = 0.163(W); I2 = 0.140(A), PR2 = 0.392 (W); 
73 = 0.093(A), PR3 = 0.261 (W); 74 = 0.233(A), PR4 = 0.436(W); 
75 = 0.467(A), PR5 = 2.178 (W). 

P.5-7 a) 4.88 (ps). b) W,/(W,)0= 10~4; heat loss. 
c) W„ = 45(kJ). 

P.5-9 a) E2 = ■ 7 I CT| 

sin «j + I —cosai cr2 

1/2 

, a2 = tan" 
(72 

— tana, 

o-i 
b) p 5 = (— e 2 - £ i l ^ i s ino , . 

P.5-11 b) P = T2S(7,(72/((7Xd2 + a2dy). 

P.5-13 a) / = 

b) p, 

(7 , (72^0 

P5C = 

/•[criln(/j/c) + cr2ln(c/a)]' 
= ei^Vo 

a[criln (b/c) + cr2ln(c/fl)]' 
(e2cr, - e,o-2)V0 

Psb = 
e2cr, V0 

b[(7x\n{b/c) + cr2ln(c/fl)]' 

c[a}ln{b/c) + (72ln(c/a))' 

—m-i)-
P.5-17 R7-R, 

2TT(7R\R2{\ - cos0o)' 

477o-\b, b2 d)' 
P.5-21 6.36 (Mft). 

P.5-23 J = a^J0 — V ( a r c o s # + a^sin^). 
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Chapter 6 

685 

\ OJ0/ Vojo/ m 
Path of motion of q in magnetic field is a semicircle. 

P . 6 - 3 B < = ^ , r S a ; B , = ^ , a S r S f c ; 

P.6-5 az1.38//w. + 

P.6-9 F„ = 

- z)2 + 62 \/z2 + b 1 
4TTR 

-u2 x (u, x al2). 

P.6.„^(I+I). 
2fc \ir 2/ 

P.6-15 aztx0Jd/2. 
P-6-17A, = . , l - ^ f c + c , r, < 6; A2 = aẑ  -

4TT ll 47r\b 
P.6-21 a) ajjLoHJu. b) az(#0 - M,). 
P.6-27 a) % = 1.21 x lO^HT1), 9tc = 6.75 x ltftfr1). 

b) Bg = Bc = a^5.09 x 1(T3(T). 
Ug = a^4.05 x 103(A/m), Hc = a^l.35(A/m). 

c) / = 25.6(mA). 
y - d , y + d 

H*)2+,H'r^' 

P.6-33 b) B= - a Mo/f" J 
t2irL(y-

^J 
rf)2 + *2 (y + d)2 + *2_ 

1 1 
+ d)2 + x2 (y + d}2 + x2 ]■ 

P.6-35 L = /xoN2(r0 - V ^ T 2 ) . 
Mo </2 

P . 6 - 3 7 L V / ^ = ^ l n ( ^ l + ^ 

P.6-39 L12 = fi0(d- \/d2 - fc2). 
P.6-41 / , / / 2 = -M/L,. 

P . 6 - 4 3 f = a ^ \ a n ^ Y 
7TM> \2£>/ 

P.6-45 F = a^o/J Iv^S/SF"1} - 1 , repulsive. 
- V l - ib/df 

P.6-47 T= -a^).l(N-m). 
P.6-51 Maximum deviation from north-south direction: 55.8°. 
P.6-53 F = a^( /x r - l)«2/25. 
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Chapter 7 

L ^ r -WL)< A ^ ^ r r . T . ^ ,_ / \ , ™ P.7-3 a) i2(t) = —£lie-WL\ 0<t<T; Ln = ^ l n I 1 + - 1 . 

X-/ 

P.7-5 a) 0.234(A) b) 48.2°. 

P.7-7 a) 0.0472/u0/w6. b) 0.046Wft>/>. 

P.7-13 a) V = V - —. b) V2i// - fxe ^ 4 = 0. 

P.7-23 £0 = 0.068,0 = -72.8°. 
P.7-25 /3 = 54.4(rad/m). 

HU,z;/) = -3,2.30 x 10"4sin(107TA:)cos(67rl09/ - 54.4z) 
-az1.33 x 10-4cos(1077;t)sin(67rl09/ - 54.4z)(A/m). 

r? I 

P.7-27 k = (o\/a0e0. H = a^— /—sin0cosa>(/ -\Zfx0e0R). 
Ry no 

Chapter 8 

P.8-3 a) A/= -(2u/c)f, assuming the vehicle to be moving in the same direction as 
the direction of the incident wave. 

b) 120(km/hr),or74.6(miles/hr). 
P.8-5 a) k0 = 0.1047(rad/m), y = 22.5 ± nX/2(m). 

b) E(y,t)= -8,1.508 x 10_3cos( 107ir/- ^ y + ^)(V/m). 

P.S-7 i ^ t l ) + ( ^ - ^ 7 7 ) ~ 2 „7 rJ,. = 1, where £x = £,0sin(H;f - kz), 
Ey V + / Ex V _ 2ExEycos<!> 

KE20 sin 1/// \EW sin \fi) f ^ o sin21// 
and£^ = E20sin(wt - kz + «/0. 

P.8-11 a) 1.395 (m). 
b) TJC = 238(1 + j 0.005) (ft), X = 6.3 (cm), uP = 1.8973 x 108(m/s), 

ug = 1.8975 x 108(m/s). 
c) H = a.0.21 e-°497xsin(67rl09/ - 31.6ir* + 1.042)(A/m). 

P.8-13 a) 0.99 x 105(S/m). b) 0.175 (mm). 
P.8-21 a) Left-hand circularly polarized wave in - z direction. 

7.F 
b) —- (a, - jay). c) 2E0 sin (3z(ax sin (at - &y cos (at). 

P.8-23 a) / = 5.73 (MHz), X = 0.524 (m). 
b) E;(y, z; t) = 5(ay + az\/3)cos(3.6 x \09t + 6yfiy - 6z)(V/m), 

H,(y, z; 0 = -aJt-J-cos(3.6 x 109/ + 6\/3y - 6z)(A/m). 
127T 

c) di = 60°. 
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d) Er(y, z) = 5(-ay + a z \ / 3 )^ 6 ( ^ + z ) (V /m) , 

Hr(y,z)= -a,-J-^+z)(A/m). 
e) E{(y,z) = ( -a yyi0sin6z + az10V3cos6z)e /6V3y(V/m), 

H,(y,z) = - a ^ ( c o s 6 z ) ^ 6 ^ ( A / m ) . 

P.8-25 H, (x, z; t) = av —-cos(/3,z cos 0,) sin(o>/ - J8,JC sin 0,) 

^av = a*—{gsin0,sin2G6iZCOs0,). 

P.8-27 a) Er(z, /) = a,2.77cos(1.8 x 109/ + 6z + 157°) (V/m), 
E,(z, 0 = a,7.53 e-23zcos(1.8 x 109/ - 9.76z - 172°)(V/m). 

b) 0>av = azO.122e-4-61z(W/m2). 

7(T7O - T7J)tan/32J 
170172 +7(190 + 12) tan /32cf 

ihfoo + •*&<»* 
r)0r)2cosp2d + j(r)l + 172) sin/32cf 

r}0r}2 cos /32d + 7(170 + 172) sin fi2d 

170172 cos fad + j(rjo + 172) sin (32d 
(rn + r23)+j(rl2-r2i)tanp2d 

(\ + rl2r23)+j(\-rnr2i)tmp2d-

P.8-33 Assume I172I «170 . 

J\r,Jsm(p2-ja2)d- ] 2 \^) sin(/32 -jajrf 

c) £30= " / - ) ^ — ^ - d) (PM(9„)t= 1-839 x 10-" . 
\i7o/s in082-./a2)d 

P.8-35 a) 0, = 0.03° b) r„ = 0.0214*>/4 

c) (^av),/(^av)« = 1-054 x 10" V 0 7 9 5 z . d) 8.69 (m). 
P.8-37 a) Et(x, z) = ayEt0 e~a2Z e~j^x, _ 

H,(x, z) = — Uja2 + az Msinfl,) e~a2Z e~^\ 
172 \ V e2 

w h e r e / ^ = /32 /—sin0,-, a2 = /32 
V e2 

and£,n = 2r ,2cos0,£, 

P.8-29 a) Er0= / ,,U.V 2 , 2 ,71 n ,£,o, 

F+ _ '/2V/0 -r f/2;c 

T72COS0;-J17, 

P.8-39 a) 6.38°. b) e'066. c) 1.89^033. d) 159(dB). 

P.8-41 a) da = sin"1 ( — V « i - « i ) . b) 80.4°. 
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P.8-45 a) T± = 

r„ = 

1.5cos0 

1.5 cos 6, 
-vr 
(1.5 sin 

- ( 1 . 5 

- ( 1 . 5 

Od2 ~ 

sin 0,)2 

sin d,)2 

cos 0,-

1.5\/l -(1.5sin©,)2 + cos6-

p.8-47a)r,; = ̂ c o s ! ' - ^ c o s ! ' = r„, 

Tn 

7)2 COS 0, + 7)i COS 0, 
2T)2 COS 0, 

7)2 COS 0, + T^COSfl, 

cos#, 
cos 6j 

Chapter 9 

P.9-3 a) d' = \fld, u'p = upl\fl. 

2 \L + c)\ 8co2 \L 
P.9-7 a 

*» = Vc 
_ j _ R_G\ R 3G 
8co2U C / \ L + C 

, j8 = w V ^ C — I - - -

>x°- W c U cj-
P.9-9 R = 0.058 (11/m), L = 0.20 (/uH/m), C = 80(pF/m), G = 24(/tS/m). 
P.9-11 Maximum power-transfer efficiency = 50%. 

P.9-13 a) A = D = — coshy^, 
Z0 

5 = Z0sinh7€, C = —sinhy£. 
A) 

P.9-15 a) V(z, t) = 5.27 e~omzsin (800077/ - 5.55z - 0.322) (V). 
b) V(50, t) = 3.20 sin(8000TT/ - 0.432T7)(V). 
c) 0.102(W). 

P.9-17 a) 4Z0/aX. b) Z„aA/4. 
P.9-19 a) Z0 = 289.8 - 777.6(11), a = 0.139(Np/m), j8 = 0.235 (rad/m). 

b) i? = 58.6(n/m), L = 0.812 OuH/m), G = 0.246 (mS/m), 
C = 12.4 (pF/m). 

. . - . - . ~ \ _ - 1 
P.9-21 A/ = ~2irU + C/' e = £ = 77V^C 2T7\L G'/ - 2a [(/?/o>Z.) + (G/a>c)]' 

P.9-27 a) T = y°2\ b) ZL = 466 + 7206 (fl). c) /?m = 150 (II), im = 0.2X. 

P M z I = z ; | - i S , , n f c : A I 
5-7 tan(27rz ; / \ ) 

P.9-31 a) Pinc = V2/8/?0. 

d) Pmc = 25 (W), T = 0.243/-76°, S = 1.64, 

P L = 23.5 (W), |VL| = 54.2(V), |/L| = 0.97(A). 

V2 P, 4S 
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P.9-33 At t = 4T, the voltage and current distributions along the line revert to the 
conditions at t = 0, and the cycle repeats itself. 

P.9-35 Tg= - 1 / 3 , r L = 1. 
P.9-43 a) 5 = 1.77. b) T = 0.28^,46°. c) Z, = 50 +j29(D). 

d) Yi = 0.015 - 70.009 (S). 
P.9-45 a) ZL = 33.75 - J23.15 (ft). b) T = hej25zy. c) z'm = 25(cm). 
P.9-47 Line length = 0.375 (m), Wire radius = 5.4 (mm). 
P.9-49 dj\ = 0.074, €,A = 0.347; d2/\ = 0.250, €2/X = 0.153. 
P.9-51 a) dj\ = 0.0113. b) ZJ\ = 0.304,tB/\ = 0.125. 

Chapter 10 

P.10-5 From Eqs. (10-83a,b,&c): Js( = axBn, Jsu = a,(-l)"+,fl„. 
1 

P.10-7 uen = -=\/\-(fc/f)2. 

P.10-9 a) (3 = 308(rad/m),«rf= 1.28 x 10-8(Np/m),o;c = 1.69 x 10"4(Np/m), 
up = 2.04 x 108(m/s),^ = 1.96 x 108(m/s),Xg = 2.04 (cm). 

b) /3 = 288(rad/m),arf= 1.37 x 10-8(Np/m),o:, = 7.25 x 10"4(Np/m), 
up = 2.\S x 108(m/s),wg = 1.83 x 108(m/s),\g = 2.18(cm). 

P.10-11 a) 358(MW/m). b) 207(MW/m). c) 155(MW/m). 

P.10-13 a) Js(y = 0)= -a^\^JE0sin(^)e~j^ = Uy = b). 

P. 10-15 uen = u\/\ - (u/2af)2,u=\/y/jie. 
P.10-17 a) a>6(cm),6<4(cm). Choose a = 6.5 (cm) and b = 3.5 (cm). 

b) j8 = 40.1 (rad/m), wp = 4.70 x 108(m/s),Xg = 15.7 (cm), 
(Zre)10 = 590(n). 

P.10-19 a) fc = 2.08 x 109(Hz). b) X, = 0.139(m). 
c) ac = 2.26 x 10~3(Np/m). d) 307 (m). 

P.10-21 1(MW). 
2Rs(b/a2 + alb2) 

P.10-23 ac = , - . 
VabV\-(fc/f)2(l/a2+\/b2) 

P.10-29 a) E°z = CnJ„(hr) sin n<f>. 
c) Eigenvalues of TM modes are determined by requiring J„(ha) = 0. The low

est TM mode is TM„. 
P.10-31 a) a = 0.061 (Np/m),j8 = 4.19(rad/m). 

b) a = 0.380 (Np/m),j8 = 10.48 (rad/m). 
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P.10-33 Even TM modes in the slab: Ez(y, z; t) = Ee cos kvy cos((nt - Bz), 

B (oed Ey(y,z;t) = - — Ee sin kyy sin (cot - Bz),Hx(y,z;t) = —Eesinkyysin((tit - Bz) 
Ky Ky 

P.10-37 a) Hi = C0J0(hr),r<a; H°zo = D0K0(£r),r<a. 

Jo(ha) _ fi^KoW 
J'0(ha) frhKMaY 

P.10-39 a) Dominant mode: TE101. fm = 4.802 (GHz). 
b) Q = 6869, We = Wm = 0.07728 (pJ). 

P. 10-41 a) a = d. b) 1.11 T»/Rs(l + a/2b). 

P10-43 Qm = 

P. 10-45 / = — 

VVnojU-oO- abd(a2 + b2) 
2d(ai + b3) + ab(a2 + b2)' 

1 

"Slf^la 

Chapter 11 

d2E 1 dj 
P. l l -1 V 2 E - p,e —y = -Vp + ii —. 

dtA e dt 

P . l l - 3 a) A = a ^ p ^ e - ^ d + jBR)sind. 
47m 

f -j2I0/7TC, 0 < z < \ / 4 ; 
P. l l -5 a) p, = -7( /o/0 sin/3z. b) p, = j + y 2 / 0 / T C > - A/4 < z < 0. 

P. l l -7 a) E - J^-ke-^Rsind. b) /?r = 20TT2 ( y Y . c) 1.76(dB). 

P . l l - 9 a) Rr = 320TT6(b/k)\ b)rjr = Rr 
Rr + (bRja)' 

„ , , 2sin0[l - cos(/3/z cos 0)] k 
R11-13 ^ = -B^Je ; M a x- '< = h = 12 ■ 
P.l l -15 a) Ee=J^^-e-jm-^e)F(d), whereF(6) = sin6cos (^-cosd\. 

P.11-19 b) (2A(/))1/2 = 4.23 (\/rf) (deg.) c) (2A0)„ = 46 .8 \AMdeg . ) 

P. l l -23 |F(0, (/))| = N,AT, 

77 

cos I —cosi 

sin0 

■_ N^A _:_ W 
sin sm 

sin ( | sin f 

where \jfx = ^ sin 6 cos $ and i|/y = -—^ sin 0 cos $. 
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P.ll-27 b) Main-lobe beamwidth = 4/VGD . 
P.ll-29 a) 0.55(nW). b) 1.25n(km),n= 1,2,- . 
P.ll-31 a) \V0C\ = 2XE0/TT ifp = 1. b) V0, = 0 ifp = 1. c) |V0C| = \ E 0 M 

sinw\ /sini/ 
u \ v P . l l - 3 3 E ^ ^ ) = ^ e - ^ ° (aecos(f) - a^sinc 

u = I — I sin 6 cos 0, u = I — I sin 6 sin 0. 

(77-/2)2 cos \b Ba 

b) 68X/a (degrees). c) 86X/a (degrees). d) -23.5 (dB). 





Index 

Ampere, unit of current, 9 
Ampere's circuital law, 228, 250 
Ampere's law of force, 284 
Angle 

Brewster, 414, 416, 426 
critical, 408, 426 
of incidence, 391 
polarizing, 416 
of reflection, 391 
of refraction, 408 

Anisotropic medium, 110 
Antenna array, 408, 602, 621 

binomial, 625 
broadside, 624, 627 
endfire, 624, 627, 628 
frequency-scanning, 631 
log-periodic dipole, 654 
phased, 631 
two-element, 622 
uniform linear, 625 

Antenna gain. See Gain of antenna 
Antenna pattern, 607. See also Radiation pattern 
Antennas, 600 

aperture, 655 
broadband, 650 
equiangular spiral, 651 
frequency-independent, 651 
helical, 645 
linear dipole, 600, 614 
log-periodic, 652 
logarithmic spiral, 651 
receiving, 631 
traveling-wave, 644 

turnstile, 646 
Yagi-Uda, 648 

Aperture antennas, 655 
Arfken, G., 64 
Array factor, 623 

of uniform linear array, 626 
Attenuation constant, 368 

of good conductor, 369 
of low-loss dielectric, 368 
in parallel-plate waveguide, 543 
from power relations, 448 
in rectangular waveguide, 555 
of transmission line, 439, 448 

Axiomatic approach. See Deductive approach 

Bac-cab rule, 18 
Backscatter cross section, 637 
Balmain, K. G., 661 
Band designations 

for microwave frequency ranges, 345 
Bandwidth 

of parallel resonant circuit, 458, 586 
Base vectors, 20, 33 

for Cartesian coordinates, 23 
for cylindrical coordinates, 27 
for spherical coordinates, 31 

Beamwidth, 610 
of half-wave dipole, 618 
of Hertzian dipole, 610 

Bessel functions, 183 
of the first kind, 564 
of the second kind, 565 

Bessel's differential equation, 564 
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Biaxial medium, 111 
Binomial array, 625 
Biot-Savart law, 235 
Boundary conditions 

for current density, 211 
between a dielectric and a pefect conductor, 33 
for electromagnetic fields, 329, 330 
for electrostatic fields, 117 
between two lossless media, 330 
for magnetostatic fields, 262 

Bound charges, 105 
Bound-charge densities. See Polarization charge 

densities 
Boundary-value problems, 152, 174 

in Cartesian coordinates, 175 
in cylindrical coordinates, 183 
Dirichlet problems, 175 
mixed boundary-value problems, 175 
Neumann problems, 175 
in spherical coordinates, 188 

Brewster angle, A\A, 416, 426 
Brillouin diagram, 532 
Broadside array, 624, 627 

Capacitance, 121 
coefficient of, 129 
of cylindrical capacitor, 125 
in multi-conductor systems, 129 
of parallel-plate capacitor, 123 
between sphere and conducting plane, 174 
of spherical capacitor, 125 

Capacitance per unit length 
of coaxial transmission line, 446, 447 
of parallel-plate transmission line, 431, 434 
of two-wire transmission line, 165, 445, 447 

Capacitor, 121 
cylindrical, 125 
parallel connection, 126 
parallel-plate, 123 
series connection, 126 
spherical, 125 

Carrel, R., 662 
Cartesian coordinates, 23, 33 
Cavity resonators, 582 

Circular, 589 
quality factor (Q), 586 
rectangular, 582 
TE modes, 584 
TM modes, 583 

Characteristic impedance, 432, 440 
of distortionless line, 443 
of lossless line, 441 

of low-loss line, 442 
of parallel-plate transmission line, 432 

Characteristic value. See Eigenvalue 
Charge density, 6, 74 

line, 6, 85 
polarization, 108 
surface, 6, 85, 106 
volume, 6, 84, 106 

Charge, electric, 5 
bound, 105 
conservation of, 5, 208, 322 
of an electron, 5, 674 
unit of, 5 

Chen, C. A., 661 
Chen, Y. S., 661 
Cheng, D. K., 314, 336, 509, 661 
Child-Langmuir law, 202 
Circuit-theory concepts, 2, 3, 4 
Circularly polarized wave, 365, 366 
Circulation of a vector field, 54 
Coefficient of coupling, 313 

of capacitance, 129 
of induction, 129 
of potential, 129 

Coersive field intensity, 260 
Collin, R. E., 560, 661 
Commutator, 288 
Conductance, 205 

unit of, 205, 672 
Conductance per unit length 

of coaxial transmission line, 446, 447 
of parallel-plate transmission line, 446, 447 
of two-wire transmission line, 445, 447 

Conduction current, 198, 199 
Conduction current density, 203 
Conductivity, 101, 203 

of some materials, 675 
unit of, 203, 672 

Conductors, 100 
good, 181, 343 

Conservation of charge, 5, 198, 208, 322 
Conservation of flux linkage, 227 
Conservative field, 58, 62 
Constants, universal, 8-10, 674 
Continuity, equation of, 5, 208, 322 
Constitutive relations, 7, 225, 307, 308 
Convection current, 198, 199 
Convection current density, 200 
Coordinate systems, orthogonal, 20-33, 44, 49, 57 

Cartesian, 23, 33 
cylindrical, 27, 33 
spherical, 31, 33 

Coulomb, unit of charge, 5, 671 
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Coulomb condition, 233 
Coulomb gauge. See Coulomb condition 
Coulomb's law, 77, 79 
Critical angle, 408, 426 
Cross product, 16. See Product of vectors 
Crowley, J. C , 73, 106 
Curie temperature, 260 
Curl, 54. See also inside of back cover 

in Cartesian coordinates, 57 
in cylindrical coordinates, 58 
in general orthogonal curvilinear coordinates, 57 
in spherical coordinates, 58 

Current, 6 
Current density, 6, 200, 227, 323 

conduction, 203 
convection, 200 
displacement, 323 
lineal, 246 
surface, 6, 245, 263 
volume, 6, 200, 203, 245 

Current generator, ideal, 209 
Cutoff frequency, 520, 527 

of circular waveguide, 568, 570 
of dielectric waveguide, 575 
of ionosphere, 375 
of parallel-plate waveguide, 535, 539 
of rectangular waveguide 549 

Cutoff wavelength, 528, 549 
Cylindrical coordinates, 27, 33. See also inside of 

back cover 

Deductive approach, 4 
Desauer, J. H., et al., 73 
Degenerative mode, 584 
Del, 43, 44, 232 
Depth of penetration. See Skin depth 
Diamagnetism, 258. See also Magnetic materials 
Dielectric breakdown, 114 
Dielectric constant, 110, 675. See also Permittiv

ity, relative 
Dielectric strength, 114 
Dielectric window, half-wave, 406 
Dipole 

electric, 83, 95 
magnetic, 239 

Dipole antenna, 600 
elemental electric, 602 
elemental magnetic, 605 
far-zone fields, 605 
half-wave, 617 
linear, 614 
near-zone fields, 605 

Dipole moment 

electric, 84, 603 
volume density of, 106 

magnetic, 241, 605 
volume density of, 244 

Directive gain, 610 
of Hertzian dipole, 611 

Directivity, 611 
of aperture radiator, 658 
of half-wave dipole, 618 
of Hertzian dipole, 611 
of quarter-wave monopole, 619 

Dirichlet problems, 175 
Discontinuities in waveguide, 559 
Dispersion, 376, 443 

anomalous, 378 
normal, 378 

Dispersion relation 
of dielectric waveguide, 573 

Dispersive medium, 376, 443 
Dispersive transmission system, 528 
Displacement current, 198 
Displacement current density, 323 
Distortionless line, 443 
Distributed parameters. See also Transmission-line 

parameters 
of transmission lines, 434, 447 

Divergence, 46. See also inside of back cover 
in Cartesian coordinates, 49 
in cylindrical coordinates, 50 
in general orthogonal curvilinear coordinates, 49 

Divergence theorem, 50 
Domain wall, 259 
Domains, magnetic, 258 
Dominant mode, 535 

for cavity resonator, 584 
for circular waveguide, 570 
for parallel-plate waveguide, 535 
for rectangular waveguide, 552 

Doppler, C , 360 
Doppler effect, 360 
Dot product. See Scalar product 
Duality, principle of, 341, 607 
DuHamel, R. H., 662 
Dyson, J. D., 661 

Earth magnetic field, 226 
Eddy current, 314 
Endfire array, 627 
Effective aperture. See Effective area of receiving 

antenna 
Effective area of receiving antenna, 634 
Effective length, 621, 636 
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of receiving antenna, 620 
of transmitting antenna, 619 

Eigenmode, 535 
Eigenvalue, 527 
Electret, 106 

microphone, 73, 106 
Electric charge, 5 

conservation of, 5, 198, 208, 322 
Electric dipole, 83, 95, 241, 602 

induced, 105 
Electric dipole moment, 84 
Electric displacement, 6, 109 

unit of, 7, 109, 672 
Electric field intensity, 6, 74 

unit of, 6, 74, 672 
Electric flux density. See Electric displacement 
Electric Hertz potential, 353 
Electric potential, scalar, 61, 92, 93 
Electric susceptibility, 110 
Electrolysis, 199 
Electrolytic current, 198 
Electrolytic tank, 198, 213 
Electromagnetic field, 1 

quantities, 7 
time-harmonic, 335 

Electromagnetic induction, 258. See also Fara
day's law 

fundamental postulate for, 309 
Electromagnetic model, 3, 308 

fundamental field quantities of, 6, 7 
universal constants of, 9-10 

Electromagnetic power, 379 
Electromagnetic spectrum, 343 
Electromagnetic theory. See also Maxwell's 

equations 
foundation of, 323 

Electromagnetics, 1, 3 
time-harmonic, 338 

Electromagnetostatic field, 215, 307 
Electromotance, 206 
Electromotive force (emf), 54, 206 

flux-cutting, 315 
motional, 315, 317 
transformer, 310, 317 

Electron, 4 
physical constants of, 674 

Electron-volt, 134, 135 
Electrostatic energy, 133 

of continuous charge distribution, 136 
of discrete charge distribution, 134 
in terms of field quantities, 137 

Electrostatic energy density, 138 
Electrostatic forces, 140 

bodies with fixed charges, 140 
bodies with fixed potentials, 142 

Electrostatic model, 307, 308 
in free space, 75 

Electrostatic quadrupole, 147 
Electrostatic shielding, 132 
Electrostatics, fundamental postulates of, 75, 77 
Element factor, 623 
Elemental electric dipole, 602 

far-zone field, 605 
near-zone field, 604 

Elemental magnetic dipole, 605 
far-zone field, 607 

Elliott, R. S., 661 
Elliptically polarized wave, 365 
Endfire array, 624, 627, 628 
Energy 

electric, 137, 140 
magnetic, 277, 279 

Energy density 
electric, 138, 381 
magnetic, 280, 381 

Energy-transport velocity, 528, 541 
Equation of continuity, 5, 208, 322 
Equipotential lines, 94 

of electric dipole, 97 
Equipotential surfaces, 94, 104 
Evanescent mode, 529, 531 

Far-zone fields, 605 
of electric dipole, 605 
of magnetic dipole, 607 

Farad, unit of capacitance, 121 
Faraday disk generator, 316 
Faraday, Michael, 308 
Faraday's law of electromagnetic induction, 310, 

317, 319 
Ferrites, 261 
Ferromagnetism, 258. See also Magnetic materials 
Fiber, optical. See Optical fibers 
Field, 1, 72 

conservative, 58, 62, 76 
curl-free, 61, 62, 63 
divergenceless, 50, 63 
electromagnetic, 323 
electrostatic, 75 
induced, 103 
irrotational, 58, 62, 63, 64, 75 
magnetostatic, 226 
quasi-static, 327 
solenoidal, 50, 63, 64 
time-harmonic, 336 

Flow source, 54 



Index 697 

Flux lines, 46, 94, 96 
Flux linkage, 267 
Force equation, Lorentz's, 226, 317 
Forces 

electric, 225 
electromagnetic, 226, 317 
electrostatic, 73, 75, 140 
magnetic, 225, 281, 289 

Free space 
constants of, 9, 10, 674 
intrinsic impedance of, 358, 674 
permeability of, 9, 10, 674 
permittivity of, 9, 10, 674 

Frequency scanning, 631 
Fresnel's equations, 413, 415 
Fresnel's formulas, 426 
Friis transmission formula, 640 
Fundamental postulates 

for electromagnetic induction, 309 
of electrostatics in free space, 75, 77 
of magnetostatics in free space, 226, 228 

Gain of antenna, 610-612 
Gauss, unit of magnetic flux density, 226 
Gaussian surface, 79, 88 
Gauss's law, 76, 87, 110 
Gauss's theorem. See Divergence theorem 
Gell-Mann, M., 5 
Golde, R. H., 197 
Goto, N., 661 
Gradient, 42. See also inside of back cover 

in Cartesian coordinates, 44 
definition of, 43 
in general orthogonal curvilinear coordinates, 44 

Group velocity, 375, 378 
in waveguides, 528 

Hall 
coefficient, 283 
effect, 282 
field, 282 
voltage, 283 

Hankel functions, 566 
modified, 567 

Harmonic functions, 175 
Harrington, R. F., 661 
Helical antennas, 645 

axial mode, 648 
normal mode, 647 

Helmholtz coils, 298 
Helmholtz's equation 

homogeneous, 339, 341, 355 
nonhomogeneous, 339, 353 

Helmholtz's theorem, 63 
Henry, unit of inductance, 267 
Hertz potential, electric, 353 
Hertzian dipole, 603 

E-plane pattern, 608 
far-zone field, 605 
//-plane pattern, 608 
near-zone field, 604 

H.O.T. (higher-order terms), 48, 56 
Hybrid modes, 590 
Hysteresis 

loop, 259 
loss, 260 
magnetic, 259 

Ideal current generator, 209 
Ideal voltage source, 207 
Images, method of, 152, 159, 645 

charged sphere and grounded plane, 172 
line charge and conducting cylinder, 162 
magnetostatic problem, 302 
point charge and conducting plane, 161 
point charge and conducting sphere, 170 

Impedance. See also Wave impedance 
characteristic, 432 
input, of a transmission line, 454, 466 
intrinsic, 341, 358, 363, 369 
surface, 433, 574, 577 
wave, of total field, 403 
wave, of waveguides, 532 

Impedance matching, 497 
by double stubs, 505 
by quarter-wave transformer, 456, 465, 497 
by single stub, 501 

Impedance transformer, quarter-wave, 456, 465, 
497 

Incidence 
angle of, 391 
plane of, 390 

Index of refraction, 408 
Inductance, 265, 268 

external, 272 
internal, 272, 435 
mutual, 267, 274 
self-, 268 

Inductance per unit length 
of coaxial transmission line, 446, 447 
of parallel-plate transmission line, 431, 434 
of two-wire transmission line, 445, 447 

Induction 
coefficient of, 129 

Induction heating, 314 
Inductive approach, 3 
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Inductor, 268 
Ink-jet printer, 82 
Insulator, 101 

good, 210, 343 
International system of units. See SI units 
Intrinsic impedance, 341, 363 

of free space, 358 
of good conductor, 369 
of low-loss dielectric, 369 
of plasma, 374 

Inverse point, 164, 171 
Ionosphere, 373 

wave propagation in, 375 
Isbell, D. E., 662 
lshimaru, A., 661 

Jewett. C. E., 73 
Johnson, C. C , 560 
Jordan, E. C , 661, 662 
Joule, unit of energy, 134 
Joule's law, 210 
Jurgen, J. K., 331 

Kilogram, 8 
Kirchhoffs current law, 4, 5, 209 
Kirchhoff s voltage law, 4, 76, 208 
Klinkenberg, A., et al., 73 

Laplace's equation, 4, 154, 266 
Laplacian 

operations. See inside of back cover 
operator, 153, 232 

Lee, K. F., 661 
Legendre equation, 189 
Legendre functions, 189 
Legendre polynomials, 189 
Lenz's law, 258, 310 
Liang, C. H., 509 
Light velocity. See also Velocity of wave 

propagation 
in free space, 9, 10 

Lightning arrester, 114 
Line integral, 37, 54 
Linearly polarized wave, 364, 366 
Lorentz condition for potentials, 328, 339 
Lorentz gauge. See Lorentz condition for 

potentials 
Lorentz's force equation, 226, 317 
Loss angle, 342 
Loss tangent, 342 
Love, J. D., 581 

Index 

Ma, M. T., 661 
Magnet, bar, 227, 246, 248. See also Permanent 

magnet 
Magnetic charge, 227, 243. See also Magnetiza

tion, equivalent charge density of 
Magnetic circuits, 251 
Magnetic dipole, 239, 241 
Magnetic dipole moment, 241 

volume density of, 244 
Magnetic domains, 258 
Magnetic energy, 227, 278 

in terms of field quantities, 299 
Magnetic energy density, 280 
Magnetic field intensity, 7, 249 

unit of, 7, 234, 672 
Magnetic flux, 227, 255 

conservation of, 227 
unit of, 234, 672 

Magnetic flux density, 6, 63, 225, 226 
circulation of, 228 
unit of, 7, 226, 672 

Magnetic flux linkage, 267 
Magnetic force, 225, 281, 283, 294 

in terms of mutual inductance, 292 
in terms of stored magnetic energy, 289 

Magnetic materials, 257, 676 
antiferrimagnetic, 261 
diamagnetic, 257 
ferrimagnetic, 261 
ferromagnetic, 257, 258 
paramagnetic, 257, 258 

Magnetic potential 
scalar, 242, 266 
vector, 232, 326 

Magnetic susceptibility, 250, 257 
Magnetic torque, 283-292 

in terms of mutual inductance, 292 
in terms of stored magnetic energy, 289 

Magnetic vector potential. See Vector potential 
Magnetization, equivalent charge densities of, 247 

surface charge density, 247 
volume charge density, 247 

Magnetization, equivalent current densities of, 243 
surface current density, 245 
volume current density, 245 

Magnetization curve, normal, 260 
Magnetization vector, 244 
Magnetomotance, 220 
Magnetomotive force (mmf), 257 
Magnetostatic model, 307, 308 

in free space, 225 
Magnetostatics 

fundamental postulates of, 225, 228 
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Main beam, 609, 627 
MaLachlan, N. W., 564 
Marcuse, D., 581 
Maxwell, James Clerk, 323 
Maxwell's equations, 323-324 

differential form, 323, 324 
integral form, 323, 324 
source-free, 340 
time-harmonic, 339 

Medium 
anisotropic, 110 
biaxial, 111 
homogeneous, 110 
inhomogeneous, 351 
isotropic, 110 
linear, 110 
simple, 110, 250, 334, 338 

fields in, 340 
uniaxial, 111 

Meter, 8 
Method of separation of variables, 174 
Metric coefficients, 21, 33 
Microstrip lines. See Striplines 
Microwave frequency ranges 

band designations for, 345 
Microwave oven, 343 
Mobility, 202 
Molecules, 105-106 

nonpolar, 106 
polar, 106 

Monopole, 619 
Moore, A. D., 73 
Motor, d-c, 288 
Mushiaki, Y., 661 
Mutual inductance, 267, 274 

Neper, 368 
Neumann formula, 274 
Neumann function, 565 
Neumann problems, 175 
Newton, unit of force, 9 
Null identities, 61 

Ohm's law, 203 
Ohmic media, 203 
Optical fibers, 411, 425, 580 

acceptance angle, 425 
numerical aperture, 425 

Ore, F. R., 662 
Orthogonal coordinate systems, 20 

three basic, 33 

Paramagnetism, 258. See also Magnetic materials 
Parameters, distributed, 434. See also Transmis

sion-line parameters 
for transmission lines, 444 

Path-gain factor, 643 
Pattern function, 608 

of elemental electric dipole, 605 
of elemental magnetic dipole, 607 
of half-wave dipole, 616 
of linear dipole antennas, 617 

Pattern multiplication, principle of, 623, 645 
Permanent magnet, 242, 247, 260, 265 
Permeability, 250, 676 

absolute, 250 
complex, 342 
of free space, 9-10, 227, 674 
incremental, 260 
relative, 250, 676 

Permittivity, 110, 675 
absolute, 110 
complex, 342 
of free space, 9-10, 75, 674 
relative, 110, 675 

Phase constant, 368 
of good conductor, 369 
low-loss dielectric, 368 
of transmission line, 439 

Phase matching, 408, 412 
Phase velocity, 356, 376 

along parallel-plate line, 432 
in good conductor, 369 
in low-loss dielectric, 369 
in waveguide, 528 

Phasors, 337 
vector, 338 

Planck's constant, 345 
Plane of incidence, 390 
Plane wave, 354 

nonuniform, 392, 410 
polarization of, 364 
uniform, 354 

Plasma, 373 
cutoff frequency of, 374, 375 
equivalent permittivity of, 374 
frequency, 374, 375 
intrinsic impedance of, 374 
oscillation, 374 
propagation constant in, 374 

Poisson's equation 
scalar, 153, 233 
vector, 233 

Polarization, 364 
circular, 365, 366 
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elliptical, 365, 366 
linear, 364, 366 
parallel (vertical, or / / - ) , 395, 414 
perpendicular (horizontal, or £-), 390, 411 
of a uniform plane wave, 364 
vector, 106 

Polarization charge density, 108 
surface, 107 
volume, 107 

Polarizing angle, 416. See also Brewster angle 
Polaroid sunglasses, 416 
Popovic, B. D., 192 
Position vector, 34 
Potential 

coefficient of, 129 
difference, 93 
electric, 92, 93 
electric Hertz, 353 
retarded, 334, 339, 601 
scalar magnetic, 242, 300 
vector magnetic, 232, 328 

Power density, 210 
instantaneous, 383 
time-average, 384, 401 

Power gain, 612 
Poynting's theorem, 381 
Poynting vector, 354, 380 

instantaneous, 383, 384 
time-average, 384, 385 

Product of vectors, 14 
scalar or dot product, 14 
triple products, 18 
vector or cross product, 16 

Propagation constant, 367 
in good conductor, 369 
in low-loss dielectric, 368 
in plasma, 374 
on transmission line, 439 

distortionless, 442 
lossless, 441 
low-loss, 442 

Q (quality factor), 586 
of quarter-wave shorted line, 458 

Quarks, 5 
Quarter-wave transformer, 406 
Quasi-static approximation, 334 
Quasi-static conditions, 2, 277 
Quasi-static fields, 327, 605 

Radar, 1, 637, 639 
Radar cross section, 637 
Radar equation, 641 

Radiation efficiency, 612 
Radiation fields, 607. See also Far-zone fields 
Radiation intensity, 610 
Radiation pattern, 607 

£-plane, 607 
//-plane, 607 

Radiation resistance, 612 
of half-wave dipole, 617 
of Hertzian dipole, 612 
of quarter-wave monopole, 619 

Radome, 401 
Raymond, P. D., Jr., 661 
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directional pattern of, 632, 634 
effective area of, 634 
effective length of, 620 
internal impedance of, 632, 633 

Receiving cross section. See Effective area 
Reciprocity relations, 632, 634 
Rectangular coordinates. See Cartesian 

coordinates 
Reed, G. A. L., 436 
Reflection 

angle of, 391 
Snell's law of, 391, 407, 413 

Reflection coefficient, 348, 460 
current, 461 
at plane interface, 398, 400, 413, 415 
of terminated transmission line, 460, 462 
voltage, 460, 468 

Reflection diagram, 474 
current, 477 
voltage, 474 

Refraction 
angle of, 408 
index of, 408 
Snell's law of, 408, 413 

Relaxation time, 210 
Reluctance, 253 

unit of, 253 
Remanent flux density, 260 
Residual flux density. See Remanent flux density 
Resistance, 204 
Resistance calculations, 215 
Resistance per unit length 

of coaxial transmission line, 447 
of parallel-plate transmission line, 434 
of two-wire transmission line, 446, 447 

Resistivity, 203 
Resonator, 486. See also Cavity resonators 
Retarded potential 

scalar, 334, 339 
vector, 334, 339 

Rumsey, V. H., 661 
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Satellite communication, 1, 641, 646, 648, 667 
Saturation, of magnetic material, 260 
Scalar, 11 
Scalar electric potential, 92 
Scalar magnetic potential, 242, 300 
Scalar product, 14 
Scalar triple product, 18 
Scattering cross section. See Radar cross section 
Second, 8 
Self-inductance, 268 
Semiconductors, 101 
Separation constant, 175, 183, 548, 563 
Separation of variables, method of, 174, 175, 183, 

188 
Seshadri, S. R., 580 
Sharp, E. D., 661 
Shielding, electrostatic, 132 
Sidelobes, 609, 610, 628 
Siemens, 203, 205 
Silver, S., 662 
Skin depth, 354, 370, 371 
Skin effect, 272, 343 
Smith, P. H., 485 
Smith chart, 429, 485 

as an admittance chart, 500, 502, 508 
calculations for lossy lines, 495 

Snell's law 
of reflection, 391, 407, 413 
of refraction, 408, 413 

Snyder, A. W., 581 
Solenoidal field, 50, 63, 209 
Source 

flow, 54, 64 
ideal current, 209 
ideal voltage, 207 
vortex, 54, 64 

Spectrum of electromagnetic waves, 344 
Spherical coordinates, 31, 33. See also inside of 

back cover 
Standing wave, 388, 461, 463 
Standing-wave ratio (SWR), 400, 461, 489 
St. Elmo's fire, 72, 197 
Stokes's theorem, 58 
Striplines, 428, 435 
Streamlines, 46, 94 

of electric dipole, 96 
Stub tuner, 504 
Stutzman, W. L., 661 
Superconductor, 263, 331 
Surface charge density, 6, 85, 117 

equivalent, 107 
Surface current density, 263 

equivalent, 245 

Surface impedance, 433, 574, 577 
Surface integral, 37, 47 
Surface wave, 410, 521 
Susceptibility 

electric, 110 
magnetic, 250 

Tables, list of, 677 
Tai, C. T., 117 
Telegraphist's equations, 438 
Tesla, unit of magnetic flux density, 7, 8, 226 
Thiele, G. A., 661 
Time, relaxation, 210 
Time-harmonic electromagnetics, 338 
Time-harmonic fields, 335 
Time-harmonic Maxwell's equations, 339 
Time-harmonic transmission-line equations, 431, 

439 
Time-harmonic wave equation, 339 
Torque, 286 

magnetic, 289 
Total reflection, 408 
Transformer emf, 310 
Transformers, 310 

ideal, 312 
impedance, 312 
real, 313 

Transmission coefficient, 398, 413, 415 
Transmission-line circuits, 467 
Transmission-line equations 

general, 438 
time-harmonic, 439 

Transmission-line parameters, 444 
of coaxial transmission lines, 446, 447 
of parallel-plate transmission lines, 434 
of two-wire transmission lines, 445, 447 

Transmission lines, 427 
attenuation constant of, 439, 448 
characteristic impedance of, 440, 458 
as circuit elements, 454 
coaxial, 427, 446 
distortionless, 443 
finite, 449 
half-wave sections of, 456 
impedance matching of, 497 

by double stubs, 505 
by quarter-wave transformer, 456, 465, 497 
by single stub, 501 

infinite, 439 
input impedance of, 451 
matched condition for, 449, 452 
open-circuited, 454 

input reactance of, 454 
parallel-plate, 427, 429, 434 
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propagation constant on, 439, 457 
quarter-wave section of, 456 
short-circuited, 455 

input reactance of, 455 
transients on, 471-485 

initially charged line, 480 
pulse excitation, 478 
with reactive termination, 482 
with resistive termination, 472 

two-wire, 427, 455 
Transverse electromagnetic (TEM) wave, 361, 

520, 524 
Transverse electric (TE) wave, 393, 520, 524, 529 

in circular waveguide, 569 
between parallel plates, 539 
in rectangular waveguide, 551 

Transverse magnetic (TM) wave, 396, 520, 524, 
525 

in circular waveguide, 567 
between parallel plates, 534 
in rectangular waveguide, 547 

Traveling wave, 356 
Traveling-wave antenna, 643 
Triplate line, 436 
Triple product of vectors, 18 

scalar, 18 
vector, 18 

Tseng, F. I., 661 
Tuners, 504 

double-stub, 504 
single-stub, 501 

Uda, S., 661 
Uniaxial medium, 111 
Uniform plane wave, 354 
Uniqueness theorem, 157 
Unit vector, 12 
Units 

of derived quantities, 9, 671-673 
fundamental, 671 
rationalized MKSA system, 8, 9, 671 
SI system, 8, 671 

Universal constants, 8-10, 674 
Unz, H., 661 

Vector, 11 
Vector addition and subtraction, 12 
Vector identities. See inside of back cover 
Vector potential 

magnetic, 63, 232, 328 
retarded, 334, 339, 601 

Vector product. See Product of vectors 
Vector triple product, 18 

Velocity 
energy-transport, 528, 541 
group, 375-378 
of light in free space, 9-10, 674 
phase, 356-376 
of wave propagation, 9-10, 333, 356 

Virtual displacement, principle of, 140, 289 
Visible light, 345 
Visible range of radiation pattern, 627 
Voltage, 203 

induced, 315 
rise, 207 
source, ideal, 207 

Volume charge density, 6 
equivalent, 108 

Volume current density, 6 
electric, 6, 200, 203 
equivalent, 245 

Volume integral, 37, 50 
Vortex 

sink, 54 
source, 54 

Wallich, P., 8 
Wave 

circularly polarized, 365, 366 
elliptically polarized, 365, 366 
evanescent, 410, 531 
horizontally polarized. See Polarization 
linearly polarized, 364 
in lossless media, 355 
in lossy media, 367 
nonuniform, 392, 396, 410 
plane, 354 
standing, 410 
surface, 410 
time-harmonic, 339 
transverse electric (TE), 520, 524 
transverse electromagnetic (TEM), 361, 363, 

520, 524 
transverse magnetic (TM), 396, 520, 524 
traveling, 356 
uniform, 354 
vertically polarized. See Polarization 

Wave equation 
homogeneous, 333, 335 
nonhomogeneous, for scalar potential, 328 
nonhomogeneous, for vector potential, 328 
solution of, 333 
time-harmonic, 339 

Wave impedance, 363, 524 
for TE modes, 530, 532 
for TEM modes, 524 
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for TM modes, 529, 532 
of total field, 403, 404 

Wavefront, 355 
Waveguide, 520 

circular, 562 
dielectric, 572 
discontinuities in, 559-561 
general wave behaviors in, 521-534 
optical, 580 
parallel-plate, 534 
rectangular, 547 

Wavelength, 357 

in good conductor, 370 
in waveguide, 528, 532 

Wavenumber, 339 
free-space, 355 
vector, 362 

Weber, E., 213 
Weber, unit of magnetic flux, 226, 234 
Williams, E. R., et al, 74 

Yagi, H., 661 
Yagi-Uda antenna, 648 



Some Useful Vector Identities 

A B x C = B C x A = C A x B 
A x (B x C) = B(A C) - C(A B) 
V(i//V) = IJJVV+ VVifj 
V ■ (i//A) = i//V • A + A • Vi// 
V x ((//A) = i//V x A + V0 x A 
V • (A x B) = B • (V x A) - A • (V x B) 
v v y = v2v 
V x V x A = V(V • A) - V2A 
V x V V = 0 
V ■ (V x A) = 0 

V-Adv = <P A-ds 
v Js 

V x A ■ ds = <P A • di 
S JC 

(Divergence theorem) 

(Stokes's theorem) 

Gradient, Divergence, Curl, and Laplacian Operations 

Cartesian Coordinates (x, y, z) 

dV dV dV 
dx - dy dz 

„ A dAx dAY dA. 
V • A = —■ + —*■ + —-

dx dy dz 

V x A = 

a* av az 
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